Science and of and natural stone in construction

F. Wittel Glass products

Institute for Building Materials | | 1

Teaching goals glass products:

You will

… learn to categorize glass products

…get an overview on what is possible with glass

…be amazed on the large variety of glass products for architectural purposes

… get not know valid codes and test procedures for glass products

Institute for Building Materials | | Content Sheet glass types pre-stressing coating testing protective glass Insolation glass Hollow glass Foam glass Textile glass

Institute for Building Materials | |

Glasses: Chemical classification

Silica Soda-lime Boro silicate Alumosilicate Lead glass glass glass glass

SiO2 100 73 81 62 56

Al2O3 12 172 CaO 5 8 MgO 4 7

Na2O174 1 4

K2O9

B2O3 13 5 Institute for Building Materials PbO 29 | | Clear glass vs. Ordinary float glass

• Glasses for optically relevant applications with reduces iron content (chemical decolorization)  color neural glass without green cast of ordinary float, important for thick sheets • For applications with increased light transmission, e.g., thick fire protection glass, laminated safety glass or display windows • Light transmission (19mm thickness): clear glass 89% float glass 81%. Transmission [%] Transmission

Trösch Eurowhite Institute for Building Materials | | Wavelength [nm] Palm house Berlin 2009

Borosilicate float glass

• Borofloat 0.7mm-24mm (Schott glass) • High temperature resistance, • High transparency • High chemical resistance • High mechanical strength fire resistant glazing

Institute for Building Materials | | Monolithic protective glass Fire protection glass: • with high resistance to thermal shock. Radiation protection glass: • Aim: Leak tightness for flames and smoke. • with 65% PbO  heavy • Shape and transparency remain. • High transparency • No failure due to water for firefighting. • Protection against ionizing radiation given in lead equivalent value (lev): 10mm glass with lev=32% corresponds to 3.2 mm lead

Institute for Building Materials | | Schott RD 50

Codes in German

Allgemein DIN 1259-1 9/2001 Glas Teil 1: Begriffe für Glasarten und Glasgruppen -2 9/2001 Glas Teil 2: Begriffe für Glaserzeugnisse DIN 1249-11;9/1986 Flachglas im Bauwesen; Teil 11: Glaskanten, Begriff, Kantenformen und Ausführung Monolithische Basiserzeugnisse aus Glas DIN EN 572-1; 9/2004 Basiserzeugnisse aus Kalk-Natronglas; Teil 1: Definition und Allgemeine physikalische und mechanische Eigenschaften (SN EN 572-1/SIA 331.001) -2 9/2004 Teil 2: Floatglas (SN EN 572-2/SIA 331.002) -3 9/2004 Teil 3: Poliertes Drahtglas (SN EN 572-3/SIA 331.003) -4 9/2004 Teil 4: Gezogenes Flachglas (SN EN 572-49) -5 9/2004 Teil 5: Ornamentglas (SN EN 572-5/SIA 331.005) -6 9/2004 Teil 6: Drahtornamentglas (SN EN 572-6/SIA 331.006) -7 9/2004 Teil 7: Profilbauglas mit oder ohne Drahteinlage (SN EN 572-7/SIA 331.007) -8 9/2004 Teil 8: Liefermasse uns Festmasse (SN EN 572-8/SIA 331.014) -9 9/2004 Teil 9: Konformitätsbewertung/Produktnorm (SN EN 572-9/SIA 331.015) DIN EN 1748-1-1;12/2004 Spezielle Basiserzeugnisse – Borosilicatgläser ; Teil 1-1: Definitionen und allgemeine physikalische und mechanische Eigenschaften (SN EN 1748-1-1/SIA 331.011) -1-2 1/2005 Teil 1-2: Konformitätsbewertung/Produktnorm (SN EN 1748-1-2/SIA 331.016) -2-2 1/2005 Teil 2-2: Konformitätsbewertung/Produktnorm DIN EN 14178-1;1/2005 Basiserzeugnisse aus Erdalkali-Silicatglas; Teil 1: Floatglas (SN EN 14178-1) -2 1/2005 Teil 2: Konformitätsbewertung/Produktnorm (SN EN 14178-2/SIA 331.178) DIN EN 15681-1;7/2007 Basiserzeugnisse aus Alumo-Silicatglas; Teil 1: Definition und allgemeine physikalische und mechanische Eigenschaften -2 7/2007 Teil 2: Konformitätsbewertung/Produktnorm DIN 11525 6/1992 Gartenbauglas: Gartenblankglas, Gartenklarglas

Institute for Building Materials | | Cast glass • Cast glass has structures surfaces with arbitrary texture  ornamented / patterned glass • Additionally a wire mesh can be rolled in for retaining glass splinters.  armored / wired glass

Armored glass Raw glass

Design glass Ornamented glass

Institute for Building Materials | |

Pre-stressing of glass

Heat strengthened glass: • Moderate cooling rate  moderate residual stresses • Larger fragments  higher remaining capacity after fracture : • High cooling rate  extreme residual stresses • Small fragments  spontaneously going blind Chemically strengthened glass: • Glass is submersed in a 300°C hot potassium nitrate melt. • Sodium ions are replaced by larger potassium ions  pre-stress Institute for Building Materials | | Thermal pre-stressing of glass

700°C

• Heating to 700°C with consecutive quenching by blowing with air. • Surfaces solidify while the core further contracts (different heat expansion coefficients below and above Tg).  Surface under compression, core under tension (parabolic shape). • Mechanical processing after pre-stressing leads to destruction • 3mm thickness up to 12mm

Institute for Building Materials | |

Tempered glass in constructions

• Bending strength 5times higher than annealed glass. • Good thermal shock resistance. • Very impact resistant (e.g. hailstorm) but sensitive edges that need protection. • Annealed glass 20MPa strength, tempered glass 120MPa, with enamel 75MPa, Ornamented glass/ drawn sheet glass 90MPa

Institute for Building Materials | | Tempered glass

> 

Spontaneous failure of tempered glass by particle inclusions in the tensile stressed core.

