Estructura Y Caracteristicas De Las Bacterias Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Estructura Y Caracteristicas De Las Bacterias Pdf Estructura y caracteristicas de las bacterias pdf Continue Explicamos qué son las bacterias, los tipos que existen y cuál es su estructura. Además, algunos ejemplos y sus diferencias con el virus. Las bacterias son los seres vivos más primitivos y abundantes del planeta Tierra. ¿Qué son las bacterias? Las bacterias son un grupo extenso de microorganismos prokaryotes (células del núcleo privado) en varias formas y tamaños posibles. Aunque el término bacterias solía ser agrupado por todos los organismos prokaryotes, hoy taxonomio los divide en dos categorías: el dominio de las bacterias y el dominio de Archaea. Ambos se agrupan en el superminoso Prokaryota, formado por todos los organismos prokaryotes, que son las criaturas vivientes más primitivas y abundantes del planeta Tierra, adaptadas a casi todas las condiciones y hábitats. Algunas bacterias pueden incluso sobrevivir en condiciones adversas como el espacio exterior. Los prokaryotes modernos, incluyendo todas las bacterias, son los descendientes directos de las primeras formas de vida unicelular del planeta, que surgen en condiciones fuertemente ajustadas de hace unos 4 mil millones de años. Las bacterias han estado involucradas, tal vez debido a su abundancia, en la mayoría de los saltos evolutivos celulares, por ejemplo, creen que a través de los procesos de endosimbiosis, han influido en el origen de las mitocondrias (organellas presentes en todas las células eucariotas) o cloroplastos (organellas únicas de las células vegetales). Estos seres vivos tienen relaciones con casi todas las formas de vida en el planeta, ya sea a través de relaciones de refrigerio (por ejemplo, bacterias que se multiplican en la piel), reciprocidad (por ejemplo, aquellas que contribuyen a la descomposición de los alimentos en el intestino) o parasitismo (por ejemplo, causando infecciones y enfermedades). La vida bacteriana es indispensable en los procesos de descomposición de la materia orgánica necesarios para procesar elementos como el carbono o el nitrógeno, y constituye el suelo de cadenas estrofias microscópicas en diferentes ambientes. Las bacterias se multiplican rápidamente y a través de procedimientos asexuales, que consisten en la replicación de la célula progenitora en dos exactamente iguales a ella (división binaria). Se estima que en condiciones favorables, la bacteria es capaz de dividir por sólo 15-20 o 20-30 minutos, dependiendo de la especie. Ver también: Los tipos autotróficos de bacterias de coco tienen una forma esférica o redonda. Las bacterias son estudiadas por bacteriología, la industria de la microbiología. Esta disciplina los clasificó según diversos criterios, como su morfología, su metabolismo o las características de su pared celular. Según su morfología: Bacilios. En formas alargadas como rejillas microscópicas. Cocos. En el camino redondo o redondo. Las bacterias del coco también pueden ocurrir en parejas (diplococcus), grupos de cuatro (tetracocos), cadenas (estreptococos) y racimos o racimos irregulares (estafilococo). Formas helíticas. Pueden ser: vibrios, forma de coma y ligeramente curvados; spilios, helicoidal duro o tirachinas; o singroquetas, en forma de tirachinas flexibles. Es común entre las bacterias de la misma especie adoptar diferentes tipos morfológicos llamados pleomorfismo. Dependiendo de la composición de la pared celular: Gram es positivo. Adquieren un color púrpura o azulado cuando se utiliza tinte, debido a la presencia de una pared celular engrosada. Gram negativos. Toman rosa o rojo cuando se utiliza tinte, debido a la presencia de una pared celular delgada. Según tu dieta: Fotoatrofos. Utilizan la luz solar como fuente de energía y sustancias inorgánicas (principalmente CO2) como fuente de carbono. Hemoatrópicos. Utilizan compuestos inorgánicos reducidos como fuente de energía y dióxido de carbono como fuente de carbono. Fotogetrohes. Utilizan la luz como fuente de energía y moléculas orgánicas como fuente de carbono. Hemokhetherotrophes. Utilizan moléculas