NMR Studies on Li+, Na+ and K+ Complexes of Orthoester Cryptand O-Me2-1.1.1

Total Page:16

File Type:pdf, Size:1020Kb

NMR Studies on Li+, Na+ and K+ Complexes of Orthoester Cryptand O-Me2-1.1.1 Int. J. Mol. Sci. 2015, 16, 20641-20656; doi:10.3390/ijms160920641 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article NMR Studies on Li+, Na+ and K+ Complexes of Orthoester Cryptand o-Me2-1.1.1 René-Chris Brachvogel, Harald Maid and Max von Delius * Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Henkestr. 42, 91054 Erlangen, Germany; E-Mails: [email protected] (R.-C.B.); [email protected] (H.M.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +49-9131-85-22946; Fax: +49-9131-85-26864. Academic Editor: John Hardy Received: 10 July 2015 / Accepted: 24 August 2015 / Published: 31 August 2015 Abstract: Cryptands, a class of three-dimensional macrobicyclic hosts ideally suited for accommodating small guest ions, have played an important role in the early development of supramolecular chemistry. In contrast to related two-dimensional crown ethers, cryptands have so far only found limited applications, owing in large part to their relatively inefficient multistep synthesis. We have recently described a convenient one-pot, template synthesis of cryptands based on O,O,O-orthoesters acting as bridgeheads. Here we report variable-temperature, 1H-1D EXSY and titration NMR studies on lithium, sodium, and potassium complexes of one such cryptand (o-Me2-1.1.1). Our results indicate that lithium and sodium ions fit into the central cavity of the cryptand, resulting in a comparably high binding affinity and slow exchange with the bulk. The potassium ion binds instead in an exo fashion, resulting in relatively weak binding, associated with fast exchange kinetics. Collectively, these results indicate that orthoester cryptands such as o-Me2-1.1.1 exhibit thermodynamic and kinetic properties in between those typically found for classical crown ethers and cryptands and that future efforts should be directed towards increasing the binding constants. Keywords: supramolecular chemistry; cryptands; orthoesters; dynamic covalent chemistry; NMR spectroscopy; host-guest complexes Int. J. Mol. Sci. 2015, 16 20642 1. Introduction Crown ethers (macrocyclic oligomers of ethylene glycol) [1,2] and cryptands (bicyclic structures made up of oligoethylene glycol arms and trialkylamine bridgeheads) [3–6] are iconic supramolecular hosts that through their interaction with small guest ions have contributed significantly to our current understanding of non-covalent interactions. The archetypal guests complexed by these hosts are alkali metal ions and the kinetics, as well as the thermodynamics of this association process, have been comprehensively studied and reviewed [7]. Prior to 2015, only few studies reported significant variations to the crucial bridgehead architecture of cryptands. For example, Coxon and Stoddart have described the multi-step synthesis (total yield less than 1%) of a 1.1.1-tris(hydroxymethyl)ethane- capped cryptand that exclusively possesses oxygen donor atoms [8]. Parsons and coworkers have synthesized related, yet less symmetric, macrobicycles in which two glycerol motifs act as bridgeheads [9–11]. Saalfrank and coworkers have self-assembled metallocryptates in which iron ions act as bridgeheads and a mix of nitrogen and oxygen donors is available for cation binding [12,13]. Lehn and Nelson have prepared tripodal imine-based bimetallic cryptates, featuring mainly nitrogen donors [14–17] and Voloshin, as well as others have reported studies on kinetically-inert “clathrochelates”, in which three glyoxime-type ligands are capped by borate bridgeheads [18–21]. We have recently described a one-pot, template synthesis of monometallic cryptates based on O,O,O-orthoester bridgeheads [22]. As shown in Figure 1, both the unique structural (tripodal geometry) [23] and dynamic (acid-catalyzed