Megascopic Study of Common Ultramafic Igneous Rocks

Total Page:16

File Type:pdf, Size:1020Kb

Megascopic Study of Common Ultramafic Igneous Rocks EXPERIMENT 4 MEGASCOPIC STUDY OF COMMON ULTRAMAFIC IGNEOUS ROCKS Outline of Experiment_____________________________ 4.1 Introduction 4.5 Megascopic Study of Dunite Expected Learning Skills 4.6 Laboratory Exercises 4.2 Requirements 4.7 References 4.3 Basic Concepts 4.8 Learning Resources 4.4 Megascopic Study of Peridotite 4.1 INTRODUCTION You have learnt to identify felsic rocks such as granite and rhyolite in the Experiment 1, and intermediate and mafic rocks in Experiment 2 and Experiment 3 respectively. In this experiment you will learn to identify megascopic characters of ultramafic rocks. You will learn about the megascopic identification of peridotite and dunite. You have learnt about ultramafic rocks while discussing the basic concepts of four subgroups of igneous rock viz. felsic, intermediate, mafic and ultramafic. Expected Learning Skills__________________________ 51 Petrology: Laboratory ………BGYCL…-136…………………………………………………………………… ……………….….............….….... After performing this experiment, you should be able to: ❖ identify megascopic characters, of peridotite and dunite; ❖ recognise mineral compositions and textures in peridotite and dunite; and ❖ discuss uses and Indian occurrence of peridotite and dunite. 4.2 REQUIREMENTS You will be required with the following items to perform this experiment successfully: • Hand specimens of peridotite and dunite • Hand lens • Laboratory file, pen/ pencil and eraser Note: • Do not use pen/pencil/marker pen to mark the hand specimen of the rock. • Please do not attempt to break the specimen in the laboratory. Many of the specimens cannot be readily replaced. • You are advised to identify the hand specimen provided to you at your study centre with the help of megascopic characters provided in the table and photographs of the hand specimen. Instructions: You are required to study Units 4, 6 and 7 of BGYCT-133 course (Crystallography, Mineralogy and Economic Geology) and Unit 7 of BGYCT-135 course (Petrology) before performing this experiment. Bring this practical manual along with Block 1 in Volume 1 of BGYCT-135 course while attending the Practical Counselling session. You have read in Unit 4 Minerals of BGYCT-133 course that the physical properties of minerals are helpful in the identification. Each mineral displays a few physical properties that can be recognised megascopically. These minerals show some of the important physical properties that are useful in identification of rocks. 4.3 BASIC CONCEPTS Before identification of ultramafic rocks, let us recall basic concepts of the ultramafic subgroup of rocks that we have read in Unit 3 Classification of Igneous Rocks of BGYCT-135 course. Ultramafic igneous rocks contain <45% SiO2, >18% MgO, high FeO and low K2O. It generally contains 90% mafic 52 Megascopic Study of Common Ultramafic Igneous Rocks …………………………Experiment 4 ……………………………………………………………………….............….…...... minerals. Ultramafic rocks are not very much abundant on the Earth’s surface. Commonly, they are intrusive in nature. Ultramafic igneous rocks are melanocratic (dark coloured) and contain >90% ferromagnesian minerals (magnesium and iron bearing mafic minerals) with almost no plagioclase. The common ultramafic rocks are peridotite, pyroxenite and dunite. Dunite and pyroxenite are monomineralic rocks (i.e. made up more than 90% of one mineral only). In the following section, you will learn to identify the megascopic characters of the peridotite and dunite. You have read in Unit 7 of the BGYCT-135 course the megascopic characters which are used in the identification of peridotite and dunite in the hand specimens. You will use following characters (Table 4.1) in the identification of rocks in the hand specimens. Table 4.1: Megascopic Characters of ………………. 1. Colour Index : 2. Mineral Composition: • Essential : • Accessory : 3. Texture: • Crystallinity : • Granularity : • Shape of grains : • Mutual relationship : • Other textures : 4. Diagnostic Characters : 5. Inference/Name : 6. Mode of Occurrence : 7. Important Uses : 8. Indian Occurrences : You have already learnt about above mentioned points in Experiment 1. We have discussed in detail about the above tabulated points i.e. texture, mineralogical composition, mode of occurrence etc. You are advised to follow these instructions. 