33 C rr  ()  T  00;; CC   Stone Glas tan rad  11 2 rr  Stone Glas 22EEStone Glas

Locale stress intensity when particle< glass  no debonding of particles

Problematic situations with: Si, Fe, NiS

Institute for Building Materials | | REM image of a NiS-Inclusion

Tempered glass: NiS inclusions

NiS inclusions increase in size by phase changes from -NiS to -NiS. Aluminum from recovered glass can produce Si- and Fe-precipitates.

42 33AlSiO 223 AlOSi 42 33AlFeOAlOFe2223 

Quality assurance measures: heat soak test  ESG-H (DIN 14179) Heat treatment for 8 hours at 290°C±10: -to -transition is accelerated and hence spontaneous fracture. 95% of fractures can be avoided Spontaneous fracture for sunlit window panes of colored or coated tempered glass with high energy absorption even after 10 years of service.

Institute for Building Materials | | Butterfly shape Pre-stressed: glass: Fracture patterns :

Annealed glass Heat strengthened glass Tempered glass

Sharp splinter; large glass large splinter, but not so sharp  Small fragemnts increased fragments remaining capacity when laminated protection against injuries

- Compressive pre-stress 50MPa Compressive pre-stress 120MPa

Bending strength 45MPa Bending strength (5% fractile) Bending strength (5% fractile) Thermal shock resistance 30-40K 70MPa Thermal shock resistance 120MPa Thermal shock resistance 100K 200K Institute for Building Materials | |

Chemical strengthening Thermal pre-stressing only for thickness >3mm due to too small temperature gradients  too small stress Compressive pre-stressing of surfaces by chemical modification: • Exchange of alkali-ions (sodium) by larger potassium ions up to a depth of 0.1mm. • Several hours of treatment in a potassium nitrate melt at 300-400°C.  Bending strength: 400-500MPa!

Institute for Building Materials | | Institute for Building Materials | |

Codes in German for Pre-stressed glass

DIN EN 12150-1 11/2000 Thermisch vorgespanntes Kalknatron-ESG Teil 1: Definition und Beschreibung (SN EN 12150-1) -2 1/2005 Teil 2: Konformitätsbewertung/Produktnorm (SN EN 12150-2/SIA 331.212) DIN EN 13024-1 4/2011 Thermisch vorgespanntes Borosilicat- ESG Teil 1: Definition und Beschreibung (SN EN 13024-1/SIA 331.705) -2 1/2005 Teil 2: Konformitätsbewertung/Produktnorm (SN EN 13024-2/SIA 331.706) DIN EN 14179-1 9/2005 Heissgelagertes thermisch vorgespanntes Kalknatron- ESG Teil 1: Definition und Beschreibung (SN EN 14179-1/SIA 331.213) -2 8/2005 Teil 2: Konformitätsbewertung/Produktnorm (SN EN 14179-2/SIA 331.214) DIN EN 14321-1 9/2005 Thermisch vorgespanntes Erdalkali-Silicat- ESG Teil 1: Definition und Beschreibung (SN EN 14321-1/SIA 331.215) -2 10/2005 Teil 2: Konformitätsbewertung/Produktnorm (SN EN 14321-2/SIA 331.216) DIN EN 15683-1 7/2007 Thermisch vorgespanntes Kalknatron-Profilbau-Sicherheitsglas Teil 1: Definition und Beschreibung -2 7/2007 Teil 2: Konformitätsbewertung/Produktnorm DIN EN 1863-1 3/2000 Teilvorgespanntes Kalknatronglas Teil 1: Definition und Beschreibung (SN EN 1863-1/SIA 331.201) -2 1/2005 Teil 2: Konformitätsbewertung/Produktnorm (SN EN 1863-2/SIA 331.202) DIN EN 12337-1 11/2000 Chemische vorgespanntes Kalknatronglas Teil 1: Definition und Beschreibung (SN EN 12337-1/SIA 331.221) -2 1/2005 Teil 2: Konformitätsbewertung/Produktnorm (SN EN 12337-2/SIA 331.222)

Institute for Building Materials | | Institute for Building Materials | |

Codes in German for tempered glass

Test specimen

Counting of fragments in the coarsest region of size 5x5cm Intersected ones only count half.

product thickness fragments Float and 3mm 15 drawn glass 4-12mm 40 15-19mm 30 Ornamented 4-10mm 30 glass Example: DIN 14179-1 Institute for Building Materials | | Monolithic glass: surface refinement

Glass processing Glass lecture chemistry lecture

Institute for Building Materials | |

Monolithic glass: glas frosting

• Sand blasted surface, sheet thickness >2mm. • 1-2mm thick bone glue layer • Application direction determines the pattern. • Drying  chipping of small fragments. • Sticking parts are washed off  matt surface remains.

Institute for Building Materials | | Monolithic glass: etching (reminder)

Attack by hydrofluoric acid Hydrofluoric acid dissolves the silicon dioxide backbone and forms SiF. In aqueous solution if further reacts to Fluorosilic acid:

SiO2 + HF  SiF4 + H2O;

SiF4 + 2HF  H2(SiF6)

Easily dissolvable silicon

hexafluoride SiF6 Is formed. Fine etching for obtaining anti-reflecting Glass.

Institute for Building Materials | |

Monolithic glass: etching

Very fine etching

Fine etching

Coarse etching Institute for Building Materials | | Monolithic glass: etching Sand blasted surface Sand blasted and etched

Fällander Glas Vitrex 120 Institute for Building Materials | |

Monolithic glass: surface refinement

Institute for Building Materials | | Monolithic glass: Surface coating

Coatings with metals, metal oxides, organic materials.

Large number of coating processes that can be classified in: • On-line/Off-line Coating: Coating during / after the float . • Chemical coating processes: Coating by chemical or pyrolytic reactions of coating materials (mainly metal oxides) with hot glass surface; chemical wet coating; sol-gel coating processes; coating from the gas phase; spray and powder coating. • Physical coating processes: coating materials are vaporized and deposit on the glass surface; or via cathode sputtering in vacuum they condense on the glass surface.