exchange with alcohols) [24] features of orthoesters are responsible for the remarkable efficiency of this self-assembly process. Due to the fact that this new class of cryptands is constitutionally dynamic in the presence of acid and the cage structure can be disintegrated at low pH, we anticipate that rather unique curiosity-driven (subcomponent self-sorting and systems chemistry), as well as application-oriented (controlled guest release and drug delivery), studies can be pursued with this new class of compounds. However, to engage in such endeavors, a detailed knowledge of the properties of these compounds and their accommodation of guest ions is needed. In our initial communication on the sodium-templated self-assembly of orthoester cryptates [22], we did only report preliminary data on the thermodynamics and kinetics of the binding of different metal ions with orthoester cryptand o-Me2-1.1.1. Herein, we report more comprehensive physicochemical data and we discuss the implications of our findings on future research directions. 2. Results and Discussion Four compounds had to be prepared to carry out the NMR studies described herein: o-Me2-1.1.1, + − + − + − [Na ⊂o-Me2-1.1.1]BArF , [Li ⊂o-Me2-1.1.1]TPFPB and [K •o-Me2-1.1.1]BArF . As shown in + − Figure 1, cryptate [Na ⊂o-Me2-1.1.1]BArF was prepared in 67% yield using the templated self-assembly reaction (reaction scale typically 50 mg in respect to isolated product). Cryptand o-Me2-1.1.1 was + − obtained by treating a chloroform solution of [Na ⊂o-Me2-1.1.1]BArF with anion exchange resin Lewatite® MP-64, which led to the precipitation of NaCl, along with a solution of the desired empty cage (reaction scale typically 10 mg in respect to product; due to its high sensitivity to acid-catalyzed hydrolysis, cryptand o-Me2-1.1.1 is best freshly prepared). The lithium and potassium complexes + − + − [Li ⊂o-Me2-1.1.1]TPFPB and [K •o-Me2-1.1.1]BArF , respectively, were obtained by titration of Int. J. Mol. Sci. 2015, 16 20643 the corresponding metal salts to cryptand o-Me2-1.1.1. For details regarding these syntheses, please refer to the experimental section. Figure 1. Synthesis route for the different alkali metal complexes. (i) 5% TFA, MS 4 Å, CDCl3 (10 mM in respect to NaBArF (sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate)), ® RT; (ii) Lewatit MP-64 anion exchange resin, CDCl3, 6h, RT; (iii) 1.0 equiv. LiTPFPB (lithium tetrakis(pentafluorophenyl) borate ethyl etherate), CDCl3, RT; (iv) 1.0 equiv. KBArF (potassium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate), CDCl3, RT. Figure 2 gives an overview of the 1H NMR spectra of the different investigated alkali metal complexes in chloroform. The “empty” cryptand o-Me2-1.1.1 exhibits a singlet at 1.43 ppm and a multiplet at 3.73 ppm (Figure 2a). Fundamental differences were observed in the spectra that were obtained when 0.5 equivalents of different metal salts (NaBArF, LiTPFPB, KBArF) were added to o-Me2-1.1.1 via titration. For the sodium and lithium complexes (Figure 2b,c), we observed NMR spectra indicative for slow cation exchange (different sets of signals for the cryptates and for the cryptand), whereas fast exchange was observed for the potassium complex (one average signal set, see Figure 2d). These results indicate at a qualitative level that the kinetics for the process of one metal ion hopping from one orthoester cage into another are significantly slower for lithium and sodium ions than for potassium ions. To investigate whether this seemingly drastic difference in the kinetics of cation exchange is also reflected in the thermodynamic binding strength, we performed 1H NMR titrations in solvent acetonitrile. This solvent was chosen because all studied metal salts were soluble therein and because it facilitated fast cation exchange on the NMR timescale, so that binding isotherms could be obtained. Using 1D EXSY [25] (exchange spectroscopy) and