Neurosensory Development in the Zebrafish Inner Ear
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fetal Blood Flow and Genetic Mutations in Conotruncal Congenital Heart Disease
Journal of Cardiovascular Development and Disease Review Fetal Blood Flow and Genetic Mutations in Conotruncal Congenital Heart Disease Laura A. Dyer 1 and Sandra Rugonyi 2,* 1 Department of Biology, University of Portland, Portland, OR 97203, USA; [email protected] 2 Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA * Correspondence: [email protected] Abstract: In congenital heart disease, the presence of structural defects affects blood flow in the heart and circulation. However, because the fetal circulation bypasses the lungs, fetuses with cyanotic heart defects can survive in utero but need prompt intervention to survive after birth. Tetralogy of Fallot and persistent truncus arteriosus are two of the most significant conotruncal heart defects. In both defects, blood access to the lungs is restricted or non-existent, and babies with these critical conditions need intervention right after birth. While there are known genetic mutations that lead to these critical heart defects, early perturbations in blood flow can independently lead to critical heart defects. In this paper, we start by comparing the fetal circulation with the neonatal and adult circulation, and reviewing how altered fetal blood flow can be used as a diagnostic tool to plan interventions. We then look at known factors that lead to tetralogy of Fallot and persistent truncus arteriosus: namely early perturbations in blood flow and mutations within VEGF-related pathways. The interplay between physical and genetic factors means that any one alteration can cause significant disruptions during development and underscore our need to better understand the effects of both blood flow and flow-responsive genes. -
Anatomical Changes and Audiological Profile in Branchio-Oto-Renal
THIEME 68 Review Article Anatomical Changes and Audiological Profile in Branchio-oto-renal Syndrome: A Literature Review Tâmara Andrade Lindau1 Ana Cláudia Vieira Cardoso1 Natalia Freitas Rossi1 Célia Maria Giacheti1 1 Department of Speech Pathology, Universidade Estadual Paulista - Address for correspondence Célia Maria Giacheti, PhD, Department of UNESP, Marília, São Paulo, Brazil Speech Pathology, Universidade Estadual Paulista UNESP, Av. Hygino Muzzi Filho, 737, Marília, São Paulo 14525-900, Brazil Int Arch Otorhinolaryngol 2014;18:68–76. (e-mail: [email protected]). Abstract Introduction Branchio-oto-renal (BOR) syndrome is an autosomal-dominant genetic condition with high penetrance and variable expressivity, with an estimated prevalence of 1 in 40,000. Approximately 40% of the patients with the syndrome have mutations in the gene EYA1, located at chromosomal region 8q13.3, and 5% have mutations in the gene SIX5 in chromosome region 19q13. The phenotype of this syndrome is character- ized by preauricular fistulas; structural malformations of the external, middle, and inner ears; branchial fistulas; renal disorders; cleft palate; and variable type and degree of hearing loss. Aim Hearing loss is part of BOR syndrome phenotype. The aim of this study was to present a literature review on the anatomical aspects and audiological profile of BOR syndrome. Keywords Data Synthesis Thirty-four studies were selected for analysis. Some aspects when ► branchio-oto-renal specifying the phenotype of BOR syndrome are controversial, especially those issues syndrome related to the audiological profile in which there was variability on auditory standard, ► BOR syndrome hearing loss progression, and type and degree of the hearing loss. -
Dlx3b/4B Is Required for Early-Born but Not Later-Forming Sensory Hair Cells