orgánicas como fuente de carbono, que al mismo tiempo se utiliza como una reacción reactiva para generar energía. Existen otras clasificaciones de bacterias que tienen en cuenta el hábitat o sus componentes bioquímicos. La estructura bacteriana de las estructuras Pilis implicadas en el intercambio de material genético entre bacterias. La estructura bacteriana de una sola célula suele ser bastante simple. Las bacterias están formadas por una sola célula sin un núcleo celular y casi sin ciertos orgánulos, pero con nucleoides (el área irregular donde se encuentra el ADN circular de prokaryote) y la pared celular peptidoglykan, que cubre la célula fuera de la membrana plasmática. Además, a menudo tienen sierras (estructuras involucradas en el intercambio de material genético entre bacterias) o desastres de viaje (si son móviles). Algunas bacterias también tienen una cápsula, una estructura protectora rígida que se encuentra fuera de la pared celular. El citoplasma bacteriano es ribosoma disperso (en el que se lleva a cabo la síntesis de proteínas), así como, por regla general, plásmidos (las moléculas pequeñas del ADN no son cromosomas) y pequeños vacuolas (que funcionan como depósitos de sustancias de reserva). Algunas bacterias tienen compartimentos de prokaryote, orgánulos primitivos, rodeados de membranas, diseñados para trabajos bioquímicos específicos dentro de la célula, dependiendo de su metabolismo. Ejemplos de la bacteria Escherichia coli son comunes en los intestinos de las criaturas vivas con sangre caliente. gérmenes los organismos más comunes en el planeta y tienen una gran variedad. A lo largo de la evolución, han sido capaces de adaptarse a todo tipo de ambientes y por lo tanto se encuentran en todos los hábitats terrestres y acuáticos, incluso en los más extremos, como las fuentes ácidas y las profundidades oceánicas. Muy a menudo se puede pensar en las bacterias como patógenos que pueden causar enfermedades infecciosas. Mientras que algunos son dañinos, hay muchos otros que son inofensivos o incluso útiles. Por ejemplo: Escherichia coli. Estas son bacterias gramnegativas comunes en los tracto gastrointestinales humanos y otros animales de sangre caliente. Algunas cepas de esta bacteria pueden causar infección en ciertos momentos. Neisseria gonorrea. Gonokoko es un gonocococ que causa gonorrea, una infección de transmisión sexual en humanos. Bacillus intermisión. Es todavía, una bacteria grampositiva que causa lesiones negras reconocibles en la piel (ántrax). Celulosa solangey. Es una mixobacterias gram-negativas muy común en los suelos y un metabolismo inofensivo. Clostidi botulinum. Es un agente causal del botulismo, a través de la neurotoxina, que secreta estas bacterias, cuyo crecimiento se conoce en los alimentos enlatados (los alimentos enlatados están hinchados y que la liberación de gas al aire libre son un síntoma claro) y otros alimentos enlatados. Lactobacillus acidophilus. Es una bacteria de la leche ácida, un habitante mutuo del intestino humano y otros mamíferos. Como resultado de su propio metabolismo, esta bacteria aporta varios beneficios ya que coopera en la digestión, aumenta la biodisponibilidad de nutrientes y ayuda a mantener el tracto digestivo libre de patógenos. Lactobacillus acidophilus. Es un género de bacterias que son habitantes simbióticos del tracto digestivo humano. Promueve la producción de vitamina K, vitamina B12, ácido fólico y biotina. Las diferencias entre virus y bacterias de virus y bacterias son extremadamente diferentes, incluso si son las formas infecciosas más conocidas y comunes para los seres humanos. La principal diferencia se debe a su estructura y tamaño: mientras que las bacterias son organismos unicelulares, cuyo tamaño oscila entre 0,5 y 5 micrómetros de longitud, los virus son seres acelulares mucho más simples y elementales son incapaces de reproducirse a menos que infecte otras células que funcionan como réplicas virales de plantas, una vez vacunadas con ADN viral invasivo. Hoy en día, la comunidad científica no termina de ponerse de acuerdo sobre si los virus están realmente vivos, tan primitivos en la existencia que no mucho más que