VT (variable temperature) NMR spectroscopy we also studied the kinetics of cation exchange at a quantitative level. These measurements are described for each alkali metal individually in Sections 2.1 to 2.3, while Section 2.4 discusses the effect of different counter-anions, and Section 2.5 will provide an overview and a discussion of the results. Int. J. Mol. Sci. 2015, 16 20644 1 Figure 2. Partial H NMR (400 MHz, 298 K, CDCl3) stack plot; (a) only o-Me2-1.1.1; + − (b) 1:1 mixture of o-Me2-1.1.1 and [Na ⊂o-Me2-1.1.1]BArF ; (c) 1:1 mixture of o-Me2-1.1.1 + − + and [Li ⊂o-Me2-1.1.1]TPFPB ; and (d) 1:1 mixture of o-Me2-1.1.1 and [K •o-Me2-1.1.1] BArF−. *: Peaks in grey color correspond to water. + − 2.1. Thermodynamic and Kinetic Properties of [Na ⊂o-Me2-1.1.1]BArF In previously-published NMR titration experiments [22], we treated empty cryptand o-Me2-1.1.1 with NaBArF in solvent CDCl3 (saturated with D2O). Under these conditions, we observed slow exchange on the NMR time scale and we could show by competition experiments with classic cryptand [2.2.1] and crown ether 15-crown-5 that the binding constant for this orthoester cryptand lies in between the binding constants for the two competing classic macro(bi)cyclic hosts. To obtain more meaningful thermodynamic information on metal binding, we proceeded to titrate a solution of NaBArF (0 to 1000 mol %) to o-Me2-1.1.1 in solvent CD3CN (Figure 3a). In this case, fast exchange on the NMR time scale allowed a quantitative analysis of the system’s thermodynamics. By fitting the data of the binding isotherm, using program HypNMR [25], we were able to determine the binding constant of the complex. Interestingly, an excellent fit of the data could only be obtained when both a 1:1 and a 1:2 complex was taken into account (“1:2” indicating one metal and two −1 cryptands). As shown in Figure 3b, the resulting association constants (KA, Na) in CD3CN are 1330 M −1 (K1) for the formation of the 1:1 complex and 10 M (K2) for the equilibrium between the 1:1 and the 1:2 complex [26].
Recommended publications
  • Chapter V Host-Guest Complexes with Crown Ethers and a Cryptand
    Chapter V Host-Guest Complexes with Crown Ethers and a Cryptand V.1 Introduction A host-guest complex is a supramolecular assembly involving coordination of a receptor and a substrate by way of molecular recognition of mutually complimentary moieties. The area of supramolecular assemblies was discussed in Chapter I. This chapter discusses the specific area of host-guest complexation of crown ethers and a cryptand (receptors) with various secondary ammonium ion guests (substrates). Determination of stoichiometry and association constants using Nuclear Magnetic Resonance (NMR) spectroscopy are discussed for many of the systems. V.1.1 Crown Ether Complexes V.1.1.1 Historical Significance Since Pedersen's discovery that crown ethers complexed alkali metals,1,2 crown ethers have been the cornerstone of host-guest chemistry, a term first introduced by Cram.3,4 Several reviews of complexes between crown ethers and molecular guests, both neutral and charged have been published.5-11 Most crown ether complexes investigated were with alkali metals, but several small organic cations were also investigated as guests. Beyond the simple crown ether, crown ether moieties have been incorporated into larger molecules, such as lariat-crown ethers, oligomers, polymers, and their three- dimensional analogs, cryptands and spherands, which have been complexed with several smaller molecules and metal ions. In 1967, Pedersen reported the first binding ability of crown ethers with dibenzo- 18-crown-6 (V-1, DB18C6) and a potassium cation.1,2 The host was defined as an ionophore. Ionophores are compounds that can bind and transport cations.12 Pedersen also noticed that DB18C6 was not very soluble in methanol alone, but was readily 94 soluble in methanol in the presence of sodium salts.