© 2017. Published by The Company of Biologists Ltd | Biology Open (2017) 6, 1270-1278 doi:10.1242/bio.026211 RESEARCH ARTICLE Dlx3b/4b is required for early-born but not later-forming sensory hair cells during zebrafish inner ear development Simone Schwarzer, Sandra Spieß, Michael Brand and Stefan Hans* ABSTRACT complex arrangement of mechanosensory hair cells, nonsensory Morpholino-mediated knockdown has shown that the homeodomain supporting cells and sensory neurons (Barald and Kelley, 2004; Raft transcription factors Dlx3b and Dlx4b are essential for proper and Groves, 2015; Whitfield, 2015). Inner ear formation is a induction of the otic-epibranchial progenitor domain (OEPD), as multistep process initiated by the establishment of the preplacodal well as subsequent formation of sensory hair cells in the developing region, a zone of ectoderm running around the anterior border of the zebrafish inner ear. However, increasing use of reverse genetic neural plate containing precursors for all sensory placodes (Streit, approaches has revealed poor correlation between morpholino- 2007). The preplacodal region is further specified into a common induced and mutant phenotypes. Using CRISPR/Cas9-mediated otic-epibranchial progenitor domain (OEPD) that in zebrafish also mutagenesis, we generated a defined deletion eliminating the entire contains the progenitors of the anterior lateral line ganglion (Chen open reading frames of dlx3b and dlx4b (dlx3b/4b) and investigated a and Streit, 2013; McCarroll et al., 2012; Hans et al., 2013). potential phenotypic -
Stages of Embryonic Development of the Zebrafish
DEVELOPMENTAL DYNAMICS 2032553’10 (1995) Stages of Embryonic Development of the Zebrafish CHARLES B. KIMMEL, WILLIAM W. BALLARD, SETH R. KIMMEL, BONNIE ULLMANN, AND THOMAS F. SCHILLING Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403-1254 (C.B.K., S.R.K., B.U., T.F.S.); Department of Biology, Dartmouth College, Hanover, NH 03755 (W.W.B.) ABSTRACT We describe a series of stages for Segmentation Period (10-24 h) 274 development of the embryo of the zebrafish, Danio (Brachydanio) rerio. We define seven broad peri- Pharyngula Period (24-48 h) 285 ods of embryogenesis-the zygote, cleavage, blas- Hatching Period (48-72 h) 298 tula, gastrula, segmentation, pharyngula, and hatching periods. These divisions highlight the Early Larval Period 303 changing spectrum of major developmental pro- Acknowledgments 303 cesses that occur during the first 3 days after fer- tilization, and we review some of what is known Glossary 303 about morphogenesis and other significant events that occur during each of the periods. Stages sub- References 309 divide the periods. Stages are named, not num- INTRODUCTION bered as in most other series, providing for flexi- A staging series is a tool that provides accuracy in bility and continued evolution of the staging series developmental studies. This is because different em- as we learn more about development in this spe- bryos, even together within a single clutch, develop at cies. The stages, and their names, are based on slightly different rates. We have seen asynchrony ap- morphological features, generally readily identi- pearing in the development of zebrafish, Danio fied by examination of the live embryo with the (Brachydanio) rerio, embryos fertilized simultaneously dissecting stereomicroscope. -
Brain-Derived Neurotrophic Factor and Neurotrophin 3 Mrnas in The
Proc. Nail. Acad. Sci. USA Vol. 89, pp. 9915-9919, October 1992 Developmental Biology Brain-derived neurotrophic factor and neurotrophin 3 mRNAs in the peripheral target fields of developing inner ear ganglia ULLA PIRVOLA*, JUKKA YLIKOSKI*t, JAAN PALGIt§, EERO LEHTONEN*, URMAS ARUMAE§, AND MART SAARMAt§ *Department of Pathology, University of Helsinki, SF-00290 Helsinki, Finland; *Institute of Biotechnology, University of Helsinki, SF 00380 Helsinki, Finland; and §Department of Molecular Genetics, Institute of Chemical Physics and Biophysics, Estonian Academy of Sciences, 200026 Tallinn, Estonia Communicated by N. Le Douarin, July 1, 1992 ABSTRACT In situ hybridization was used to study the site tyrosine kinase receptors likewise bind neurotrophins with and timing of the expression of nerve growth factor (NGF), low and high affinity (21-23). The individual neurotrophins brain-derived neurotrophic factor (BDNF), neurotrophin 3 exert similar functional effects on overlapping but also on (NT-3), and neurotrophin 5 (NT-5) mRNAs in the developing distinct neuronal populations (24). In addition, there is evi- inner ear of the rat. In the sensory