4.4 MEGASCOPIC STUDY OF PERIDOTITE Generally, peridotite refers to coarse-grained plutonic ultramafic rocks which are dense, dark green to black having high specific gravity. Peridotite is 53 Petrology: Laboratory ………BGYCL…-136…………………………………………………………………… ……………….….............….….... ultramafic, as the rock contains less than 45% silica. It contains high amount of magnesium (> 40%) and reflecting high proportions of magnesium-rich olivine (forsterite), pyroxenes (both clino- and ortho- pyroxenes) and hornblende. The nomenclature of peridotite depends upon varying proportions of olivine and pyroxene. Accessory minerals are garnet, spinel, plagioclase, ilmenite, chromite and magnetite. Peridotite is a dense, coarse-grained igneous rock, consisting mostly of olivine and pyroxene. Peridotite is the dominant rock of the upper part of the Earth's mantle. They are commonly associated with the layered igneous complexes. You have to identify megascopic characters of the peridotite. You are advised to identify hand specimens of gabbro provided to you at your study centre with the help of megascopic characters given in the Table 4.2 and photographs of the hand specimens given in Figure 4.1. Fig. 4.1: Hand specimen of peridotite. Table 4.2: Megascopic Characters of Peridotite. Melanocratic (>67% dark coloured minerals). 1. Colour Index : High proportion of ferromagnesian minerals. Bright green with a few black specks. But it may exhibit a wide range of colours from blackish green, yellow, brown to even red. 2. Mineral Composition: • Essential : Olivine >40%, orthopyroxene and clinopyroxene. Olive green olivine, black orthopyroxenes grass-green clinopyroxenes grains that are visible with unaided eyes. • Accessory : Garnet, spinel, plagioclase, ilmenite, chromite and magnetite. 54 Megascopic Study of Common Ultramafic Igneous Rocks …………………………Experiment 4 ……………………………………………………………………….............….…...... 3. Texture: • Crystallinity : Holocrystalline. • Granularity : Coarse to medium-grained Phaneritic texture. • Shape of grains : Subhedral, hypidiomorphic. • Mutual relationship : Equigranular. • Other textures : Mostly occurs in massive form, but it is also present in layered form. It may show cumulate texture, formed by settling of olivine crystals in the bottom of the magma chamber. It also occurs as nodules with irregular equigranular texture. 4. Diagnostic : Holocrystalline, coarse-grained, phaneritic, Characters coarse-grained, granular. 5. Inference/Name : PERIDOTITE 6. Mode of Occurrence : Plutonic/intrusive. Associated with layered igneous complexes and ophiolite belts. 7. Important Uses : Economically important because they often contain chromite - the only ore of chromium; they can be source rocks for diamonds. 8. Indian Occurrences : Associated with ophiolite belts of Ladakh Himalaya, Naga hills and Andaman Nicobar. Fig. 4.2: Sketch of peridote. 4.5 MEGASCOPIC STUDY OF DUNITE You have learnt that ultramafic rocks contain more than 40% olivine are classifies as peridotites. Peridotite that contains more than 90% olivine is called as dunite (named in 1864 after Dun Mountain in New Zealand). Dunite 55 Petrology: Laboratory ………BGYCL…-136…………………………………………………………………… ……………….….............….….... is an ultramafic plutonic rock that is composed exclusively of olivine. It is a monomineralic rock with >90% olivine. Dunite is mostly composed of bright green olivine. Fresh rock is green as well. However, olivine readily alters and loses its bright green colour quickly. This rock usually contains chromite as pods, lenses and layers. Dunite occurs in layered gabbroic complexes. It probably forms from the accumulation of dense, early crystallising olivine grains that sink to the bottom of the low silica magma. Dunite Intrusions form sills or dikes. Olivine in dunite alters into serpentine. You are advised to identify dunite in the hand specimen provided to you at your study centre with the help of megascopic characters given in the Table 4.3 and photographs of the hand specimens given in Figure 4.3. Fig. 4.3: Hand specimen of dunite. Table 4.3: Megascopic Characters of Dunite. 1. Colour Index : Melanocratic (contains >67% mafic minerals). Olive green colour. 