Recent Developments in Cointegration
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Introduction, Structure, and Advanced Programming Techniques
APQE12-all Advanced Programming in Quantitative Economics Introduction, structure, and advanced programming techniques Charles S. Bos VU University Amsterdam [email protected] 20 { 24 August 2012, Aarhus, Denmark 1/260 APQE12-all Outline OutlineI Introduction Concepts: Data, variables, functions, actions Elements Install Example: Gauss elimination Getting started Why programming? Programming in theory Questions Blocks & names Input/output Intermezzo: Stack-loss Elements Droste 2/260 APQE12-all Outline OutlineII KISS Steps Flow Recap of main concepts Floating point numbers and rounding errors Efficiency System Algorithm Operators Loops Loops and conditionals Conditionals Memory Optimization 3/260 APQE12-all Outline Outline III Optimization pitfalls Maximize Standard deviations Standard deviations Restrictions MaxSQP Transforming parameters Fixing parameters Include packages Magic numbers Declaration files Alternative: Command line arguments OxDraw Speed 4/260 APQE12-all Outline OutlineIV Include packages SsfPack Input and output High frequency data Data selection OxDraw Speed C-Code Fortran Code 5/260 APQE12-all Outline Day 1 - Morning 9.30 Introduction I Target of course I Science, data, hypothesis, model, estimation I Bit of background I Concepts of I Data, Variables, Functions, Addresses I Programming by example I Gauss elimination I (Installation/getting started) 11.00 Tutorial: Do it yourself 12.30 Lunch 6/260 APQE12-all Introduction Target of course I Learn I structured I programming I and organisation I (in Ox or other language) Not: Just -
Zanetti Chini E. “Forecaster's Utility and Forecasts Coherence”
ISSN: 2281-1346 Department of Economics and Management DEM Working Paper Series Forecasters’ utility and forecast coherence Emilio Zanetti Chini (Università di Pavia) # 145 (01-18) Via San Felice, 5 I-27100 Pavia economiaweb.unipv.it Revised in: August 2018 Forecasters’ utility and forecast coherence Emilio Zanetti Chini∗ University of Pavia Department of Economics and Management Via San Felice 5 - 27100, Pavia (ITALY) e-mail: [email protected] FIRST VERSION: December, 2017 THIS VERSION: August, 2018 Abstract We introduce a new definition of probabilistic forecasts’ coherence based on the divergence between forecasters’ expected utility and their own models’ likelihood function. When the divergence is zero, this utility is said to be local. A new micro-founded forecasting environment, the “Scoring Structure”, where the forecast users interact with forecasters, allows econometricians to build a formal test for the null hypothesis of locality. The test behaves consistently with the requirements of the theoretical literature. The locality is fundamental to set dating algorithms for the assessment of the probability of recession in U.S. business cycle and central banks’ “fan” charts Keywords: Business Cycle, Fan Charts, Locality Testing, Smooth Transition Auto-Regressions, Predictive Density, Scoring Rules and Structures. JEL: C12, C22, C44, C53. ∗This paper was initiated when the author was visiting Ph.D. student at CREATES, the Center for Research in Econometric Analysis of Time Series (DNRF78), which is funded by the Danish National Research Foundation. The hospitality and the stimulating research environment provided by Niels Haldrup are gratefully acknowledged. The author is particularly grateful to Tommaso Proietti and Timo Teräsvirta for their supervision. -
Econometrics Oxford University, 2017 1 / 34 Introduction
Do attractive people get paid more? Felix Pretis (Oxford) Econometrics Oxford University, 2017 1 / 34 Introduction Econometrics: Computer Modelling Felix Pretis Programme for Economic Modelling Oxford Martin School, University of Oxford Lecture 1: Introduction to Econometric Software & Cross-Section Analysis Felix Pretis (Oxford) Econometrics Oxford University, 2017 2 / 34 Aim of this Course Aim: Introduce econometric modelling in practice Introduce OxMetrics/PcGive Software By the end of the course: Able to build econometric models Evaluate output and test theories Use OxMetrics/PcGive to load, graph, model, data Felix Pretis (Oxford) Econometrics Oxford University, 2017 3 / 34 Administration Textbooks: no single text book. Useful: Doornik, J.A. and Hendry, D.F. (2013). Empirical Econometric Modelling Using PcGive 14: Volume I, London: Timberlake Consultants Press. Included in OxMetrics installation – “Help” Hendry, D. F. (2015) Introductory Macro-econometrics: A New Approach. Freely available online: http: //www.timberlake.co.uk/macroeconometrics.html Lecture Notes & Lab Material online: http://www.felixpretis.org Problem Set: to be covered in tutorial Exam: Questions possible (Q4 and Q8 from past papers 2016 and 2017) Felix Pretis (Oxford) Econometrics Oxford University, 2017 4 / 34 Structure 1: Intro to Econometric Software & Cross-Section Regression 2: Micro-Econometrics: Limited Indep. Variable 3: Macro-Econometrics: Time Series Felix Pretis (Oxford) Econometrics Oxford University, 2017 5 / 34 Motivation Economies high dimensional, interdependent, heterogeneous, and evolving: comprehensive specification of all events is impossible. Economic Theory likely wrong and incomplete meaningless without empirical support Econometrics to discover new relationships from data Econometrics can provide empirical support. or refutation. Require econometric software unless you really like doing matrix manipulation by hand. -