Institute for Building Materials | |

Monolithic glass: Chemical surface coating

Pyrolytic coating = Hard coating / On-Line process. Liquid metal oxides are sprayed on liquid glass and burned in. high mechanical and chemical resistance (high durability, easy handling)  Higher g-values than off-line coatings  Can be toughened and laminated without difficulty • Reflecting metal oxides for sun protection • CO2 saving ZnO coatings for heat absorbing glassing • TiO for self-cleaning glassing

coating

Institute for Building Materials | | Monolithic glass: Chemical surface coating

Sol-Gel-coating process: Glass is immersed in liquids or sprayed, dripped, rolled etc. Metal compound stick on the glass surface Gelation when drying and oxidation when organic compounds are pyrolized

• Porous SiO2 –layers for anti-reflecting coatings (eyeglass lenses) • Alternating sol-gel coating with low refracting SiO2 and highly refracting TiO2 for interference filters (anti-reflecting coatings, and color effects.

Aggregation

gelation

tempering

Drying Institute for Building Materials | |

Monolithic glass: Physical coating by sputtering

Common for glass: Magnetron sputtering (offline-process) • Higher ionization  higher material erosion from target (sputter rate) • Higher coating rates with identical process pressure than cathode sputtering. Atoms deposit on the substrate surface and form coatings. Sputtering targets: metals (Al,Cr,Ge,Au,Fe,Ni,Pa,Pt,Ag,Ta,W), alloys (Al-Cu,Al-Si,Al-Cu-Si,Co-

Fe,Co-Ni,Fe-Ni,Co-Ni-Cr,Ni-Cr,Ti-W,Gd-Co), metal oxides (Al2O3, BaTiO3, PbTiO3, CeO2, IN2O3-SnO2, LiNbO3, SiO2, SiO,Ta2O3,TiO2, ZrO2, HfO2…..)

Institute for Building Materials | | Monolithic glass: Physical coating by sputtering

Institute for Building Materials | |

Monolithic glass: surface refinement

By chemical and physical deposition µm thick layers of metal and metal oxide coatings can be consecutively applied in different thicknesses.

 precise manipulation of optical properties e.g. infrared impermeable layers that prevent rooms from heating up during summer and cooling down during winter without disturbing optical properties in the VIS.

Triple coating (200Å for adhesion, 2250Å for light emission,

Institute for Building Materials 2400Å for reflection) | | SEM-micrograph Characteristic parameters for coated glass

2 Thermal transmittance (Ug-value): Tells how much energy in W/(sꞏm ) is lost for a dT of 1K  small values for small heat loss (DIN EN 673)

Total energy transmittance (g-value): Percentage of energy from the incidenting sunlight that is transmitted through the glazing. 2 Portions: Direct transmission. Secondary heat radiation due to absorbed light. Shading Coefficient (b-factor): ratio of g-values of uncoated and coated glass.  Characteristic of the efficiency of sun protection Sunlight absorption: Percentage of sun radiation that is absorbed by the glazing  values > 50% demand for pre stressed glass (cast shadow). Light transmission value (LT value): percentage of sunlight in the VIS that is transmitted through the glazing. Selectivity parameter S: Ratio of LT/g.  Characteristic of a glazing with respect to light transmission. Institute for Building Materials | |

Monolithic glass: surface refinement by sputtering

Coating design Thermal insulation glass Light transmission (TL-value) 78-81% Total solar energy transmission (g-value) 60-64% Heat transfer coefficient 2 (Ug)-value 1-1.1 W/m K

Coating design Solar control glass Light transmission (TL-value) 64-68% Total solar energy transmission (g-value) 32-34% Heat transfer coefficient 2 (Ug)-value 1-1.1 W/m K

Institute for Building Materials | | Self-cleaning glass

Surface modification to prevent soiling of surfaces: 1. Water repellent hydrophobic coating: Prevents accumulation of dirt, washed off by large and fast flowing droplets. Fluoride polymers or silanes. 2. Water repellent Nano coating (hemi-spherical bumps). Super hydrophobic surfaces also repel oil (lotus effect). Embossing techniques under vacuum. 3. Photo catalytic coating: film of water (hydrophilic) + decomposition of organic dirt. Pyrolytic coated titanium oxide that decomposes with UV-light organic dirt particles, which are washed off later.

Institute for Building Materials | |

Self-cleaning glass

Institute for Building Materials | | Light-guiding glazing Summer

• Micro structured light guiding elements to deflect or reflect sunlight as needed. In combination with switchable glazing. • An insolation glass can be switched to a solar control glass. • Right now only proto types.

(SEM)-micrograph of a micro prism for light reflection. Prism distance=50 µm. Light incident from left. Institute for Building Materials | | Source: Fraunhofer Institute for solar Energy systems, Freiburg, D.

Anti-refection coatings for glazings

• Moth‘s eye effect: Micro-structuring of surfaces by embossing with structures like arrays of bumps < wave length of light or fine etching. • Anit-reflection coating: Layer of low refracting transparent material (MgF) 8% 2.5% • Quarter wave anti reflection coating: Layer of low refracting transparent material (MgF, TiO2) ( = refraction index ꞏ thickness d= λ/4). Refraction index in between glass (~1.49- 1.85) and air (= 1.00).  destructive interference of light (green as reference). 8%  1% • Alternating layers of quarter wave anti-reflection coatings (TiO2/SiO2/TiO2…): 8% 0.1%

Institute for Building Materials | | Anti-reflection coatings for glass

Institute for Building Materials | | UBS-Towers (Chicago)

Matting / Screen Printing

Varnishing (coating) with decorative or functional purpose, like mechanical / chemical protection or burst protection. Digital and screen printing for special optical effects. Organic colors or enamel colors that are burnt in. A huge diversity of polymer foils for diverse decorative or functional purposes.

Institute for Building Materials | | Matting / Screen Printing: Examples

Enamel coating: screen printing with transparent colors Strength reduction for pre-stresses glasses: heat strengthened 7040MPa Thermal local heating due to colors has to be considered.