2. Mineral Composition: • Essential : More than 90% olivine, monomineralic rock. • Accessory : Pyroxene, chromite, magnetite, pyrope. 3. Texture: • Crystallinity : Holocrystalline. • Granularity : Coarse grained (Fig.4.3) Phaneritic texture. • Shape of grains : Subhedral, hypidiomorphic. • Mutual relationship : Commonly equigranular. 4. Diagnostic : Typical olive green colour, holocrystalline and 56 Megascopic Study of Common Ultramafic Igneous Rocks …………………………Experiment 4 ……………………………………………………………………….............….…...... Characters hypidiomorphic granular texture. 5. Inference/Name : DUNITE 6. Mode of Occurrence : Plutonic/intrusive. Occurs as sills and dykes and associated with layered gabbroic complexes. 7. Important Uses : Used in construction industry, as dimension stone, cement manufacture, construction aggregate. 8. Indian Occurrences : Associated with ophiolite belts of Ladakh Himalaya, Naga hills and Andaman Nicobar. Fig. 4.4: Sketch of dunite. 4.6 LABORATORY EXERCISES Study the megascopic characters of common mafic rocks such as peridotite and
Recommended publications
  • Podiform Chromite Deposits—Database and Grade and Tonnage Models
    Podiform Chromite Deposits—Database and Grade and Tonnage Models Scientific Investigations Report 2012–5157 U.S. Department of the Interior U.S. Geological Survey COVER View of the abandoned Chrome Concentrating Company mill, opened in 1917, near the No. 5 chromite mine in Del Puerto Canyon, Stanislaus County, California (USGS photograph by Dan Mosier, 1972). Insets show (upper right) specimen of massive chromite ore from the Pillikin mine, El Dorado County, California, and (lower left) specimen showing disseminated layers of chromite in dunite from the No. 5 mine, Stanislaus County, California (USGS photographs by Dan Mosier, 2012). Podiform Chromite Deposits—Database and Grade and Tonnage Models By Dan L. Mosier, Donald A. Singer, Barry C. Moring, and John P. Galloway Scientific Investigations Report 2012-5157 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2012 This report and any updates to it are available online at: http://pubs.usgs.gov/sir/2012/5157/ For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov or call 1–888–ASK–USGS For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Suggested citation: Mosier, D.L., Singer, D.A., Moring, B.C., and Galloway, J.P., 2012, Podiform chromite deposits—database and grade and tonnage models: U.S.
    [Show full text]
  • Mantle Peridotite Xenoliths
    Earth and Planetary Science Letters 260 (2007) 37–55 www.elsevier.com/locate/epsl Mantle peridotite xenoliths in andesite lava at El Peñon, central Mexican Volcanic Belt: Isotopic and trace element evidence for melting and metasomatism in the mantle wedge beneath an active arc ⁎ Samuel B. Mukasa a, , Dawnika L. Blatter b, Alexandre V. Andronikov a a Department of Geological Sciences, University of Michigan, Ann Arbor, MI 48109-1005, USA b Department of Earth and Planetary Science, University of California, Berkeley, CA 94720, USA Received 6 July 2006; received in revised form 3 May 2007; accepted 7 May 2007 Available online 13 May 2007 Editor: R.W. Carlson Abstract Peridotites in the mantle wedge and components added to them from the subducting slab are thought to be the source of most arc magmas. However, direct sampling of these materials, which provides a glimpse into the upper mantle beneath an active margin, is exceedingly rare. In the few arc localities where found, peridotite xenoliths are usually brought to the surface by basaltic magmas. Remarkably, the hornblende-bearing ultramafic xenoliths and clinopyroxene megaxenocrysts from El Peñon in the central Mexican Volcanic Belt were brought to the surface by a Quaternary high-Mg siliceous andesite, a rock type usually considered too evolved to be a direct product of mantle melting. The xenoliths and megaxenocrysts from El Peñon represent lithospheric mantle affected by significant subduction of oceanic lithosphere since as early as the Permian. Trace element and radiogenic isotope data we report here on these materials suggest a history of depletion by melt extraction, metasomatism involving a fluid phase, and finally, limited reaction between the ultramafic materials and the host andesite, probably during transport.