    [Show full text]
  • An Equilibrium and Kinetic Study of Cryptand, Lariat Ether And
    ao'\ q AI\ or EQUILIBRIUM AND KINETIC STUDY OF CRYPTAND, LARIAT ETHER AND FLUORESCENT ZINC(II) COMPLEXES by Theo Rodopoulos B.Sc.(Hons.) (Adelaide) This thesis is presented for the degree of Doctor of Philosophy Department of Chemistry University of Adelaide September,1993 \n,^n À".1 r{au¡ (iÐ C ontents Contents ll Abstract v vll Acknowledgements Abbreviations. ix Chapter 1: Cryptands, Lariat Ethers and their Complexes............1 1.1 General Introduction......... ........1 1.2 Structural Aspects of Cryptates and Lanat Ether Complexes...8 1.3 Applications of Macrocyclic Chemistry....... .........20 References 22 Chapter 2: Equilibrium Studies of Cryptates and Lariat Ether Complexes 28 2.1 Introduction 28 2.2 Stability Constant Determination Techniques........... 37 2.2.1 The Potentiometric Titration Technique......... 31 2.2.2 The pH-Metric Titration Technique .49 2.3 Results and Discussion.... .52 2.3.L Complexation of Monovalent Metal Ions by the Cryptands CZLI and C21C5 in Trialkyl Phosphate So1vents...................52 2.3.2 Complexation of Alkali and Ag(I) Metal Ions by the Lariat Ethers BHE-C2l and BHE-C22 in Non-Aqueous Solvents.....60 2.3.3 Protonation of BHE-C2l and BHE-Czz in Aqueous Solution 69 2.3.4 Complexation of Divalent Metal Ions by the Lariat Ethers BHE-C21 and BHE -C22 in Aqueous Solution........... ............1 I References 77 Chapter 3: Metal Ion Exchange on Cryptates and Lariat Ether C omplexes 82 3.1 Introduction 82 3.2 Results and Discussion.... 88 3.2.L Exchange Kinetics of Na+ on [Na.CZIt1+ 88 3.2.2 Exchange Kinetics of Li+ on [Li.C2lCs]+ 92 3.2.3 Qualitative Study of the Exchange Kinetics for [Li.C2l1]+ and [Na.C2 1 Cs]+ in Trialkyl Phosphate So1vents...........
    [Show full text]
  • Physical Organic Chemistry
    Physical organic chemistry Edited by John Murphy Generated on 24 September 2021, 10:07 Imprint Beilstein Journal of Organic Chemistry www.bjoc.org ISSN 1860-5397 Email: [email protected] The Beilstein Journal of Organic Chemistry is published by the Beilstein-Institut zur Förderung der Chemischen Wissenschaften. This thematic issue, published in the Beilstein Beilstein-Institut zur Förderung der Journal of Organic Chemistry, is copyright the Chemischen Wissenschaften Beilstein-Institut zur Förderung der Chemischen Trakehner Straße 7–9 Wissenschaften. The copyright of the individual 60487 Frankfurt am Main articles in this document is the property of their Germany respective authors, subject to a Creative www.beilstein-institut.de Commons Attribution (CC-BY) license. Physical organic chemistry John A. Murphy Editorial Open Access Address: Beilstein J. Org. Chem. 2010, 6, 1025. WestCHEM, Department of Pure and Applied Chemistry, University of doi:10.3762/bjoc.6.116 Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K Received: 01 November 2010 Email: Accepted: 01 November 2010 John A. Murphy - [email protected] Published: 03 November 2010 Guest Editor: J. Murphy © 2010 Murphy; licensee Beilstein-Institut. License and terms: see end of document. Physical organic chemistry – the study of the interplay between I am privileged to act as Guest Editor for this Thematic Series structure and reactivity in organic molecules – underpins of the Beilstein Journal of Organic Chemistry, and hope that organic chemistry, and we cannot imagine organic chemistry as you enjoy the papers that form this issue. I am grateful to the a subject without knowledge of mechanism and reactivity.