Boehringer Ingelheim, Hagener University Pharmazeutical Feinstahl Hospital Oslo Research labs Institute for Building Materials | |

Sage-center Gateshead, England (Foster & Partners) Institute for Building Materials | | Codes in German

DIN EN 1096-1 1/1999 Beschichtetes Glas: Teil 1: Definition und Klasseneinteilung (SN EN 1096- 1/SIA 331.601) -2 5/2001 Teil 2: Anforderungen an und Prüfverfahren für Beschichtungen der Klassen A, B und S (SN EN 1096- 2/SIA 331.602) -3 5/2001 Teil 3: Anforderungen an und Prüfverfahren für Beschichtungen der Klassen C und D (SN EN 1096- 3/SIA 331.603) -4 1/2005 Teil 4: Konformitätsbewertung/Produktnorm (SN EN 1096-4/SIA 331.604)

DIN EN 15752-1 1/2008 Selbstklebende Polymerfolie. Teil 1: Begriffe und Beschreibungen DIN EN 15755-1 2/2008 Glas mit selbstklebender Polymerfolie – Teil 1: Begriffe und Beschreibung

Institute for Building Materials | |

Laminated glass: Production

Institute for Building Materials | | Laminated safety glass

At least 2 glass sheets with organic or inorganic interlayer. Interlayer materials: cast resins (transparent or colored); colorless transparent, colored or printed foils (mainly Polyvinyl-butyral (PVB), but also Ethylenvinylacetate (EVA), Polyacrylate (PA), Polymethylmethacrylate (PMMA), Polyurethane (PUR) …). Diverse combinations to produce safety glass, sound-proofing glass, security alarm glass, fire resistant glass, etc. Laminated safety glass (VSG) is made from annealed glass, heat strengthened glass and tempered glass Bonding of glass fragments - Failure of single glass sheets  Load bearing capacity after failure - Failure of all glass sheets  Load bearing capacity after failure determined by fragment size and foil properties.

Institute for Building Materials | |

Laminated safety glass • Laminated glass = only annealed glass; laminated safety glass = pre-stressed glass • Laminated safety glass from tempered glass has resistance to break-ins, gunshots, explosions … • High bending strength, impact strength and thermal shock resistance • Overhead glazing (point supports with spider fitting), glazing of railing, stair cases, cantilever, structural elements.

Overhead glazing with point Load bearing capacity after supports, Neue Messe Leipzig failure Neue Messe Leipzig Institute for Building Materials | | Laminated safety glass

Sentry glass and PVB interlayers with increased resistance with respect to creep

Institute for Building Materials | |

Laminated safety glass Important load bearing elements with laminated glass always have sacrificial sheets to protect the load bearing layers.

Rietberg Museeum, Apple Store, New Institute for Building Materials Zurich York | | Institute for Building Materials | |

Laminated glass: decorated interlayers

Coloring of casting resins: Idea Store, Institute for Building Materials | | London Integrated displays Luminescent interlayers

Institute for Building Materials | |

Laminated glass: Photovoltaic modules

• Photovoltaic modules can be used like conventional insolation glass in all common constructions. • They are a solar power plant producing up to 60 kWh /m2 and year. • Moderation of light ingress without additional shading systems • Range from semi-transparent to opaque. • Used in light roofs, facades, railings …..

Institute for Building Materials | | Glass laminates: Fire resistant glass

Glass is incombustible, but it can break due to heat. Fire resistance by one or several thermo-transformation layers that foam under heat  glass turns opaque Interlayer: alkali silicate glass (soluble glass) that contains water. For fire protection gates, glazing directed towards emergency escape routs Fire resistant glazing has to withstand fire, thermal shock from fire fighting water, reduce heat conduction, convection, heat emission and has to shield against smoke.

Institute for Building Materials | | Trösch Fireswiss Foam

Laminated glass: Security glazing

One distinguishes resistance against manual attacks (DIN EN 356), bullet attack(DIN EN 1063) and explosion pressure (DIN EN 13541). Design with polycarbonate plates for weight saving. Test against manual attack; resistance class P1A-P5A (falling ball test, 4.11kg steel ball) and axe test (P6B-P8B). Test against bullet attack depending on projectile. Test against explosion pressure in outdoor tests and shock tubes.

36mm 24mm (PC)

P8B

Institute for Building Materials | | Laminated glass: Security glazing

Institute for Building Materials | |

Laminated glass: Cold bending process Transparent bridge with glass laminate and cold bending “Sedak spherical” diameter 3m radius of curvature 15-25m (GIA 2010)

Institute for Building Materials | | All glass bridge (Thomas Heatherwick) Codes in German

DIN EN 14449 7/2005 Verbundglas und Verbund-Sicherheitsglas – Konformitätsbewertung/Produktnorm (SN EN 14449/SIA 331.407)

DIN EN ISO 12543-1 7/2008 Verbundglas und Verbund-Sicherheitsglas – Teil 1: Definitionen und Beschreibung von Bestandteilen (SIA 331.401) -2 7/2008 Teil 2: Verbund-Sicherheitsglas (SIA 331.402) -3 7/2008 Teil 3: Verbundglas (SIA 331.403) -4 7/2008 Teil 4: Verfahren zur Prüfung der Beständigkeit (SIA 331.404) -5 7/2008 Teil 5: Masse und Kantenbearbeitung (SIA 331.405) -6 7/2008 Teil 6: Aussehen (SIA 331.406)

DIN 52308 7/1984 Kochversuch an Verbundglas

Institute for Building Materials | |

Codes in German

DIN EN 15998 2/2011 Brandsicherheit, Feuerwiderstandfähigkeit – Verfahren von Glasprüfungen zur Klassifizierung

DIN EN 357 2/2005 Brandschutzverglasungen aus durchsichtigen oder durchscheinenden Glasprodukten – Klassifizierung des Feuerwiderstandes (SN EN 357/SIA 331.531)

DIN EN 356 2/2000 Sicherheitssonderverglasung, Prüfverfahren und Klasseneinteilungen des Widerstandes gegen manuellen Angriff (SIA 331.501)

DIN EN 1063 1/2000 Sicherheitssonderverglasung, Prüfverfahren und Klasseneinteilung für den Widerstand gegen Beschuss (SN EN 1063/SIA331.511)

DIN EN 13541 2/2001 Sicherheitssonderverglasung, Prüfverfahren und Klasseneinteilung des Widerstandes gegen Sprengwirkung (SN EN 13541/SIA 331.502)

DIN EN 13501 1/2001 Klassifizierung von Bauprodukten und Bauarten zu ihrem Brandverhalten - Teil 1-4 Institute for Building Materials | | Codes in German: Fire resistance

Gewährleistet den Raumabschluss gegenüber Feuer, heißen Gasen und Rauch.