    [Show full text]
  • Hydrated Peridotite – Basaltic Melt Interaction Part I: Planetary Felsic Crust Formation at Shallow Depth Anastassia Y
    Hydrated Peridotite – Basaltic Melt Interaction Part I: Planetary Felsic Crust Formation at Shallow Depth Anastassia Y. BORISOVA1,2*, Nail R. ZAGRTDENOV1, Michael J. TOPLIS3, Wendy A. BOHRSON4, Anne NEDELEC1, Oleg G. SAFONOV2,5,6, Gleb S. POKROVSKI1, Georges CEULENEER1, Ilya N. BINDEMAN7, Oleg E. MELNIK8, Klaus Peter JOCHUM9, Brigitte STOLL9, Ulrike WEIS9, Andrew Y. BYCHKOV2, Andrey A. GURENKO10, Svyatoslav SHCHEKA11, Artem TEREHIN5, Vladimir M. POLUKEEV5, Dmitry A. VARLAMOV5, Kouassi E.A. CHARITEIRO1, Sophie GOUY1, Philippe de PARSEVAL1 1 Géosciences Environnement Toulouse, Université de Toulouse; UPS, CNRS, IRD, Toulouse, France 2 Geological Department, Lomonosov Moscow State University, Vorobievy Gory, 119899, Moscow, Russia 3 Institut de Recherche en Astrophysique et Planétologie (IRAP) UPS, CNRS, Toulouse, France 4 Central Washington University, Department of Geological Sciences, Ellensburg, WA 98926, USA 5 Korzhinskii Institute of Experimental Mineralogy, 142432, Chernogolovka, Moscow region, Russia 6 Department of Geology, University of Johannesburg PO Box 524, Auckland Park, 2006, Johannesburg, South Africa 7 Geological Sciences, University of Oregon, 1275 E 13th street, Eugene, OR, USA 8 Institute of Mechanics, Moscow State University, 1- Michurinskii prosp, 119192, Moscow, Russia 9 Climate Geochemistry Department, Max Planck Institute for Chemistry, P.O. Box 3060, D-55020 Mainz, Germany 10 Centre de Recherches Pétrographiques et Géochimiques, UMR 7358, Université de Lorraine, 54501 Vandœuvre-lès-Nancy, France 11 Bavarian Research
    [Show full text]
  • PRELIMINARY EVALUATION of BEDROCK POTENTIAL for NATURALLY OCCURRING ASBESTOS in ALASKA by Diana N
    Alaska Division of Geological & Geophysical Surveys MISCELLANEOUS PUBLICATION 157 PRELIMINARY EVALUATION OF BEDROCK POTENTIAL FOR NATURALLY OCCURRING ASBESTOS IN ALASKA by Diana N. Solie and Jennifer E. Athey Tremolite (UAMES 34960) displaying the soft, friable fibers of asbestiform minerals. Sample collected from the Cosmos Hills area, Kobuk District, Alaska, by Eskil Anderson. Image courtesy of the University of Alaska Museum Earth Sciences Department. June 2015 Released by STATE OF ALASKA DEPARTMENT OF NATURAL RESOURCES Division of Geological & Geophysical Surveys 3354 College Road, Fairbanks, Alaska 99709-3707 907-451-5020 dggs.alaska.gov [email protected] $2.00 (text only) $13.00 (per map sheet) TABLE OF CONTENTS Abstract ................................................................................................................................................................................................................................. 1 Introduction ........................................................................................................................................................................................................................ 1 General geology of asbestos ......................................................................................................................................................................................... 2 Naturally occurring asbestos potential in Alaska ..............................................................................................................................................