    [Show full text]
  • Stable Lanthanide Cryptates As Building Blocks for Solid Phase Peptide Synthesis - Synthesis, Functionalization and Photophysical Properties
    Stable Lanthanide Cryptates as Building Blocks for Solid Phase Peptide Synthesis - Synthesis, Functionalization and Photophysical Properties Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften der Fakultät für Chemie und Biochemie der Ruhr-Universität Bochum vorgelegt von M.Sc. Nicola Alzakhem Bochum, Dezember, 2012 Die vorliegende Arbeit wurde von Dezember 2008 bis Dezember 2012 am Lehrstuhl für Anorganische Chemie I der Ruhr-Universität Bochum angefertigt. Referent: Dr. Michael Seitz Korreferent: Prof. Dr. Martin Feigel To my parents Danksagung Ich danke allen, die mich durch ihre Hilfsbereitschaft und Interesse unterstützt haben, insbesonders: Dr. Michael Seitz für die Vergabe des interessanten Themas und die Einführung in die „Lanthanide Chemistry“. Ich danke ihm für sein entgegengebrachtes Vertrauen und jede wissenschaftliche Diskussion. Jede Phase dieser Arbeit wurde von ihm professionell und motiviert begleitet. Herrn Prof. Metzler-Nolte für die Aufnahme in seine Gruppe, seine Freundlichkeit und sein Bereitstellen von Analysemöglichkeiten in seinem Arbeitskreis. Herrn Prof. Martin Feigel für seine freundliche Übernahme des Korreferates. Herrn Dr. Klaus Merz und Mariusz Molon für die Messungen der Röntgenstrukturanalysen. Frau Andrea Ewald für das Messen zahlreicher ESI-Massenspektren. Jessica Wahsner, Tuba Güden-Silber und Christine Doffek für die außerordentlich tolle Zusammenarbeit und für das Korrekturlesen. Ein besonderer Dank geht an Jessica für ihr Dasein und für ihr offenes Ohr bei Problemen und ihren guten Rat. Mit Jessica habe ich problemlos den Arbeitsplatz geteilt und sie war eine wunderbare Nachbarin. Desweitern möchte ich mich bedanken bei dem gesamten jetzigen und vorherigen Team der ACI für die freundliche Arbeitsatmosphäre. Besonderer Dank geht an David Köster, Lukasz Raszeja, Johanna Niesel, Nina Hüsken und Jan Dittrich für die besondere Zeit am Lehrstuhl und außerhalb der Uni.
    [Show full text]
  • Vorlesung Supramolekulare Chemie
    Prof. Dr. Burkhard König, Institut für Organische Chemie, Universität Regensburg 1 Vorlesung Supramolekulare Chemie „Beyond molecular chemistry based on the covalent bond there lies the field of supramolecular chemistry, whose goal it is to gain control over the intermolecular bond.“ Jean-Marie Lehn, noble laureate 1987 Supramolecular chemistry is not a discipline of its own. The field contains elements of organic and inorganic synthesis, physical chemistry, coordination chemistry and biochemistry. Supramolecular chemistry is the interdisciplinary approach to understand and control intermolecular, typically weak interactions in chemistry, molecular biology and physics. Molecules are made by the covalent connection of atoms. Salts are held together by ionic interactions and metals by the metallic bond. All of these bonds are very strong (1000 – 50 KJ/mol) and typically not reversible at normal laboratory conditions. However, molecules interact with each other. The weakest interactions are van-der-Waals type interactions based on spontaneous and induced dipoles. Such intermolecular interactions are the basis for the formation of cell walls, micelles, vesicles or membranes. Prof. Dr. Burkhard König, Institut für Organische Chemie, Universität Regensburg 2 Billions of amphiphilic molecules interact weakly in these systems to form macroscopic structures. The individual interactions are weak (0.5 – 5 KJ/mol) and depend on the contact area (nm2). Hydrogen bonds, dipole-dipole and charge transfer interactions have bond energies in the range of 5-50 KJ/mol that are higher, but are still significantly lower than covalent bonds. Special cases are reversible covalent or reversible coordinative bonds that have high bond strengths, but are kinetically labile. To understand intermolecular interactions, we need to take a closer look at the thermodynamics of equilibria.