Gewährleistet den Raumabschluss gegenüber Feuer, heißen Gasen und Rauch und bietet einen reduzierten Durchgang der Wärmestrahlung.

Gewährleistet den Raumabschluss gegenüber Feuer, heißen Gasen und R – Tragfähigkeit Rauch und bewirkt zusätzlich eine E – Raumabschluss I – Wärmedämmung unter Brandwirkung thermische Isolation

Institute for Building Materials | |

Insolated glazing (IG)

For 5000m25000kW solar irradiation (perpendicular) 1kW/m2

70% g-value: Moderate climate: 120 days, 8h: 3.4 MWh ≈700k€ Tropical climate: 300 days, 12h: 12.6 MWh ≈2.5Mio€

Per Megacity 100-500 of such houses!

 Optical properties of insolation glass are VERY important!

Institute for Building Materials | | Insolated glazing

Modern glazing and insolation systems • protect from climatic influences • Allow for solar heat gains, • Optimize thermal protection, • Control light and air supply autonomously • Adapt to changes (controllable, switchable, self-adapting).

• Optimize thermal and visual comport with architectonically and economically convincing solutions. • Cost effectiveness depends on user comport, energy demand of a building, durability and reliability.

Institute for Building Materials | |

IG: design The interspace can be filled by air, argon, xenon or krypton gas (for reduces heat transmission) Glass is kept at constant distance by hollow spacers (aluminum, stainless steel, polymer etc. (10-20mm thickness). Cavities of spacers are filled with desiccants, with a capacity that lasts about 30-35 years. Primary seal: Spacers are glued with Isobutylene onto the panes. Secondary seal: Panes have an additional elastic silicon seal.

Institute for Building Materials | | Insolated glazing

Coupling effect: concave and convex curved deformation of panes by: • Meteorological pressure changes. • Temperature changes. • Pressure / Temperature difference between production and installation site.

Institute for Building Materials | |

IG: Optimization of properties

From the outside: Reduction of transmission of solar irradiation, but TVIS >75 Absorption glasses, reflection coating

From inside: High reflection of RIR with low RVIS thermal insulation coating

Towards outside: reduced emission IR  metal coating

Outside: Anti-soiling coating e.g. TiO2-Coating

Institute for Building Materials | | IG: Energy balance Heat transport (4 ways)

Composition of U-values:

Institute for Building Materials | |

IG: Types Insolating glazing for heat, solar and noise protection IG with solar protection Noise protection glazing Triple thermal insolation glass coating (3)

1) Desiccant 4. Secondary seal 7) Primary seal 2) Interspace with inert gas filling 5. Panes

Institute for Building Materials 3) Metal coating 6. Spacer | | Solar protection glazing

… has to prevent solar energy from inside (total energy transmission <50%), but transmit VIS >40%. • In general 2 glass panes • Inside pane clear glass, outside pane absorption and/or reflection glass. • Reflection coating (3) on the inside surface of the outer pane, metal oxides or noble metals, depending on the wanted effect.

Institute for Building Materials | |

Thermal protection glazing

Efficiency depends on interspace dimensions, its filling and number of panes. • Has at least 3 panes. • Filled with inert gas like argon, xenon, krypton. • Glazings have high light transmission degrees for passive solar energy gain. • Thermal transmittance value standard glazing: 3.0W/(m2K); good 3-pane thermal protection glazings 0.5-0.8 W/(m2K).

Institute for Building Materials | | Thermal protection glazing

Institute for Building Materials | |

Noise protection glazing

• Noise protection can be increased by: glass mass, asymmetric buildup, large interspacing filled with heavy gas, casting resins. • Noise damping in the regime of the lower frequencies (traffic noise) • Glazing works like a mass-spring-mass system with the closed interspace.

• Coincidence frequency fg12kHz/d  different pane thicknesses.

Institute for Building Materials | | Lamitated glass with thin glass technology

Explosion protection 3 times thinner and lighter AGC Glass Insolation glass out of thin glass and polycarbonate sheets Insolating glass out of thin glass

Institute for Building Materials | |

Super insulating glass - the future of IGUs . Thin-glass-technology Goals: Low U-value: . Saving heating /cooling costs . Avoid condensation . Smaller thickness . Long service life . Construction costs + better U-value (0.3 W/(m2K)) + Weight reduction + Low-E coating

- Construction width

Institute for Building Materials | | Super insulating glass - the future of IGUs . Thin-glass-technology . Film in spacer

+ better U-values (0.2 - 0.4 W/(m2K)) + Weight reduction + Low-E coating + Less spacers needed

- Construction width - Durability? - Optical quality ?

Institute for Building Materials | |

Super insulating glass - the future of IGUs . Thin-glass-technology . Film in spacer . «warm border»

+ better U-value of the window construction (-15%)

- Durability?

Institute for Building Materials | | Super insulating glass - the future of IGUs . Thin-glass-technology . Film in spacer . «warm border» . Vacuum glazing

+ better U-value (0.9 W/(m2K)) + Low-E coating + Construction width (6-12 mm)

- Visible pillars - Durability?

Institute for Building Materials | |

Super insulating glass - the future of IGUs . Thin-glass-technology . Film in spacer . «warm border» . Vacuum glazing . Membrane glazing

+ spans up to 12m + lower U-Value because of less framing per square meter + Low-E coating

- Mechanical stability (borders)? - Durability of spacers (density)?

Institute for Building Materials | | Codes in German

DIN EN 1279-1 8/2004 Mehrscheiben-Isolierglas; Teil 1: Allgemeines, Masstoleranzen und Vorschriften für die Systembeschreibung (SN EN 1279-1/SIA 331.351) -2 6/2003 Teil 2: Langzeitprüfverfahren und Anforderungen bezüglich Feuchtigkeitsaufnahme (SN EN 1279-2/SIA 331.352) -3 5/2003 Teil 3: Langzeitprüfverfahren und Anforderungen bezüglich Gasverlustrate und Grenzabweichungen für die Gaskonzentration (SN EN 1279-3/SIA 331.353) -4 10/2002 Teil 4: Verfahren zur Prüfung der physikalischen Eigenschaften des Randverbundes (SN EN 1279-4/SIA 331.354) -5 11/2010 Teil 5: Konformitätsbewertung (SN EN 1279-5/SIA 331.355) -6 10/2002 Teil 6: Werkseigene Produktionskontrolle und Auditprüfung (SN EN 1279-6/SIA 331.356)

DIN EN 12758 4/2011 Glas und Luftschalldämmung – Produktbeschreibungen und Bestimmung der Eigenschaften (SN EN 12758/SIA 331.161)

Institute for Building Materials | |

Functionalizing the interspace: Increased thermal insolation

• Insolation glass with capillary plate filling the interspace • Consists of honeycombed, transparent or white pipes • Light is guided deep into the inside. At the same time solar protection.