    [Show full text]
  • The Ronda Peridotite: Garnet-, Spinel-, and Plagioclase-Lherzolite Facies and the P—T Trajectories of a High-Temperature Mantle Intrusion
    The Ronda Peridotite: Garnet-, Spinel-, and Plagioclase-Lherzolite Facies and the P—T Trajectories of a High-Temperature Mantle Intrusion by MASAAKI OBATA* Institutfiir Kristallographie und Petrographie, Eidgenossische Technische Hochschule, Zurich, CH-8092, Zurich, Switzerland (Received 18 October 1978; in revised form 28 June 1979) ABSTRACT The Ronda peridotite is a high-temperature, alpine-type peridotite emplaced in the internal Zone of the Betic Cordilleras, southern Spain. Using the mineral assemblages of the peridotite and mafic layers, the peridotite mass has been subdivided into 4 zones of mineral facies: (l)garnet-lherzolite facies, (2) ariegite subfacies of spinel-lherzolite facies, (3) seiland subfacies of spinel-lherzolite facies, and (4) plagioclase-lherzolite facies. It is proposed that this mineralogical zonation developed through a syntectic recrystallization of a hot (1100 to 1200 °C), solid mantle peridotite during its ascent into the Earth's crust. Coexisting minerals from 12 peridotites covering all the mineral facies above were analysed with an electron microprobe. Core compositions of pyroxene porphyroclasts are constant in all mineral facies and indicate that the peridotite was initially equilibrated at temperatures of 1100 to 1200 °C and pressures of 20 to 25 kb. In contrast, the compositions of pyroxene neoblasts and spinel grains (which appear to have grown during later recrystallization) are well correlated with mineral facies. They indicate that the recrystallization temperature throughout the mass is more or less constant, 800 to 900 °C, but that the pressure ranges from 5-7 kb in the plagioclase-lherzolite facies to 12-15 kb in the garnet-lherzolite facies. Therefore, variation in pressure appears to be primarily responsible for the four mineral facies types.
    [Show full text]
  • Fingerprints of Kamafugite-Like Magmas in Mesozoic Lamproites of the Aldan Shield: Evidence from Olivine and Olivine-Hosted Inclusions
    minerals Article Fingerprints of Kamafugite-Like Magmas in Mesozoic Lamproites of the Aldan Shield: Evidence from Olivine and Olivine-Hosted Inclusions Ivan F. Chayka 1,2,*, Alexander V. Sobolev 3,4, Andrey E. Izokh 1,5, Valentina G. Batanova 3, Stepan P. Krasheninnikov 4 , Maria V. Chervyakovskaya 6, Alkiviadis Kontonikas-Charos 7, Anton V. Kutyrev 8 , Boris M. Lobastov 9 and Vasiliy S. Chervyakovskiy 6 1 V. S. Sobolev Institute of Geology and Mineralogy Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; [email protected] 2 Institute of Experimental Mineralogy, Russian Academy of Sciences, 142432 Chernogolovka, Russia 3 Institut des Sciences de la Terre (ISTerre), Université de Grenoble Alpes, 38041 Grenoble, France; [email protected] (A.V.S.); [email protected] (V.G.B.) 4 Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow, Russia; [email protected] 5 Department of Geology and Geophysics, Novosibirsk State University, 630090 Novosibirsk, Russia 6 Institute of Geology and Geochemistry, Ural Branch of the Russian Academy of Sciences, 620016 Yekaterinburg, Russia; [email protected] (M.V.C.); [email protected] (V.S.C.) 7 School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia; [email protected] 8 Institute of Volcanology and Seismology, Far Eastern Branch of the Russian Academy of Sciences, 683000 Petropavlovsk-Kamchatsky, Russia; [email protected] 9 Institute of Mining, Geology and Geotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia; [email protected] * Correspondence: [email protected]; Tel.: +7-985-799-4936 Received: 17 February 2020; Accepted: 6 April 2020; Published: 9 April 2020 Abstract: Mesozoic (125–135 Ma) cratonic low-Ti lamproites from the northern part of the Aldan Shield do not conform to typical classification schemes of ultrapotassic anorogenic rocks.