Recent Developments in Macro-Econometric Modeling: Theory and Applications
econometrics Editorial Recent Developments in Macro-Econometric Modeling: Theory and Applications Gilles Dufrénot 1,*, Fredj Jawadi 2,* and Alexander Mihailov 3,* ID 1 Faculty of Economics and Management, Aix-Marseille School of Economics, 13205 Marseille, France 2 Department of Finance, University of Evry-Paris Saclay, 2 rue du Facteur Cheval, 91025 Évry, France 3 Department of Economics, University of Reading, Whiteknights, Reading RG6 6AA, UK * Correspondence: [email protected] (G.D.); [email protected] (F.J.); [email protected] (A.M.) Received: 6 February 2018; Accepted: 2 May 2018; Published: 14 May 2018 Developments in macro-econometrics have been evolving since the aftermath of the Second World War. Essentially, macro-econometrics benefited from the development of mathematical, statistical, and econometric tools. Such a research programme has attained a meaningful success as the methods of macro-econometrics have been used widely over about half a century now to check the implications of economic theories, to model macroeconomic relationships, to forecast business cycles, and to help policymakers to make appropriate decisions. However, despite this progress, important methodological and interpretative questions in macro-econometrics remain (Stock 2001). Additionally, the recent global financial crisis of 2008–2009 and the subsequent deep and long economic recession signaled the end of the “great moderation” (early 1990s–2007) and suggested some limitations of the widely employed and by then dominant macro-econometric framework. One of these deficiencies was that current macroeconomic models have failed to predict this huge economic downturn, perhaps because they did not take into account indicators of contagion, systemic risk, and the financial cycle, or the inter-connectedness of asset markets, in particular housing, with the macro-economy. -
Testing for Cointegration When Some of The
EconometricTheory, 11, 1995, 984-1014. Printed in the United States of America. TESTINGFOR COINTEGRATION WHEN SOME OF THE COINTEGRATINGVECTORS ARE PRESPECIFIED MICHAELT.K. HORVATH Stanford University MARKW. WATSON Princeton University Manyeconomic models imply that ratios, simpledifferences, or "spreads"of variablesare I(O).In these models, cointegratingvectors are composedof l's, O's,and - l's and containno unknownparameters. In this paper,we develop tests for cointegrationthat can be appliedwhen some of the cointegratingvec- tors are prespecifiedunder the null or underthe alternativehypotheses. These tests are constructedin a vectorerror correction model and are motivatedas Waldtests from a Gaussianversion of the model. Whenall of the cointegrat- ing vectorsare prespecifiedunder the alternative,the tests correspondto the standardWald tests for the inclusionof errorcorrection terms in the VAR. Modificationsof this basictest are developedwhen a subsetof the cointegrat- ing vectorscontain unknown parameters. The asymptoticnull distributionsof the statisticsare derived,critical values are determined,and the local power propertiesof the test are studied.Finally, the test is appliedto data on for- eign exchangefuture and spot pricesto test the stabilityof the forward-spot premium. 1. INTRODUCTION Economic models often imply that variables are cointegrated with simple and known cointegrating vectors. Examples include the neoclassical growth model, which implies that income, consumption, investment, and the capi- tal stock will grow in a balanced way, so that any stochastic growth in one of the series must be matched by corresponding growth in the others. Asset This paper has benefited from helpful comments by Neil Ericsson, Gordon Kemp, Andrew Levin, Soren Johansen, John McDermott, Pierre Perron, Peter Phillips, James Stock, and three referees. -
Conditional Heteroscedastic Cointegration Analysis with Structural Breaks a Study on the Chinese Stock Markets
Conditional Heteroscedastic Cointegration Analysis with Structural Breaks A study on the Chinese stock markets Authors: Supervisor: Andrea P.G. Kratz Frederik Lundtofte Heli M.K. Raulamo VT 2011 Abstract A large number of studies have shown that macroeconomic variables can explain co- movements in stock market returns in developed markets. The purpose of this paper is to investigate whether this relation also holds in China’s two stock markets. By doing a heteroscedastic cointegration analysis, the long run relation is investigated. The results show that it is difficult to determine if a cointegrating relationship exists. This could be caused by conditional heteroscedasticity and possible structural break(s) apparent in the sample. Keywords: cointegration, conditional heteroscedasticity, structural break, China, global financial crisis Table of contents 1. Introduction ............................................................................................................................ 3 2. The Chinese stock market ...................................................................................................... 5 3. Previous research .................................................................................................................... 7 3.1. Stock market and macroeconomic variables ................................................................ 7 3.2. The Chinese market ..................................................................................................... 9 4. Theory ................................................................................................................................. -