    [Show full text]
  • Cationic Cryptand Complexes of Germanium(Ii) and Tin(Ii): Synthesis and Reactivity
    Western University Scholarship@Western Digitized Theses Digitized Special Collections 2011 CATIONIC CRYPTAND COMPLEXES OF GERMANIUM(II) AND TIN(II): SYNTHESIS AND REACTIVITY Jessica C. Avery Follow this and additional works at: https://ir.lib.uwo.ca/digitizedtheses Recommended Citation Avery, Jessica C., "CATIONIC CRYPTAND COMPLEXES OF GERMANIUM(II) AND TIN(II): SYNTHESIS AND REACTIVITY" (2011). Digitized Theses. 3279. https://ir.lib.uwo.ca/digitizedtheses/3279 This Thesis is brought to you for free and open access by the Digitized Special Collections at Scholarship@Western. It has been accepted for inclusion in Digitized Theses by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. CATIONIC CRYPT AND COMPLEXES OF GERMANIUM(II) AND TIN(II): SYNTHESIS AND REACTIVITY (Spine title: Cationic Cryptand Complexes of Germanium(II) and Tin(II)) (Thesis format: Integrated-Article) by Jessica C. Avery Graduate Program in Chemistry ! A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science The School of Graduate and Postdoctoral Studies The University of Western Ontario London, Ontario, Canada © Jessica C. Avery, 2011 THE UNIVERSITY OF WESTERN ONTARIO THE SCHOOL OF GRADUATE AND POSTDOCTORAL STUDIES CERTIFICATE OF EXAMINATION Supervisor Examiners Dr. K. M. Baines Dr. J. F. Corrigan Dr. B. L. Pagenkopf Dr. R. L. Linnen The thesis by Jessica C. Avery entitled: Cationic Cryptand Complexes of Germanium(II) and Tin(II): Synthesis and Reactivity is accepted in partial fulfilment of the requirements for the degree of Master of Science Date___________________________ ________________________________ Chair of the Thesis Examination Board li Abstract The synthesis, structural characterization and reactivity of cryptand complexed tin(II) cations (43-46), as well as the reactivity of a cryptand complexed germanium dication 36, are examined in this thesis.
    [Show full text]
  • A Structural and Dynamic Study of Cryptates
    2r-l"q I A Structural and Dynamlc Study of Cryptates AMIRA ABOU-HAMDAN B.Sc. (American University of Beirut) B.Sc.(Hons.) (University of Adelaide) This thesis is presented for the degree of Doctor of Philosophy Department of Physical and Inorganic Chemistry University of Adelaide July, 1990 Arnira Abou-Hamdan 1 C ontents Summary lv S tatem ent vll Acknow ledge ments v1l1 Abbreviations IX Chapter 1. General Introduction 1 Chapter 2. Structural Aspects of Cryptates 6 2.t Introduction 6 2.2 Experimental 13 2.2.1 Materials 13 2.2.2 NMR Spectroscopy 13 2.2.3 Crystallography l3 (a) X-ray Crystallography of ÍLl.C2lCslNCS l3 (b) X-ray Crystallography of [K.C2l(NCS)] 20 2.3 Results and Discussion 26 2.3.1 X-ray Crystallography 26 2.3.2 Cryptate Structure in Solution 31 (a) 13C Nun Specrroscopy 31 (b) 7ti NIr,tR Spectroscopy 38 Arnira Abou-Hamdan l1 Chapter 3. Cryprate Stabiliry 42 3.1 Introduction 42 3.2 Stability constant Determination 49 3.2.1 Determination of Cryptate Stability Constants by NMR Spectroscopy 49 3.2.2 Determination of Cryptate Stabiliry Constants by Potentiometric Titration 50 3.3 Results and Discussion 53 Chapter 4 Kinetic and Mechanistic Aspects of the Cryptates of C2ICs, C22CZ and Czll 65 4.1 Introduction 65 4.2 Kinetic Applications of NMR Spectroscopy 67 4.2.1 7Li NtvtR Spectroscopy 6l 4.2.2 23Na NMR Spectroscopy 69 4.2.3 Kinetic Applications 69 4.2.4 Lineshape Analysis 78 4.2.5 Calculation of Activation Parameters 80 4.3 Results and Discussion 82 4.3.t General Mechanistic Aspects of Cryptates 82 4.3.2 Exchange Kinetics of Li+ on [Li.C2lCs]* 84 4.3.3 Exchange Kinetics of Na* on [Na.C211]* and [Na.C2lC5]+ 94 4.3.4 Exchange Kinetics of Li+ on [Li.C22Cz]* 100 4.3.5 General Conclusions t07 Atnira Abou.-Hamdan ul Chapter 5.