    [Show full text]
  • Oregon Geologic Digital Compilation Rules for Lithology Merge Information Entry
    State of Oregon Department of Geology and Mineral Industries Vicki S. McConnell, State Geologist OREGON GEOLOGIC DIGITAL COMPILATION RULES FOR LITHOLOGY MERGE INFORMATION ENTRY G E O L O G Y F A N O D T N M I E N M E T R R A A L P I E N D D U N S O T G R E I R E S O 1937 2006 Revisions: Feburary 2, 2005 January 1, 2006 NOTICE The Oregon Department of Geology and Mineral Industries is publishing this paper because the infor- mation furthers the mission of the Department. To facilitate timely distribution of the information, this report is published as received from the authors and has not been edited to our usual standards. Oregon Department of Geology and Mineral Industries Oregon Geologic Digital Compilation Published in conformance with ORS 516.030 For copies of this publication or other information about Oregon’s geology and natural resources, contact: Nature of the Northwest Information Center 800 NE Oregon Street #5 Portland, Oregon 97232 (971) 673-1555 http://www.naturenw.org Oregon Department of Geology and Mineral Industries - Oregon Geologic Digital Compilation i RULES FOR LITHOLOGY MERGE INFORMATION ENTRY The lithology merge unit contains 5 parts, separated by periods: Major characteristic.Lithology.Layering.Crystals/Grains.Engineering Lithology Merge Unit label (Lith_Mrg_U field in GIS polygon file): major_characteristic.LITHOLOGY.Layering.Crystals/Grains.Engineering major characteristic - lower case, places the unit into a general category .LITHOLOGY - in upper case, generally the compositional/common chemical lithologic name(s)
    [Show full text]
  • THE WEBSTER-ADDIE ULTRAMAFIC RING, JACKSON COUNTY, NORTH CAROLINA, and SECONDARY ALTERATION of ITS CHROMITE* Roswur Mrrr,Bn III, Drokescorner Road, Princeton, I{
    THE WEBSTER-ADDIE ULTRAMAFIC RING, JACKSON COUNTY, NORTH CAROLINA, AND SECONDARY ALTERATION OF ITS CHROMITE* Roswur Mrrr,Bn III, DrokesCorner Road, Princeton, I{. J. Assrnecr The structure of the webster-Addie ultramafic ring in Jackson county, North caro- lina, is discussed briefly. The ultramafic ring. is almost ever''where concordant with the enclosing and enclosed gneiss and is thought to haVe been intruded as a sheet-like mass and subsequently deformed. The mineralogy of the dunite, websterite, and enstatite pyroxenite is discussed. A table is presented showing that the FezSiOr content of nine olivines from the ultramafic ring varies only ll/6 and shows no "trend" across three quarters of the thickness of the mass. chemical analyses are given for the two types of enstatite from the enstatite pyroxenite, and for two chromite samples and one kammererite sample, The hydrothermal alteration of chromite to kammererite is described and photomicrographs presented to illustrate the progression of this reaction toward an ideal chromite-magnetite solid solution. GnNBner,GBorocy The Webster-Addie ultramafic ring lies in Jackson County, North Carolina, fifty miles southwest of Asheville. The ring, comprisedof dunite, websterite, and enstatite pyroxenite, is an ellipse with a maximum di- mension of six miles and a minimum dimension of three and a half miles. The greatest width of outcrop of the ultramafic rocks, just south of the town of Addie, is a little under four tenths of a mile. Except for very local areas, the Webster-Addie ultramafic rocks are concordant with the enclosing and enclosedgneiss. The gneissforms a dome on the flanks of which lies the thin band of dunite (Fig.