una simple molécula de ADN o ARN envuelto en una capa de proteína. Por esta razón, los antibióticos no afectan a los virus, pero gérmenes mientras que los antivirales o retrovirus se utilizan exclusivamente para combatir las infecciones virales. Leer más en: Viral Links: Last Edition: 8 de agosto de 2020. Cómo cotizar: Bacterias. Escrito por Maria Estela Raftino. De: Argentina. K: Concepto.de. Disponible en: . Recibido el 15 de octubre de 2020. Intervalo de tiempo de bacterias: 4100-0Ma (2) Had. Ventilador proterozoico arcaico. Sodio - El reciente E. coli Escherichia ha aumentado 15.000 veces. TaxonomíaDominio: BacteriaEhrenberg 1828 sensu Woese, Kandler & Wheelis 1990[4] Filos[7] Monodérmicos (Gram positivos) Actinobacteria, Chloroflexi, Firmicutes, Tenericutes, Thermomicrobia Didérmicos (Gram negativos) Acidobacteria, Aquificae, Armatimonadetes, Bacteroidetes, Caldiserica, Chlamydiae, Chlorobi, Chrysiogenetes, Cyanobacteria, Deferribacteres, Deinococcus-Thermus, Dictyoglomi, Elusimicrobia, Fibrobacteres, Fusobacteria, Gemmatimonadetes, Kiritimatiellaeota, Lentisphaerae, Nitrospira, Planctomycetes, Proteobacteria, Spirochaetes, Synergistetes, Thermodesulfobacteria, Thermotogae, Verrucomicrobia Filos candidatos[5] [6] Absconditabacteria, Acetothermia, Aegiribacteria, Aerophobetes, Aminicenantes, Atribacteria, Berkelbacteria, Calescamantes, Calditrichaeota, Cloacimonetes, Coprothermobacterota,
Recommended publications
  • Ctsr, the Master Regulator of Stress-Response in Oenococcus
    CtsR, the Master Regulator of Stress-Response in Oenococcus oeni, Is a Heat Sensor Interacting With ClpL1 Maud Darsonval, Frédérique Julliat, Tarek Msadek, Hervé Alexandre, Cosette Grandvalet To cite this version: Maud Darsonval, Frédérique Julliat, Tarek Msadek, Hervé Alexandre, Cosette Grandvalet. CtsR, the Master Regulator of Stress-Response in Oenococcus oeni, Is a Heat Sensor Interacting With ClpL1. Frontiers in Microbiology, Frontiers Media, 2018, 9, pp.1-14. 10.3389/fmicb.2018.03135. hal-01986589 HAL Id: hal-01986589 https://hal.archives-ouvertes.fr/hal-01986589 Submitted on 18 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License fmicb-09-03135 December 15, 2018 Time: 15:10 # 1 ORIGINAL RESEARCH published: 18 December 2018 doi: 10.3389/fmicb.2018.03135 CtsR, the Master Regulator of Stress-Response in Oenococcus oeni, Is a Heat Sensor Interacting With ClpL1 Maud Darsonval1†, Frédérique Julliat1†, Tarek Msadek2,3, Hervé Alexandre1,4 and Cosette Grandvalet1,5* 1 UMR
    [Show full text]
  • Evolution of Superior Lactic Acid Bacteria
    Enhanced Wine-Making Efficiency Through Fool-Proof Malolactic Fermentation: Evolution of Superior Lactic Acid Bacteria Alice Livingston Betteridge A thesis submitted for the degree of Doctor of Philosophy School of Agriculture, Food and Wine Faculty of Sciences The University of Adelaide January 2015 Table of Contents Table of Contents Summary ................................................................................................................................ iv Declaration of authorship ....................................................................................................... vi Acknowledgements .............................................................................................................. vii List of Figures ........................................................................................................................ ix List of Tables .......................................................................................................................... x Abbreviations and Symbols ................................................................................................... xi Chapter 1. Strategies to improve the stress tolerance of Oenococcus oeni to enable highly efficient malolactic fermentation ........................................................... 1 1.1 Abstract .................................................................................................................... 1 1.2 Introduction .............................................................................................................