epithelia, the levels of NGF dence that they have regulatory roles in non-neuronal tissues and NT-5 mRNAs were below the detection limit. NT-3 and as well (25, 26). In principle, all neurotrophins could regulate BDNF mRNAs were expressed in the otic vesicle in overlapping the development of the inner ear. We have used in situ but also in distinct regions. Later in development, NT-3 hybridization to determine the spatiotemporal expression pat- transcripts were localized to the differentiating sensory and tern of NGF, BDNF, NT-3, and NT-5 mRNAs in the cochlea supporting cells of the auditory organ and vestibular maculae. -
ANATOMY of EAR Basic Ear Anatomy
ANATOMY OF EAR Basic Ear Anatomy • Expected outcomes • To understand the hearing mechanism • To be able to identify the structures of the ear Development of Ear 1. Pinna develops from 1st & 2nd Branchial arch (Hillocks of His). Starts at 6 Weeks & is complete by 20 weeks. 2. E.A.M. develops from dorsal end of 1st branchial arch starting at 6-8 weeks and is complete by 28 weeks. 3. Middle Ear development —Malleus & Incus develop between 6-8 weeks from 1st & 2nd branchial arch. Branchial arches & Development of Ear Dev. contd---- • T.M at 28 weeks from all 3 germinal layers . • Foot plate of stapes develops from otic capsule b/w 6- 8 weeks. • Inner ear develops from otic capsule starting at 5 weeks & is complete by 25 weeks. • Development of external/middle/inner ear is independent of each other. Development of ear External Ear • It consists of - Pinna and External auditory meatus. Pinna • It is made up of fibro elastic cartilage covered by skin and connected to the surrounding parts by ligaments and muscles. • Various landmarks on the pinna are helix, antihelix, lobule, tragus, concha, scaphoid fossa and triangular fossa • Pinna has two surfaces i.e. medial or cranial surface and a lateral surface . • Cymba concha lies between crus helix and crus antihelix. It is an important landmark for mastoid antrum. Anatomy of external ear • Landmarks of pinna Anatomy of external ear • Bat-Ear is the most common congenital anomaly of pinna in which antihelix has not developed and excessive conchal cartilage is present. • Corrections of Pinna defects are done at 6 years of age. -
Lipoma on the Antitragus of the Ear Hyeree Kim, Sang Hyun Cho, Jeong Deuk Lee, Hei Sung Kim* Department of Dermatology, Incheon St
www.symbiosisonline.org Symbiosis www.symbiosisonlinepublishing.com Letter to Editor Clinical Research in Dermatology: Open Access Open Access Lipoma on the antitragus of the ear Hyeree Kim, Sang Hyun Cho, Jeong Deuk Lee, Hei Sung Kim* Department of Dermatology, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea Received: February 29, 2016; Accepted: March 25, 2016; Published: March 30, 2016 *Corresponding author: Hei Sung Kim, Professsor, Department of Dermatology, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 56 Donsuro, Bupyeong-gu, Incheon, 403-720, Korea. Tel: 82-32-280-5100; Fax: 82-2-506-9514; E-mail: [email protected] on the ear, most are located in internal auditory canals, where Keywords: Auricular Lipoma; Ear helix lipoma; Cartilagiouslipoma; Antitragallipoma approximately 150 cases have been reported in the literature worldwide [3]. Lipomas rarely originate from the external ear where only a few cases have been reported from the ear lobule Dear Editor, [4], and a only three cases from the ear helix [1,6,7] Bassem et al. Lipomas are the most common soft-tissue neoplasm [1, reported a case of lipoma of the pinnal helix on the 82-year-old 5]. Although they affect individuals of a wide age range, they woman, which presented a single, 3x3x2cm-sized, pedunculated occur predominantly in adults between the ages of 40 and 60 mass [1]. Mohammad and Ahmed reported two cases of years [5]. They most commonly present as painless, slowly cartiligious lipoma, one is conchal lipoma and the other is helical enlarging subcutaneous mass on the trunk, neck, or extremities. -
20. Placodes and Sensory Development