    [Show full text]
  • Medellín Dunite” Published Online 24 April 2020 Revisited: an Algebraic Approach and Proposal
    Volume 2 Quaternary Chapter 2 Neogene https://doi.org/10.32685/pub.esp.36.2019.02 The Petrologic Nature of the “Medellín Dunite” Published online 24 April 2020 Revisited: An Algebraic Approach and Proposal of a New Definition of the Geological Body Paleogene Antonio GARCIA–CASCO1* , Jorge Julián RESTREPO2 , 1 [email protected] Universidad de Granada 3 4 Ana María CORREA–MARTÍNEZ , Idael Francisco BLANCO–QUINTERO , Departamento de Mineralogía y Petrología Avenida Fuente Nueva s/n, 18079 5 6 7 Cretaceous Joaquín Antonio PROENZA , Marion WEBER , and Lidia BUTJOSA Granada, España Instituto Andaluz de Ciencias de la Tierra, Abstract The “Medellín Dunite”, the main ultramafic body of the Central Cordillera of CSIC–UGR Avenida de las Palmeras, 4, 18100 Armilla Colombia, constitutes a fragment of oceanic lithospheric mantle formed at a back–arc Granada, España basin/incipient arc scenario emplaced onto the western continental margin of Pangaea 2 [email protected] Universidad Nacional de Colombia Jurassic during Triassic time. This body has been classically, and is still considered, mainly of Sede Medellín dunite composition. However, in spite of two subsequent metamorphic imprints that GEMMA Research Group Medellín, Colombiaa obscure the primary mantle mineralogical composition, there is petrographic and geo- 3 [email protected] chemical evidence that points to a harzburgitic nature of the unit. In order to overcome Universidade de Brasília Instituto de Geociências Triassic the petrographic effects of medium–T metamorphism, metasomatism, and serpentini- Servicio Geológico Colombiano zation, we analyzed published and new major–element geochemical data by means of Dirección de Geociencias Básicas Grupo de Estudios Geológicos Especiales algebraic methods to approximate the mantle mineralogical composition of ultramafic Calle 75 n.° 79A–51 Medellín, Colombia rocks.
    [Show full text]
  • Geology of the Crater of Diamonds State Park and Vicinity, Pike County, Arkansas
    SPS-03 STATE OF ARKANSAS ARKANSAS GEOLOGICAL SURVEY Bekki White, State Geologist and Director STATE PARK SERIES 03 GEOLOGY OF THE CRATER OF DIAMONDS STATE PARK AND VICINITY, PIKE COUNTY, ARKANSAS by J. M. Howard and W. D. Hanson Little Rock, Arkansas 2008 STATE OF ARKANSAS ARKANSAS GEOLOGICAL SURVEY Bekki White, State Geologist and Director STATE PARK SERIES 03 GEOLOGY OF THE CRATER OF DIAMONDS STATE PARK AND VICINITY, PIKE COUNTY, ARKANSAS by J. M. Howard and W. D. Hanson Little Rock, Arkansas 2008 STATE OF ARKANSAS Mike Beebe, Governor ARKANSAS GEOLOGICAL SURVEY Bekki White, State Geologist and Director COMMISSIONERS Dr. Richard Cohoon, Chairman………………………………………....Russellville William Willis, Vice Chairman…………………………………...…….Hot Springs David J. Baumgardner………………………………………….………..Little Rock Brad DeVazier…………………………………………………………..Forrest City Keith DuPriest………………………………………………………….….Magnolia Becky Keogh……………………………………………………...……..Little Rock David Lumbert…………………………………………………...………Little Rock Little Rock, Arkansas 2008 i TABLE OF CONTENTS Introduction…………………………………………………………………………..................... 1 Geology…………………………………………………………………………………………... 1 Prairie Creek Diatreme Rock Types……………………………….…………...……...………… 3 Mineralogy of Diamonds…………………….……………………………………………..……. 6 Typical shapes of Arkansas diamonds…………………………………………………………… 6 Answers to Frequently Asked Questions……………..……………………………….....……… 7 Definition of Rock Types……………………………………………………………………… 7 Formation Processes.…...…………………………………………………………….....…….. 8 Search Efforts……………...……………………………...……………………...………..….