    [Show full text]
  • Synthesis and Properties of Novel Cage-Functionalized Crown Ethers and Cryptands
    SYNTHESIS AND PROPERTIES OF NOVEL CAGE-FUNCTIONALIZED CROWN ETHERS AND CRYPTANDS Anna Hazlewood, B.S. Thesis Prepared for the Degree of MASTER OF SCIENCE UNIVERSITY OF NORTH TEXAS August 2001 APPROVED: Alan P. Marchand, Major Professor Paul Marshall, Committee Member Ruthanne D. Thomas, Chair of the Department of Chemistry C. Neal Tate, Dean of the Robert B. Toulouse School of Graduate Studies Hazlewood, Anna, Synthesis and properties of novel cage-functionalized crown ethers and cryptands. Master of Science (Organic Chemistry), August 2001, 138 pp., 12 tables, 20 illustrations, 92 references. A novel cryptand was synthesized which contained a 3,5-disubstituted-4- oxahexacyclo[5.4.1.02,6.03,10.05,9.08,11] dodecane “cage” moiety. In alkali metal picrate extraction experiments the cryptand exhibited high avidity towards Rb+ and Cs+, when compared with the corresponding model compound. A computational study of a series of cage-functionalized cryptands and their alkali metal-complexes was performed. The X-ray crystal structure of a K+-complexed bis-cage-annulated 20-crown-6 was obtained. The associated picrate anion was found to be intimately involved in stabilization of the host-guest complex. The interaction energy between the host-guest complex and picrate anion has been calculated, and the energy thereby obtained has been corrected for basis set superposition error. TABLE OF CONTENTS Page LIST OF TABLES .......................................................................................................... iii LIST OF FIGURES......................................................................................................... iv Chapter 1. INTRODUCTION......................................................................................... 1 2. SYNTHESIS AND ALKALI METAL PICRATE EXTRACTIONS OF A CAGE-FUNCTIONALIZED CRYPTAND ................................................. 18 3. A COMPUTATIONAL STUDY OF SOME CAGE-FUNCTIONALIZED CRYPTANDS AND THEIR ALKALI METAL COMPLEXES ................
    [Show full text]
  • Haas, CG, Jr.; Block, BP; Fernelius, WC
    Prof. Reed M. Izatt - Publication List November 24, 2020 PROF. REED M. IZATT PUBLICATIONS 1954-2008 1. Izatt, R.M.; Haas, C.G., Jr.; Block, B.P.; Fernelius, W.C. "Studies on Coordination Compounds. XII. Calculation of Thermodynamic Formation Constants at Varying Ionic Strengths"; J. Phys. Chem. 1954, 58, 1133-1136. 2. Izatt, R.M.; Fernelius, W.C.; Block, B.P. "Studies on Coordination Compounds. XIII. Formation Constants of Bivalent Metal Ions with the Acetylacetonate Ion"; J. Phys. Chem. 1955, 59, 80-84. 3. Izatt, R.M.; Fernelius, W.C.; Haas, C.G., Jr.; Block, B.P. "Studies on Coordination Compounds. XI. Formation Constants of Some Tervalent Ions and the Thorium(IV) Ion with the Acetylacetonate Ion"; J. Phys. Chem. 1955, 59, 170-174. 4. Izatt, R.M.; Fernelius, W.C.; Block, B.P. "Studies on Coordination Compounds. XIV. The Determination of Enthalpy and Entropy Values for Several Bivalent Metal Ions and Cerium(III) with the Acetylacetonate Ion"; J. Phys. Chem. 1955, 59, 235-237. 5. Izatt, R.M.; Wrathall, J.W.; Anderson, K.P. "Studies of the Copper(II)-alanine and Phenylalanine Systems in Aqueous Solution. Dissociation and Formation Constants as a Function of Temperature"; J. Phys. Chem. 1961, 65, 1914-1915. 6. Izatt, R.M.; Christensen, J.J. "Thermodynamics of Proton Dissociation in Dilute Aqueous Solution. I. Equilibrium Constants for the Stepwise Dissociation of Protons from Protonated Adenine, Adenosine, Ribose-5-phosphate and Adenosinediphosphate"; J. Phys. Chem. 1962, 66, 359-360. 7. Christensen, J.J.; Izatt, R.M. "Thermodynamics of Proton Dissociation in Dilute Aqueous Solution. II. Heats of Proton Dissociation from Ribonucleotides and Related Compounds Determined by a Thermometric Titration Procedure"; J.