Econometrics II Econ 8375 - 01 Fall 2018
Econometrics II Econ 8375 - 01 Fall 2018 Course & Instructor: Instructor: Dr. Diego Escobari Office: BUSA 218D Phone: 956.665.3366 Email: [email protected] Web Page: http://faculty.utrgv.edu/diego.escobari/ Office Hours: MT 3:00 p.m. { 5:00 p.m., and by appointment Lecture Time: R 4:40 p.m. { 7:10 p.m. Lecture Venue: Weslaco Center for Innovation and Commercialization 2.206 Course Objective: The course objective is to provide students with the main methods of modern time series analysis. Emphasis will be placed on appreciating its scope, understanding the essentials un- derlying the various methods, and developing the ability to relate the methods to important issues. Through readings, lectures, written assignments and computer applications students are expected to become familiar with these techniques to read and understand applied sci- entific papers. At the end of this semester, students will be able to use computer based statistical packages to analyze time series data, will understand how to interpret the output and will be confident to carry out independent analysis. Prerequisites: Applied multivariate data analysis I and II (ISQM/QUMT 8310 and ISQM/QUMT 8311) Textbooks: Main Textbooks: (E) Walter Enders, Applied Econometric Time Series, John Wiley & Sons, Inc., 4th Edi- tion, 2015. ISBN-13: 978-1-118-80856-6. Econometrics II, page 1 of 9 Additional References: (H) James D. Hamilton, Time Series Analysis, Princeton University Press, 1994. ISBN-10: 0-691-04289-6 Classic reference for graduate time series econometrics. (D) Francis X. Diebold, Elements of Forecasting, South-Western Cengage Learning, 4th Edition, 2006. -
Lecture 18 Cointegration
RS – EC2 - Lecture 18 Lecture 18 Cointegration 1 Spurious Regression • Suppose yt and xt are I(1). We regress yt against xt. What happens? • The usual t-tests on regression coefficients can show statistically significant coefficients, even if in reality it is not so. • This the spurious regression problem (Granger and Newbold (1974)). • In a Spurious Regression the errors would be correlated and the standard t-statistic will be wrongly calculated because the variance of the errors is not consistently estimated. Note: This problem can also appear with I(0) series –see, Granger, Hyung and Jeon (1998). 1 RS – EC2 - Lecture 18 Spurious Regression - Examples Examples: (1) Egyptian infant mortality rate (Y), 1971-1990, annual data, on Gross aggregate income of American farmers (I) and Total Honduran money supply (M) ŷ = 179.9 - .2952 I - .0439 M, R2 = .918, DW = .4752, F = 95.17 (16.63) (-2.32) (-4.26) Corr = .8858, -.9113, -.9445 (2). US Export Index (Y), 1960-1990, annual data, on Australian males’ life expectancy (X) ŷ = -2943. + 45.7974 X, R2 = .916, DW = .3599, F = 315.2 (-16.70) (17.76) Corr = .9570 (3) Total Crime Rates in the US (Y), 1971-1991, annual data, on Life expectancy of South Africa (X) ŷ = -24569 + 628.9 X, R2 = .811, DW = .5061, F = 81.72 (-6.03) (9.04) Corr = .9008 Spurious Regression - Statistical Implications • Suppose yt and xt are unrelated I(1) variables. We run the regression: y t x t t • True value of β=0. The above is a spurious regression and et ∼ I(1). -
Testing Linear Restrictions on Cointegration Vectors: Sizes and Powers of Wald Tests in Finite Samples
A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Haug, Alfred A. Working Paper Testing linear restrictions on cointegration vectors: Sizes and powers of Wald tests in finite samples Technical Report, No. 1999,04 Provided in Cooperation with: Collaborative Research Center 'Reduction of Complexity in Multivariate Data Structures' (SFB 475), University of Dortmund Suggested Citation: Haug, Alfred A. (1999) : Testing linear restrictions on cointegration vectors: Sizes and powers of Wald tests in finite samples, Technical Report, No. 1999,04, Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen, Dortmund This Version is available at: http://hdl.handle.net/10419/77134 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung -
Linear Cointegration of Nonlinear Time Series with an Application to Interest Rate Dynamics