PLACODES AND 20. SENSORY DEVELOPMENT Letty Moss-Salentijn DDS, PhD Dr. Edwin S. Robinson Professor of Dentistry (in Anatomy and Cell Biology) E-mail: [email protected] READING ASSIGNMENT: Larsen 3rd Edition Chapter 12, Part 2. pp.379-389; Part 3. pp.390- 396; Chapter 13, pp.430-432 SUMMARY A series of ectodermal thickenings or placodes develop in the cephalic region at the periphery of the neural plate. Placodes are central to the development of the cranial sensory systems in vertebrates and are among the innovations that appeared in the early evolution of vertebrates. There are placodes for the three organs of special sense: olfactory, optic (lens) and otic placodes, and (epibranchial) placodes that give rise to the distal cells of the sensory ganglia of cranial nerves V, VII, IX and X. Placodes (with the possible exception of the olfactory placodes) form under the influence of surrounding cranial tissues. They do not appear to require the presence of neural crest. The mesoderm in the prechordal plate plays a significant role in the initial development of the placodes for the organs of special sense, while the pharyngeal pouch endoderm plays that role in the development of the epibranchial placodes. The development of the organs of special sense is described briefly. LEARNING OBJECTIVES You should be able to: a. Give a definition of placodes and describe their evolutionary significance. b. Name the different types of placodes, their locations in the developing embryo and their developmental fates. c. Discuss the early development of the placodes and some of the possible factors that feature in their development. -
Titel NAV + Total*
NOMINA ANATOMICA VETERINARIA FIFTH EDITION (revised version) Prepared by the International Committee on Veterinary Gross Anatomical Nomenclature (I.C.V.G.A.N.) and authorized by the General Assembly of the World Association of Veterinary Anatomists (W.A.V.A.) Knoxville, TN (U.S.A.) 2003 Published by the Editorial Committee Hannover (Germany), Columbia, MO (U.S.A.), Ghent (Belgium), Sapporo (Japan) 2012 NOMINA ANATOMICA VETERINARIA (2012) CONTENTS CONTENTS Preface .................................................................................................................................. iii Procedure to Change Terms ................................................................................................. vi Introduction ......................................................................................................................... vii History ............................................................................................................................. vii Principles of the N.A.V. ................................................................................................... xi Hints for the User of the N.A.V....................................................................................... xii Brief Latin Grammar for Anatomists ............................................................................. xiii Termini situm et directionem partium corporis indicantes .................................................... 1 Termini ad membra spectantes ............................................................................................. -
AMBLYSTOMA PUNCTATUM Stage of the Embryo at The. Time of Operation
238 ZO6LOG Y: R. G. HARRISON PROC. N. A. S. the other for some cells and in the opposite manner for certain others, seem to be explainable best by regarding the concentrated phase of a melanophore to be dependent upon the activity of one type of nerve; and the dispersed phase, upon the activity of another type of nervous connection. Abramowitz, A. A., "Regeneration of Chromatophore Nerves," Proc. Nat. Acad. Sci., 21, 137-141 (1935). Mills, S. M., "The Double Innervation of Fish Melanophores," Jour. Exp. Zool., 64, 231-244 (1932). Smith, D. C., "The Action of Certain Autonomic Drugs upon the Pigmentary Re- sponses of Fundulus," Ibid., 58, 423-453 (1931). Wyman, L. C., "Blood and Nerve as Controlling Agents in the Movements of Melano- phores," Ibid., 39, 73-132 (1924). RELATIONS OF SYMMETRY IN THE DEVELOPING EAR OF AMBLYSTOMA PUNCTATUM By Ross G. HARRISON OSBORN ZOOLOGICAL LABORATORY, YALE UNIVBRSITY Read before the Academy, November 19, 1935 The present investigation is an attempt to study the changes