    [Show full text]
  • Deciphering a Marine Bone Degrading Microbiome Reveals a Complex Community Effort
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.13.093005; this version posted November 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Deciphering a marine bone degrading microbiome reveals a complex community effort 2 3 Erik Borcherta,#, Antonio García-Moyanob, Sergio Sanchez-Carrilloc, Thomas G. Dahlgrenb,d, 4 Beate M. Slabya, Gro Elin Kjæreng Bjergab, Manuel Ferrerc, Sören Franzenburge and Ute 5 Hentschela,f 6 7 aGEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Research Unit Marine Symbioses, 8 Kiel, Germany 9 bNORCE Norwegian Research Centre, Bergen, Norway 10 cCSIC, Institute of Catalysis, Madrid, Spain 11 dDepartment of Marine Sciences, University of Gothenburg, Gothenburg, Sweden 12 eIKMB, Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany 13 fChristian-Albrechts University of Kiel, Kiel, Germany 14 15 Running Head: Marine bone degrading microbiome 16 #Address correspondence to Erik Borchert, [email protected] 17 Abstract word count: 229 18 Text word count: 4908 (excluding Abstract, Importance, Materials and Methods) 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.05.13.093005; this version posted November 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 19 Abstract 20 The marine bone biome is a complex assemblage of macro- and microorganisms, however the 21 enzymatic repertoire to access bone-derived nutrients remains unknown.
    [Show full text]
  • Species Tree Inference and Update on Very Large Datasets Using Approximation, Randomization, Parallelization, and Vectorization
    Species tree inference and update on very large datasets using approximation, randomization, parallelization, and vectorization Siavash Mirarab Electrical and Computer Engineering University of California at San Diego 1 Phylogenetic reconstruction from data Gorilla Human Chimpanzee Orangutan ACTGCACACCG ACTGCCCCCG AATGCCCCCG CTGCACACGG 2 Phylogenetic reconstruction from data CTGCACACCG CTGCACACCG CTGCACACGG Gorilla Human Chimpanzee Orangutan ACTGCACACCG ACTGCCCCCG AATGCCCCCG CTGCACACGG 2 Phylogenetic reconstruction from data CTGCACACCG CTGCACACCG CTGCACACGG Gorilla Human Chimpanzee Orangutan ACTGCACACCG ACTGCCCCCG AATGCCCCCG CTGCACACGG 2 Phylogenetic reconstruction from data CTGCACACCG CTGCACACCG CTGCACACGG Gorilla Human Chimpanzee Orangutan ACTGCACACCG ACTGCCCCCG AATGCCCCCG CTGCACACGG Gorilla ACTGCACACCG Human ACTGC-CCCCG Chimpanzee AATGC-CCCCG Orangutan -CTGCACACGG D 2 Phylogenetic reconstruction from data CTGCACACCG CTGCACACCG CTGCACACGG Gorilla Human Chimpanzee Orangutan ACTGCACACCG ACTGCCCCCG AATGCCCCCG CTGCACACGG Orangutan Chimpanzee Gorilla ACTGCACACCG Human ACTGC-CCCCG Chimpanzee AATGC-CCCCG Orangutan -CTGCACACGG Gorilla Human D P (D T ) T | 2 Applications: HIV forensic Texas case Washington case Scaduto et al., PNAS, 2010 3 Applications: microbiome https://www.nytimes.com/2017/11/06/well/live/ unlocking-the-secrets-of-the-microbiome.html 4 Applications: microbiome https://www.nytimes.com/2017/11/06/well/live/ unlocking-the-secrets-of-the-microbiome.html Morgan, Xochitl C., Nicola Segata, and Curtis Huttenhower. "Trends in genetics (2013) 4 Applications: food safety Tracking the source of a listeriosis outbreak Jackson, Brendan R., et al. Reviews of Infectious Diseases (2016) 5 Fig. 3. Molecular dating of the 2014 outbreak. (A) BEAST dating of the separation of the 2014 lineage from Middle African lineages (SL = Sierra Leone; GN = Guinea; DRC = Democratic Republic of Congo; tMRCA: Sep 2004, 95% HPD: Oct 2002 - May 2006).