Finance and Economics Discussion Series Divisions of Research & Statistics and Monetary Affairs Federal Reserve Board, Washington, D.C. Linear Cointegration of Nonlinear Time Series with an Application to Interest Rate Dynamics Barry E. Jones and Travis D. Nesmith 2007-03 NOTE: Staff working papers in the Finance and Economics Discussion Series (FEDS) are preliminary materials circulated to stimulate discussion and critical comment. The analysis and conclusions set forth are those of the authors and do not indicate concurrence by other members of the research staff or the Board of Governors. References in publications to the Finance and Economics Discussion Series (other than acknowledgement) should be cleared with the author(s) to protect the tentative character of these papers. Linear Cointegration of Nonlinear Time Series with an Application to Interest Rate Dynamics Barry E. Jones Binghamton University Travis D. Nesmith Board of Governors of the Federal Reserve System November 29, 2006 Abstract We derive a denition of linear cointegration for nonlinear stochastic processes using a martingale representation theorem. The result shows that stationary linear cointegrations can exhibit nonlinear dynamics, in contrast with the normal assump- tion of linearity. We propose a sequential nonparametric method to test rst for cointegration and second for nonlinear dynamics in the cointegrated system. We apply this method to weekly US interest rates constructed using a multirate lter rather than averaging. The Treasury Bill, Commercial Paper and Federal Funds rates are cointegrated, with two cointegrating vectors. Both cointegrations behave nonlinearly. Consequently, linear models will not fully replicate the dynamics of monetary policy transmission. JEL Classication: C14; C32; C51; C82; E4 Keywords: cointegration; nonlinearity; interest rates; nonparametric estimation Corresponding author: 20th and C Sts., NW, Mail Stop 188, Washington, DC 20551 E-mail: [email protected] Melvin Hinich provided technical advice on his bispectrum computer program. -
An Econometric Model of the Yield Curve with Macroeconomic Jump Effects
An Econometric Model of the Yield Curve with Macroeconomic Jump Effects Monika Piazzesi∗ UCLA and NBER First Draft: October 15, 1999 This Draft: April 10, 2001 Abstract This paper develops an arbitrage-free time-series model of yields in continuous time that incorporates central bank policy. Policy-related events, such as FOMC meetings and releases of macroeconomic news the Fed cares about, are modeled as jumps. The model introduces a class of linear-quadratic jump-diffusions as state variables, which allows for a wide variety of jump types but still leads to tractable solutions for bond prices. I estimate a version of this model with U.S. interest rates, the Federal Reserve's target rate, and key macroeconomic aggregates. The estimated model improves bond pricing, especially at short maturities. The \snake-shape" of the volatility curve is linked to monetary policy inertia. A new monetary policy shock series is obtained by assuming that the Fed reacts to information available right before the FOMC meeting. According to the estimated policy rule, the Fed is mainly reacting to information contained in the yield-curve. Surprises in analyst forecasts turn out to be merely temporary components of macro variables, so that the \hump-shaped" yield response to these surprises is not consistent with a Taylor-type policy rule. ∗I am still looking for words that express my gratitude to Darrell Duffie. I would like to thank Andrew Ang, Michael Brandt, John Cochrane, Heber Farnsworth, Silverio Foresi, Lars Hansen, Ken Judd, Thomas Sargent, Ken Singleton, John Shoven, John Taylor, and Harald Uhlig for helpful suggestions; and Martin Schneider for extensive discussions. -
Econometric Theory
ECONOMETRIC THEORY MODULE – I Lecture - 1 Introduction to Econometrics Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur 2 Econometrics deals with the measurement of economic relationships. It is an integration of economic theories, mathematical economics and statistics with an objective to provide numerical values to the parameters of economic relationships. The relationships of economic theories are usually expressed in mathematical forms and combined with empirical economics. The econometrics methods are used to obtain the values of parameters which are essentially the coefficients of mathematical form of the economic relationships. The statistical methods which help in explaining the economic phenomenon are adapted as econometric methods. The econometric relationships depict the random behaviour of economic relationships which are generally not considered in economics and mathematical formulations. It may be pointed out that the econometric methods can be used in other areas like engineering sciences, biological sciences, medical sciences, geosciences, agricultural sciences etc. In simple words, whenever there is a need of finding the stochastic relationship in mathematical format, the econometric methods and tools help. The econometric tools are helpful in explaining the relationships among variables. 3 Econometric models A model is a simplified representation of a real world process. It should be representative in the sense that it should contain the salient features of the phenomena under study. In general, one of the objectives in modeling is to have a simple model to explain a complex phenomenon. Such an objective may sometimes lead to oversimplified model and sometimes the assumptions made are unrealistic. In practice, generally all the variables which the experimenter thinks are relevant to explain the phenomenon are included in the model.