underlying embryonic differentiation by means of transplantation experiments in which the orientation of the grafted organ rudiment is varied. The ear was chosen for the purpose, as was the fore limb in a previous study, be- cause it is a paired organ which in its final stage is asymmetric and is the mirror image of the corresponding structure on the opposite side. It has been found that there are definite relations between the orientation of the graft and the character of the resulting organ, particularly in regard to its asymmetry, and that these relations change in regular order with the stage of the embryo at the. -
Sonic Hedgehog Rescues Cranial Neural Crest from Cell Death Induced by Ethanol Exposure
Sonic hedgehog rescues cranial neural crest from cell death induced by ethanol exposure Sara C. Ahlgren*, Vijaya Thakur, and Marianne Bronner-Fraser Division of Biology 139-74, California Institute of Technology, Pasadena, CA 91125 Communicated by Eric H. Davidson, California Institute of Technology, Pasadena, CA, June 14, 2002 (received for review March 14, 2002) Alcohol is a teratogen that induces a variety of abnormalities Materials and Methods including brain and facial defects [Jones, K. & Smith, D. (1973) Embryos. Chicken eggs were obtained from local sources. Eggs Lancet 2, 999-1001], with the exact nature of the deficit depending were incubated at 37°C with constant humidity. In preliminary on the time and magnitude of the dose of ethanol to which experiments, unopened eggs were injected with 200 lofa developing fetuses are exposed. In addition to abnormal facial solution of 10% ethanol in Ringer’s solution, or with Ringer’s structures, ethanol-treated embryos exhibit a highly characteristic solution alone, at 26 h of incubation. This procedure has been pattern of cell death. Dying cells are observed in the premigratory previously demonstrated to result in craniofacial abnormalities and migratory neural crest cells that normally populate most facial (6). We then modified this procedure, such that eggs were structures. The observation that blocking Sonic hedgehog (Shh) opened at stage 9–10, and 20 l of a 1% ethanol solution (in signaling results in similar craniofacial abnormalities prompted us Ringers) was placed between the vitelline membrane and the to examine whether there was a link between this aspect of fetal embryo. Both procedures resulted in similar cranial neural crest alcohol syndrome and loss of Shh. -
22 Stapes Surgery Holger Sudhoff, Henning Hildmann
112 Chapter 22 22 Stapes Surgery Holger Sudhoff, Henning Hildmann Stapes surgery can be performed using local or general anaesthesia. The major- ity of patients are operated on under a combination of local anaesthesia and ade- quate sedation. There is less bleeding with local anaesthesia and the surgeon can ask the patient about hearing improvement intraoperatively. Many experienced surgeons use a transcanal technique. We prefer an endaural approach, which we believe provides a better overview in difficult situations. The nurse assists with the incision, retracting the auricle posterior-superiorly. This straightens the incision line and keeps and protects the cartilage of the anterior helix (Fig. 22.1). The lateral portion of the ear canal is opened using a nasal speculum. The surgeon gains a good view over the superior opening of the external ear canal between the helical and the tragal cartilage. The intercartilaginous incision starts with a No. 10 blade with permanent contact to the bony external ear canal. To reduce tension a parallel incision to the anterior portion of the helix upwards in a smoothly curved line is performed. This procedure reduces the risk of cutting the superficial temporal vein and avoids bleeding. A second skin medial circumferential incision is placed 4–5 mm medial to the opening of the external bony ear canal between the 1 and 5 o’clock positions for the left ear and is extended to the intercartilaginous incision. The underlying soft tis- sue and periosteum are pushed laterally using a raspatory, revealing the supra- meatal spine and tympanomastoid suture. A small portion of the mastoid plane will be exposed as well.