• Decreases thermal loss to Ug-values of 0,4 W/m²K, and increases illumination of rooms (transmission 60-21%). • Partial sight along the axis of the tubes.

Institute for Building Materials | | Functionalizing the interspace: Increased thermal insolation

• Insolation glass with aerogel filled interspace. • Useful, when diffraction is required along with excellent heat and noise insolation. • Aerogel is a highly porous solid (95%air !!!, lightest known solid) with particular physical properties: Excellent thermal insolation, diffuse light transmission, good noise damping, moisture resistant, UV-light stable, eco-friendly and incombustible.

Institute for Building Materials | |

Functionalizing the interspace : Adaptive shading

Wood in the interspace gives natural feeling.

Metal constructions can be made adaptive.

General problems: • Heating of the interspace • Maintenance of moving parts • Robustness L‘Institut du Monde Arabe, Paris

Insolation glazing with wood

Facade elements With wood veneer Institute for Building Materials Seewürfel| in Zürich| Functionalizing the interspace : Shading

Reflection at fixed, manually or automatically adjusted lamellas. Lamellas with different profiles, materials and colors. Direction selective mirrors are a compromise between solar protection and light demand.

Institute for Building Materials | |

Functionalizing the interspace : Fire protection

High fire protection by gel fillings with soluble glass. Glass panes fail by thermal stresses and gel leaks and foams  splinters are bound in foam and opaque foam glass efficiently shields heat.

Institute for Building Materials | | Functionalizing the interspace: Adaptive glazing

Thermo-tropic Glazing: Change of the diffraction index of a material as function of temperature  opaqueness sets in Effect can be obtained by diverse material classes (Hydro gels, polymer blends, micro encapsulated paraffin). Autonomous solar protection with phase separating, thermo-tropic layers.

Institute for Building Materials | |

Functionalizing the interspace: Adaptive glazing

PDLC (Polymer-Dispersed Liquid Crystal) Liquid crystal layer has direction dependent (anisotropic) diffraction indexes Without electricity, liquid crystals are arbitrarily oriented and light gets scattered (diffuse transmission). With electricity, crystals orient themselves and the glass gets transparent along the orientation line Switchable transparency for media facades, conference rooms, toilets, etc…

Institute for Building Materials | | Functionalizing the interspace: Adaptive glazing Electrochromic Glazing: • Optical properties can be changed by changing charge carriers. • Tungsten oxide can be used to get an intense blue color  transmission is continuously switchable • Heating of the glazing due to high absorption must be considered.

Institute for Building Materials | |

Functionalizing the interspace: Adaptive glazing

For photochromic glazing free charges are produced by incidenting light. For photo-electrochromic glazing a color sensitive solar cell is used. The shading is regulated by the produced electricity (open=colored). Thermochromic layers change their color from certain temperatures on. Example vanadium oxide at 68°C). SPD-glazing similar to PDLC-systems, only that the aligned particles strongly absorb in one direction. For gaschromic galzing the color change is due to hydrogen that is produced at the catalyst layer. Photochromic Photo-elektrochromic Suspended-Particel Devices (SPD)

Institute for Building Materials | | Functionalizing the interspace: Adaptive glazing SPD-glazing Photoelektrochromic prototype

Gaschromic glazing at different shading states

Institute for Building Materials | |

Functionalizing the interspace: Adaptive glazing

Walkable, elektro-chromic glazing (reeding room Saxon Library At rest

Institute for Building Materials | | Channel shaped glass Channel shaped glass is mold glass; U-profiles with thickness 6-7mm but up to 7.5m long. Single or double wall facade of , sports or recreational buildings.

Single walled Flange outside

Single walled Flange inside

Sheet pile wall interlocking

Sheet pile wall Stringed together

Double wall with pairwise flanges

Double wall with staggered flanges

Institute for Building Materials | |

Codes in German DIN EN 572 -7 9/2004 Teil 7: Profilbauglas mit oder ohne Drahteinlage DIN EN 15683-1 7/2007 Thermisch vorgespanntes Kalknatron-Profilbau- Sicherheitsglas: Teil 1: Definition und Beschreibung -2 7/2007 Teil 2: Konformitätsbewertung/Produktnorm DIN EN 1288-4 9/2000 Teil 4: Prüfung von Profilbauglas (SN EN 1288-4/SIA 331.174)

Institute for Building Materials | | Glass-blocks and glass pavers

Glass blocks are produced from two mold glass products, that are fused air-tight at high temperature. Cooling results in low pressure in the cavity  heat and noise transmission is increased, condensate formation is hindered. Solid glass blocks are mold glass as well.

Institute for Building Materials | |

Glass brick walls

Institute for Building Materials | | Concrete Glass

• Concrete glass is defined by the combination of glass, concrete and reinforcement  concrete glass is a load bearing structure. • It has to be entirely embedded in concrete with steel reinforcement. (Precast element). • One distinguishes between (DIN 4243): -Pre-cast element with live load of max 5,0 kN/m2 (indirect light, wall element). -3D structures with DIN 1045 (shell and tiled slab)) only with cylindrical glass that spans the entire thickness. -In special cases elements accessible by vehicles. • Pre-cast elements are used for inside and outside walls, partitioning walls, etc. • Glass bricks are available for all fire resistance classes.