    [Show full text]
  • Zygote Gene Expression and Plasmodial Development in Didymium Iridis
    DePaul University Via Sapientiae College of Science and Health Theses and Dissertations College of Science and Health Summer 8-25-2019 Zygote gene expression and plasmodial development in Didymium iridis Sean Schaefer DePaul University, [email protected] Follow this and additional works at: https://via.library.depaul.edu/csh_etd Part of the Biology Commons Recommended Citation Schaefer, Sean, "Zygote gene expression and plasmodial development in Didymium iridis" (2019). College of Science and Health Theses and Dissertations. 322. https://via.library.depaul.edu/csh_etd/322 This Thesis is brought to you for free and open access by the College of Science and Health at Via Sapientiae. It has been accepted for inclusion in College of Science and Health Theses and Dissertations by an authorized administrator of Via Sapientiae. For more information, please contact [email protected]. Zygote gene expression and plasmodial development in Didymium iridis A Thesis presented in Partial fulfillment of the Requirements for the Degree of Master of Biology By Sean Schaefer 2019 Advisor: Dr. Margaret Silliker Department of Biological Sciences College of Liberal Arts and Sciences DePaul University Chicago, IL Abstract: Didymium iridis is a cosmopolitan species of plasmodial slime mold consisting of two distinct life stages. Haploid amoebae and diploid plasmodia feed on microscopic organisms such as bacteria and fungi through phagocytosis. Sexually compatible haploid amoebae act as gametes which when fused embark on an irreversible developmental change resulting in a diploid zygote. The zygote can undergo closed mitosis resulting in a multinucleated plasmodium. Little is known about changes in gene expression during this developmental transition. Our principal goal in this study was to provide a comprehensive list of genes likely to be involved in plasmodial development.
    [Show full text]
  • Changes in the Composition of the Lactic Acid Bacteria Behavior And
    fermentation Article Changes in the Composition of the Lactic Acid Bacteria Behavior and the Diversity of Oenococcus oeni Isolated from Red Wines Supplemented with Selected Grape Phenolic Compounds Ingrid Collombel 1 , Francisco M. Campos 1 and Tim Hogg 1,2,* 1 CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4202-401 Porto, Portugal; [email protected] (I.C.); [email protected] (F.M.C.) 2 Plataforma de Inovação da Vinha e do Vinho, Universidade dos Tras-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal * Correspondence: [email protected]; Tel. +351-225-580-066 Received: 19 November 2018; Accepted: 18 December 2018; Published: 20 December 2018 Abstract: Phenolic compounds are important components of wine and are known to have an impact on the physiology of wine microbes. The influence of specific sub-sets of phenolic compounds on the growth and metabolism of lactic acid bacteria (LAB) and on the diversity of Oenococcus oeni in inoculated and non-inoculated red wines was investigated during malolactic fermentation (MLF) and subsequent storage. Representative O. oeni strains from wines treated with flavonols and trans-resveratrol were isolated and analyzed by pulsed-field gel electrophoresis of rare restriction enzyme digests (REA-PFGE). 28 days after MLF initiation, strains from all samples had entered the death phase, except those supplemented with trans-resveratrol. In the non-inoculated samples, the onset of lactic acid production was apparently delayed by all compounds tested, except for the flavan-3-ols. Increased levels of phenolics also delayed citrate consumption in inoculated samples.