    [Show full text]
  • Mantle Melting and Origin of Basaltic Magma
    Lecture 18 - Mantle Melting Monday, 28th, March, 2005 Mantle Melting and Origin of Basaltic Magma 1 Two principal types of basalt in the ocean basins Tholeiitic Basalt and Alkaline Basalt Table 10-1 Common petrographic differences between tholeiitic and alkaline basalts Tholeiitic Basalt Alkaline Basalt Usually fine-grained, intergranular Usually fairly coarse, intergranular to ophitic Groundmass No olivine Olivine common Clinopyroxene = augite (plus possibly pigeonite) Titaniferous augite (reddish) Orthopyroxene (hypersthene) common, may rim ol. Orthopyroxene absent No alkali feldspar Interstitial alkali feldspar or feldspathoid may occur Interstitial glass and/or quartz common Interstitial glass rare, and quartz absent Olivine rare, unzoned, and may be partially resorbed Olivine common and zoned Phenocrysts or show reaction rims of orthopyroxene Orthopyroxene uncommon Orthopyroxene absent Early plagioclase common Plagioclase less common, and later in sequence Clinopyroxene is pale brown augite Clinopyroxene is titaniferous augite, reddish rims after Hughes (1982) and McBirney (1993). Each is chemically distinct Evolve via FX as separate series along different paths ● Tholeiites are generated at mid-ocean ridges ✦ Also generated at oceanic islands, subduction zones ● Alkaline basalts generated at ocean islands ✦ Also at subduction zones 2 Sources of mantle material ● Ophiolites ✦ Slabs of oceanic crust and upper mantle ✦ Thrust at subduction zones onto edge of continent ● Dredge samples from oceanic fracture zones ● Nodules and xenoliths in some basalts ● Kimberlite xenoliths ✦ Diamond-bearing pipes blasted up from the mantle carrying numerous xenoliths from depth Lherzolite is probably fertile unaltered mantle Dunite and harzburgite are refractory residuum after basalt has been extracted by partial melting 15 Tholeiitic basalt 3 10 O 2 Partial Melting Wt.% Al Wt.% 5 Figure 10-1 Brown and Mussett, A.
    [Show full text]
  • Geochemical and Petrological Characterizations of Peridotite and Related Rocks in Marquette County, Michigan
    Western Michigan University ScholarWorks at WMU Master's Theses Graduate College 4-2016 Geochemical and Petrological Characterizations of Peridotite and Related Rocks in Marquette County, Michigan Andrew Lloyd Sasso Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses Part of the Geochemistry Commons, and the Geology Commons Recommended Citation Sasso, Andrew Lloyd, "Geochemical and Petrological Characterizations of Peridotite and Related Rocks in Marquette County, Michigan" (2016). Master's Theses. 687. https://scholarworks.wmich.edu/masters_theses/687 This Masters Thesis-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Master's Theses by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. GEOCHEMICAL AND PETROLOGICAL CHARACTERIZATIONS OF PERIDOTITE AND RELATED ROCKS IN MARQUETTE COUNTY, MICHIGAN by Andrew Lloyd Sasso A thesis submitted to the Graduate College in partial fulfillment of the requirements for the degree of Master of Science Geosciences Western Michigan University April 2016 Thesis Committee: Joyashish Thakurta, Ph.D., Chair Robb Gillespie, Ph.D. Mohamed Sultan, Ph.D. GEOCHEMICAL AND PETROLOGICAL CHARACTERIZATIONS OF PERIDOTITE AND RELATED ROCKS IN MARQUETTE COUNTY, MICHIGAN Andrew Lloyd Sasso, M.S. Western Michigan University, 2016 This study characterizes the following rock units in Marquette County, Michigan in terms of geochemistry and petrology: (1) Presque Isle Peridotite, (2) Deer Lake Peridotite, (3) Yellowdog Peridotite, and (4) Black Rock Point Gabbro. Analyses were conducted to determine if any petrological or geochemical relationships exist between these units, and to assess the potential of these units to host magmatic sulfide deposits.
    [Show full text]