Institute for Building Materials | |

Glass pavers Concrete glass with Hollow blocks

Concrete glass with solid blocks

Concrete glass accessible with vehicles

Institute for Building Materials | | Codes in German

DIN EN 1051-1 4/2003 Glassteine und Betongläser; Teil 1: Begriffe und Beschreibungen (SN EN 1051-1/SIA 331.761) -2 12/2007 Teil 2: Konformitätsbewertung/Produktnorm (SN EN 1051-2/SIA 331.762) DIN 4242 1/1979 Glasbaustein-Wände: Ausführung und Bemessung

Formen Prüfung Wandaufbau

Institute for Building Materials | |

Foam glass production Foam glass: • Casted glass is fritted and quenched with cold water  glass shatters due to thermal stresses. • Fragments are grinded and mixed with foaming agents (alkaline earth carbonates, sulfates, water or carbon). • Mixture is filled into molds and sintered at 650°C (inclusion of the foaming agent). • When heating to 900°C (>Dilatational temperature of glass) glass foams  closed-cell foam forms

• Expanded gas is CO2 and H2S (smelly when cutting). • Foam glass plates: Slow cooling to avoid cracking. • Crushed foam glass: Quenching by water.

Expanded glass: • Made from recycled glass as light aggregate For concrete.

Institute for Building Materials | | Foam glass properties

Foam glass Expanded Sintered Styrofoam glass expanded glass Type plates, Gravel Granulate plates, plates formed formed parts parts Dimensions mm 30

density kg/m3 110-220 250-600 270-1110 270 15 Bulk density kg/m3 100-185 140-530 Thermal W/mK 0.04- 0.074 0.05-0.07 0.08 0.04 conduction 0.058 strength MPa 0.5-3.5 0.9-1.6 0.8-6.5 1.2 0.2

Institute for Building Materials Cell structure | |

Foam glass products

• Foam glass is water and vapor proof due to closed cells  no barrier layer required. • It does not absorb moisture  no swelling and rotting  constant, durable heat insolation. • Inflammable (pure glass). No transmission of fire. • High compressive strength due to cell geometry. • Stable geometry with low expansion coefficient similar to steel and concrete. • Resistant against organic solvents and acids. • Easy to tool, e.g. by a saw.

Institute for Building Materials | | Foam glass products Foam glass used in: • Ground insolation inside the ground water. • Insolation of outside walls touching soil. • Insolated facades (facing with air space). • Flat roofs that can be walked on or vegetated. • Roofs with complex geometry. • Inside insolation systems and tube insulations.

DIN EN 13167 5/2010 Wärmedämmstoffe für Gebäude – Werkmässig hergestellte Produkte aus Schaumglas (CG) – Spezifikation (SN EN 13167/SIA 279.167)

Institute for Building Materials | |

Foam glass products

Foam glass gravel used as: • Heat insolation against the soil foundation. • Load bearing insolation underneath the bottom. slap, skating rinks and swimming pools. • Excellent for drainage zones ground underneath lawns, sports fields etc. • Frost-resistant, light insolating filling on top of basement garages.

Institute for Building Materials | | Expanded glass products

Filling and< aggregates for light-weight concrete. =0.12-0.8W/(mK) (concrete = 2.3W/(mK)) strength 1-85MPa.

Light mortar or light plaster for increased heat insolation.

Sintered expande glass as building block, moise protection panels or roller shutter casing.

Expanded glass layers for insolation purposes on precast elements. Applied wet-in-wet.

Institute for Building Materials | |

Fiber glass One distinguishes between textile fiber glass and insolation fiber glass Textile fiber glass: infinitely long fibers of high quality (example 1893)  Drawing process Insolation fiber glass: Short fibers with variable Thickness (1930) often from recycled glass  Jet blowing / Centrifuge process

Institute for Building Materials | | Textile fiber glass production: Drawing process Rod drawing process: Several glass rods are vertically fixed, the lower end is melted and due to gravity a drop departs with a in its wake.  discontinuous process.

Nozzle drawing process: Melting pot made of platinum 100-800 orifices at the bottom (Ø1-2mm) from where at 25-50m/s speed fibers are vertically pulled downward coated and coiled.  continuous process

Institute for Building Materials | |

Insolation fiber glass production Centrifugal glass wool process: • A rotating centrifugal ring with perforated surface is filled with liquid glass. • Glass drops are ejected from the ring and draw fibers in their wake. • Further defibration by an air-stream of an air/gas burner. • Slug-free sort glass fibers for insolating materials are obtained. • Polymer resins are used to glue the filaments. • Today most important production process for insolating glass.

Institute for Building Materials Centrifugal glass woll process (TEL) TEL spinner | | Insolation fiber glass production

Jet blowing process: • Glass jet is accelerated and defibrated by high pressure. • Fibers are torn into very short pieces. very fine, short fibers

TOR process

Ejecting glass from Institute for Building Materials the platinum pot. | |

Fiber glass compositions

E-glass (E=electric): Standard fiber with market share of ~90%, can be attacked by alkali environment. S-glass (S=strength): Fiber with increased chemical resistance. R-glass (R=resistant): Fiber with increased strength and resistance. C-glass (C=): Fiber with particularly high corrosion resistance. ECR-glass (E-glass corrosion resistant): acid resistant e-glass. D-glass (D=dielectric): Fiber with low dielectric loss factor. AR-glass (AR=alkali resistant): Fiber for use in the alkali environment of concrete; Enriched with

zirconium oxide (ZrO2).

Mass loss for different glass compositions when stored in saturated cement solution (pH=12.9, T=80°C, t=22hours)

Institute for Building Materials | | Fiber glass products: Building membranes

• Polymer coated glass fabrics (PTFE, PVC) • Tear-resistant, highly loadable membrane when loaded in fiber direction • Example: Roof of the Olympia stadium in Berlin.

Institute for Building Materials | |

Fiber glass rebar Produced in the pulltrusion process: high fiber volume fraction (uni-directional) Everywhere when metals would be problematic.(Transformer stations, corrosive environments, etc.) High strength at low stiffness. No plastic deformation

Institute for Building Materials | | Fiber

Coarse textile meshes of zirconium rich AR-glass Additional strengthening of existing structures. Precast fabrication Strengthening for crack stabilization of slabs and plaster

Institute for Building Materials | |

Glass fiber reinforced structures (GFRP) GFRP Pontresina Bridge, Switzerland (1997) GFRP bridge in Schwerin: GFRP profiles

GFRP Eyecatcher Building Basel (1998)

Institute for Building Materials | | Glass wool

Glass wool isolations are made of insolation fiber glass and an organic binder that forms a network and thus a compact material. Yellow color by polymeric binder (Phenolic-, urea- and furan- formaldehyde resins). Also starch based binders. For the insolation of buildings and roofs. In various forms with paper, wire, bitumen paper, or aluminum foil as plates, for wrapping pipes etc.