    [Show full text]
  • Systema Naturae 2000 (Phylum, 6 Nov 2017)
    The Taxonomicon Systema Naturae 2000 Classification of Domain Bacteria (prokaryotes) down to Phylum Compiled by Drs. S.J. Brands Universal Taxonomic Services 6 Nov 2017 Systema Naturae 2000 - Domain Bacteria - Domain Bacteria Woese et al. 1990 1 Genus †Eoleptonema Schopf 1983, incertae sedis 2 Genus †Primaevifilum Schopf 1983, incertae sedis 3 Genus †Archaeotrichion Schopf 1968, incertae sedis 4 Genus †Siphonophycus Schopf 1968, incertae sedis 5 Genus Bactoderma Tepper and Korshunova 1973 (Approved Lists 1980), incertae sedis 6 Genus Stibiobacter Lyalikova 1974 (Approved Lists 1980), incertae sedis 7.1.1.1.1.1 Superphylum "Proteobacteria" Craig et al. 2010 1.1 Phylum "Alphaproteobacteria" 1.2.1 Phylum "Acidithiobacillia" 1.2.2.1 Phylum "Gammaproteobacteria" 1.2.2.2.1 Candidate phylum Muproteobacteria (RIF23) Anantharaman et al. 2016 1.2.2.2.2 Phylum "Betaproteobacteria" 2 Phylum "Zetaproteobacteria" 7.1.1.1.1.2 Phylum "Deltaproteobacteria_1" 7.1.1.1.2.1.1.1 Phylum "Deltaproteobacteria" [polyphyletic] 7.1.1.1.2.1.1.2.1 Phylum "Deltaproteobacteria_2" 7.1.1.1.2.1.1.2.2 Phylum "Deltaproteobacteria_3" 7.1.1.1.2.1.2 Candidate phylum Dadabacteria (CSP1-2) Hug et al. 2015 7.1.1.1.2.2.1 Candidate phylum "MBNT15" 7.1.1.1.2.2.2 Candidate phylum "Uncultured Bacterial Phylum 10 (UBP10)" Parks et al. 2017 7.1.1.2.1 Phylum "Nitrospirae_1" 7.1.1.2.2 Phylum Chrysiogenetes Garrity and Holt 2001 7.1.2.1.1 Phylum "Nitrospirae" Garrity and Holt 2001 [polyphyletic] 7.1.2.1.2.1.1 Candidate phylum Rokubacteria (CSP1-6) Hug et al.
    [Show full text]
  • A Taxonomic Note on the Genus Lactobacillus
    TAXONOMIC DESCRIPTION Zheng et al., Int. J. Syst. Evol. Microbiol. DOI 10.1099/ijsem.0.004107 A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae Jinshui Zheng1†, Stijn Wittouck2†, Elisa Salvetti3†, Charles M.A.P. Franz4, Hugh M.B. Harris5, Paola Mattarelli6, Paul W. O’Toole5, Bruno Pot7, Peter Vandamme8, Jens Walter9,10, Koichi Watanabe11,12, Sander Wuyts2, Giovanna E. Felis3,*,†, Michael G. Gänzle9,13,*,† and Sarah Lebeer2† Abstract The genus Lactobacillus comprises 261 species (at March 2020) that are extremely diverse at phenotypic, ecological and gen- otypic levels. This study evaluated the taxonomy of Lactobacillaceae and Leuconostocaceae on the basis of whole genome sequences. Parameters that were evaluated included core genome phylogeny, (conserved) pairwise average amino acid identity, clade- specific signature genes, physiological criteria and the ecology of the organisms. Based on this polyphasic approach, we propose reclassification of the genus Lactobacillus into 25 genera including the emended genus Lactobacillus, which includes host- adapted organisms that have been referred to as the Lactobacillus delbrueckii group, Paralactobacillus and 23 novel genera for which the names Holzapfelia, Amylolactobacillus, Bombilactobacillus, Companilactobacillus, Lapidilactobacillus, Agrilactobacil- lus, Schleiferilactobacillus, Loigolactobacilus, Lacticaseibacillus, Latilactobacillus, Dellaglioa,
    [Show full text]
  • Libros Sobre Enfermedades Autoinmunes: Tratamientos, Tipos Y Diagnósticos- Profesor Dr
    - LIBROS SOBRE ENFERMEDADES AUTOINMUNES: TRATAMIENTOS, TIPOS Y DIAGNÓSTICOS- PROFESOR DR. ENRIQUE BARMAIMON- 9 TOMOS- AÑO 2020.1- TOMO VI- - LIBROS SOBRE ENFERMEDADES AUTOINMUNES: TRATAMIENTOS, TIPOS Y DIAGNÓSTICOS . AUTOR: PROFESOR DR. ENRIQUE BARMAIMON.- - Doctor en Medicina.- - Cátedras de: - Anestesiología - Cuidados Intensivos - Neuroanatomía - Neurofisiología - Psicofisiología - Neuropsicología. - 9 TOMOS - - TOMO VI - -AÑO 2020- 1ª Edición Virtual: (.2020. 1)- - MONTEVIDEO, URUGUAY. 1 - LIBROS SOBRE ENFERMEDADES AUTOINMUNES: TRATAMIENTOS, TIPOS Y DIAGNÓSTICOS- PROFESOR DR. ENRIQUE BARMAIMON- 9 TOMOS- AÑO 2020.1- TOMO VI- - Queda terminantemente prohibido reproducir este libro en forma escrita y virtual, total o parcialmente, por cualquier medio, sin la autorización previa del autor. -Derechos reservados. 1ª Edición. Año 2020. Impresión [email protected]. - email: [email protected].; y [email protected]; -Montevideo, 15 de enero de 2020. - BIBLIOTECA VIRTUAL DE SALUD del S. M.U. del URUGUAY; y BIBLIOTECA DEL COLEGIO MÉDICO DEL URUGUAY. 0 0 0 0 0 0 0 0. 2 - LIBROS SOBRE ENFERMEDADES AUTOINMUNES: TRATAMIENTOS, TIPOS Y DIAGNÓSTICOS- PROFESOR DR. ENRIQUE BARMAIMON- 9 TOMOS- AÑO 2020.1- TOMO VI- - TOMO V I - 3 - LIBROS SOBRE ENFERMEDADES AUTOINMUNES: TRATAMIENTOS, TIPOS Y DIAGNÓSTICOS- PROFESOR DR. ENRIQUE BARMAIMON- 9 TOMOS- AÑO 2020.1- TOMO VI- - ÍNDICE.- - TOMO I . - - ÍNDICE. - PRÓLOGO.- - INTRODUCCIÓN. - CAPÍTULO I: -1)- GENERALIDADES. -1.1)- DEFINICIÓN. -1.2)- CAUSAS Y FACTORES DE RIESGO. -1.2.1)- FACTORES EMOCIONALES. -1.2.2)- FACTORES AMBIENTALES. -1.2.3)- FACTORES GENÉTICOS. -1.3)- Enterarse aquí, como las 10 Tipos de semillas pueden mejorar la salud. - 1.4)- TIPOS DE TRATAMIENTO DE ENFERMEDADES AUTOINMUNES. -1.4.1)- Remedios Naturales. -1.4.1.1)- Mejorar la Dieta.