Institute for Building Materials | |

Codes in German for adhesive bondings

DIN EN 13022-1 7/2010 Geklebte Verglasungen - Teil 1: Glasprodukte für SSG-Systeme – Einfach- und Mehrfachverglasungen mit und ohne Abtragung des Eigengewichtes (SN EN 1322-1/SIA 331.701) -2 7/2010 Teil 2: Verglasungsvorschriften (SN EN 1322-2/SIA 331.702) DIN EN 15434 7/2010 Produktnorm für lastübertragende und / oder UV- beständige Dichtstoffe (für geklebte Verglasungen und/oder Isolierver-glasungen mit exponierten Dichtungen) (SN EN 15434/SIA 331.703)

Institute for Building Materials | | Codes in German for glass testing

Thermisch: DIN ISO 7991 2/1998 Bestimmung des mittleren thermischen Längenausdehnungskoeffizienten DIN EN 673 4/2011 Bestimmung des Wärmedurchgangskoeffizienten (U-Wert) – Berechnungsverfahren (SN EN 673/SIA 331.152) DIN EN 674 1/1999 Bestimmung des Wärmedurchgangskoeffizienten (U-Wert) – Verfahren mit dem Plattengerät (SN EN 674/SIA 331.153) DIN EN 675 1/1999 Bestimmung des Wärmedurchgangskoeffizienten (U-Wert) – Wärmestrommesser-Verfahren (SN EN 675/SIA 331.154)

Chemisch: DIN 52340-1-11 11/1997 Chemische Analyse von ungefärbten Kalk-Natron-Gläsern DIN 12116 3/2001 Beständigkeit gegen eine siedende wässrige Salzsäurelösung DIN 52308 7/1984 Kochversuch an Verbundglas

Optisch: DIN EN 12898 4/2001 Bestimmung des Emissionsgrades (SN EN 12898/SIA 331.156) DIN 52314 11/1977 Bestimmung des spannungsoptischen Koeffizienten im Zugversuch DIN EN 410 4/2011 Bestimmung der lichttechnischen und strahlungsphysikalischen Kenngrössen von Verglasungen (SIA 331.151) DIN EN 571-1 1997-03 Zerstörungsfreie Prüfung - Eindringprüfung - Teil 1: Allgemeine Grundlagen

Institute for Building Materials | |

Codes in German for glass testing

Mechanisch: DIN EN 12603 4/2003 Bestimmung der Biegefestigkeit von Glas, Schätzverfahren und Bestimmung der Vertrauensbereiche für Daten mit Weibull-Verteilung (SN EN 12603-1) DIN EN 1288-1 9/2000 Bestimmung der Biegefestigkeit von Glas; Teil 1: Grundlagen (SN EN 1288-1/SIA 331.171) -2 9/2000 Teil 2: Doppelring-Biegeversuch an plattenförmigen Proben mit grossen Prüfflächen (SN EN 1288-2/SIA 331.172) -3 9/2000 Teil 3: Prüfung von Proben bei zweiseitiger Auflagerung (SN EN 1288-3/SIA 331.173) -4 9/2000 Teil 4: Prüfung von Profilbauglas (SN EN 1288-4/SIA 331.174) -5 9/2000 Teil 5 Doppelring- Biegeversuch an plattenförmigen Proben mit kleinen Prüfflächen (SN EN 1288-5/SIA 331.175) DIN EN 12600 4/2003 Pendelschlagversuch, Verfahren für die Stossprüfung und Klassifizierung von Flachglas (SN EN 12600/SIA 331.181) DIN 52 338 9/1985 Kugelfallversuch für Verbundglas DIN EN 13049 8/2003 Belastung mit einem weichen, schweren Stosskörper: Prüfverfahren, Sicherheitsanforderungen und Klassifizierung (SN EN 13049/SIA 331.058) DIN EN 15998 2/2011 Brandsicherheit, Feuerwiderstandfähigkeit – Verfahren von Glasprüfungen zur Klassifizierung DIN 52299, Normentwurf, 1993 Bestimmung der Oberflächendruckspannung von thermisch vorgespanntem Glas DIN 52324 1984 Prüfung von Glas; Bestimmung der Transformationstemperatur DIN 52337 9/1985 Prüfverfahren für Flachglas im Bauwesen; Pendelschlagversuche DIN 52349 1977 Bruchstruktur von Glas für bauliche Anlagen

Institute for Building Materials | | Determining bending strength (DIN 1288 1-5)

• Compression test with pressure ring  edge under compression • Additional pressure for large specimen • Circular or quadratic specimen • Evaluation via DIN EN 12603: Weibull analysis

high deformation

Institute for Building Materials | |

Falling ball test for laminated glass (DIN 52 338)

Specimen dimensions 500x500mm. Impactor: Ball bearing steel ball 63.5mm diameter (~ 1030g). 5 specimen that are not allowed to be penetrated. Increasing drop height up to 5m.

Institute for Building Materials | | Pendulum impact test (DIN 12600)

Specimen size 876x1938mm, Impactor: weight 50kg, 2 rubber tires 4 specimen that are not allowed to be penetrated Tests with increasing drop height (190,450,1200mm)

Institute for Building Materials | |

Structural testing

Heat strengthened glass Tempered glass

Institute for Building Materials | | Structural testing

Heat strengthened glass Tempered glass

Institute for Building Materials | |

Teaching goals glass products: Sheet glass Glasses types pre-stressing coating testing Laminated glass protective glass You will Insolation glass Hollow glass Foam glass … learn to categorize glass products Textile glass …get an overview on what is possible with glass

…be amazed on the large variety of glass products for architectural purposes

… get not know valid codes and test procedures for glass products

Institute for Building Materials | | Thank you for your attention.

Institute for Building Materials | 09.09.2013| 121