    [Show full text]
  • Marine Sediments Illuminate Chlamydiae Diversity and Evolution
    Supplementary Information for: Marine sediments illuminate Chlamydiae diversity and evolution Jennah E. Dharamshi1, Daniel Tamarit1†, Laura Eme1†, Courtney Stairs1, Joran Martijn1, Felix Homa1, Steffen L. Jørgensen2, Anja Spang1,3, Thijs J. G. Ettema1,4* 1 Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden 2 Department of Earth Science, Centre for Deep Sea Research, University of Bergen, N-5020 Bergen, Norway 3 Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University, NL-1790 AB Den Burg, The Netherlands 4 Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, 6708 WE Wageningen, The Netherlands. † These authors contributed equally * Correspondence to: Thijs J. G. Ettema, Email: [email protected] Supplementary Information Supplementary Discussions ............................................................................................................................ 3 1. Evolutionary relationships within the Chlamydiae phylum ............................................................................. 3 2. Insights into the evolution of pathogenicity in Chlamydiaceae ...................................................................... 8 3. Secretion systems and flagella in Chlamydiae .............................................................................................. 13 4. Phylogenetic diversity of chlamydial nucleotide transporters. ....................................................................
    [Show full text]
  • Lists of Names of Prokaryotic Candidatus Taxa
    NOTIFICATION LIST: CANDIDATUS LIST NO. 1 Oren et al., Int. J. Syst. Evol. Microbiol. DOI 10.1099/ijsem.0.003789 Lists of names of prokaryotic Candidatus taxa Aharon Oren1,*, George M. Garrity2,3, Charles T. Parker3, Maria Chuvochina4 and Martha E. Trujillo5 Abstract We here present annotated lists of names of Candidatus taxa of prokaryotes with ranks between subspecies and class, pro- posed between the mid- 1990s, when the provisional status of Candidatus taxa was first established, and the end of 2018. Where necessary, corrected names are proposed that comply with the current provisions of the International Code of Nomenclature of Prokaryotes and its Orthography appendix. These lists, as well as updated lists of newly published names of Candidatus taxa with additions and corrections to the current lists to be published periodically in the International Journal of Systematic and Evo- lutionary Microbiology, may serve as the basis for the valid publication of the Candidatus names if and when the current propos- als to expand the type material for naming of prokaryotes to also include gene sequences of yet-uncultivated taxa is accepted by the International Committee on Systematics of Prokaryotes. Introduction of the category called Candidatus was first pro- morphology, basis of assignment as Candidatus, habitat, posed by Murray and Schleifer in 1994 [1]. The provisional metabolism and more. However, no such lists have yet been status Candidatus was intended for putative taxa of any rank published in the journal. that could not be described in sufficient details to warrant Currently, the nomenclature of Candidatus taxa is not covered establishment of a novel taxon, usually because of the absence by the rules of the Prokaryotic Code.
    [Show full text]
  • Taxonomic Status of Lactic Acid Bacteria in Wine and Key Characteristics to Differentiate Species
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Stellenbosch University: SUNJournals Taxonomic Status of Lactic Acid Bacteria in Wine and Key Characteristics to Differentiate Species L.M.T. Dicks* and A. Endo Department of Microbiology, Stellenbosch University, Private Bag X1, 7602 Matieland (Stellenbosch), South Africa Submitted for publication: March 2009 Accepted for publication: May 2009 Key words: Taxonomy; malolactic bacteria; key characteristics Oenococcus oeni is the best malolactic bacterium adapted to low pH and the high SO2 and ethanol concentrations in wine. Leuconostoc mesenteroides and Leuconostoc paramesenteroides (now classified asWeissella paramesenteroides) have also been isolated from wine. Pediococcus damnosus is not often found in wine and is considered a contaminant of high pH wines. Pediococcus inopinatus, Pediococcus parvulus and Pediococcus pentosaceus have occasionally been isolated from wines. Lactobacillus brevis, Lactobacillus plantarum, Lactobacillus buchneri, Lactobacillus hilgardii (previously Lactobacillus vermiforme), Lactobacillus fructivorans (previously Lactobacillus trichoides and Lactobacillus heterohiochii) and Lactobacillus fermentum have been isolated from most wines. Lactobacillus hilgardii and L. fructivorans are resistant to high acid and alcohol and have been isolated from spoiled fortified wines. Lactobacillus vini, Lactobacillus lindneri, Lactobacillus nagelii and Lactobacillus kunkeei have been described more recently. The latter two species are
    [Show full text]