    [Show full text]
  • Download Article (PDF)
    SYNTHESIS AND APPLICATIONS OF CRYPTANDS Shobhana K. Menon*, Sanjay V. Hirpara and Uma Harikrishnan Chemistry Department, School of Sciences, Gujarat University, Ahmedabad, India-380 009. ABSTRACT Cryptands find applications in many fascinating areas of chemistry, biochemistry and material science due to their architectural and functional plasticity. This review discusses in detail different methods of synthesis of the recently reported cryptands and their applications, viz. in the recognition of cations, anions and neutral molecules, as carriers in ion-transportation, as stationary phases in column chromatographic separations, as redox active material, in photophysical studies and in non-linear optics, as dopant in sol- gels and finally as structure-directing agents in synthesis. INTRODUCTION The early chemists tried to understand nature at a level that was purely molecular; they considered only structures and functions involving strong covalent bonds; the linkages that connect atoms to form molecules. But, with the understanding of the lock-key mechanism of enzyme action1, it was discovered that most of the biological structures are usually made from loose aggregates that are held together by weak, non-covalent interactions and are responsible for most of the processes occurring in living systems. The slow shift towards this new approach of structures held by non- covalent interactions became a new subject, "supramolecular chemistry". The term supramolecular chemistry was coined by Jean-Marie Lehn in his study of inclusion compounds and cryptands2. Lehn defined supramolecular chemistry as "The chemistry of the intermolecular bond." Just as molecules are built by connecting atoms with covalent bonds, supramolecular 233 Vol. 23, No. 4, 2004 Synthesis and Applications of Cryptands compounds arc built by linking molecules with intermolecular interactions, like vanderwaals forces, hydrogen bonding etc.
    [Show full text]
  • Supramolecular Chemistry Supramolecular Chemistry
    Supramolecular Chemistry Sources: -e-source - K.Ariga, T.Kunitake - Supramolecular Chemistry - Fundamentals and Applications - Advanced Textbook -Research papers 1 The Nobel Prize awarded to Jean-Marie Lehn, Donald J Cram, and Charles J Pedersen in 1987, for ‘development and use of molecules with structure-specific interactions of high selectivity’ and established supramolecular chemistry / as a discipline which is now being explored in various areas such as drug development sensors catalysis nanoscience molecular devices etc. 2 Supramolecular chemistry as defined by Lehn ‘chemistry beyond the molecule’…focuses on the development of functional complex architectures through non-covalent interactions. The year 2017, marked the fiftieth anniversary of the serendipitous discovery of crown ethers. Since then, the field is growing, and due to the efforts of various researchers now it is possible to have some control over the arrangement of things on a small scale. 3 4 5 Supramolecular chemistry has been defined by phrases such as ‘chemistry beyond the molecule’, ‘chemistry of molecular assemblies and of the intermolecular bond’, and ‘non-molecular chemistry’. The main objective of supramolecular chemistry is to design and develop novel functional systems by joining multiple chemical components through non-covalent interactions 6 7 Supramolecular chemistry focuses on two partly cover areas, ‘supramolecules’ and ‘molecular assemblies’. 8 …A supramolecule is a well-defined distinct system generated through interactions between a molecule (receptor or host) having convergent binding sites such as donor atoms, sites for formation of hydrogen bonds and sizable cavity, and another molecule (analyte or guest) having divergent binding sites such as hydrogen bond acceptor atoms. 9 The receptor can be a macromolecule or aggregates and the analyte may be ions (cations and anions) or molecules.
    [Show full text]
  • CHEMISTRY Paper No. 1: ORGANIC CHEMISTRY- I (Nature of Bonding and Stereochemistry) Module 11: Crown Ethers, Complexes and Cryptands
    Subject Chemistry Paper No and Title Paper 1: ORGANIC CHEMISTRY- I (Nature of Bonding and Stereochemistry) Module No and Module 11: Crown Ethers, Complexes and Title Cryptands Module Tag CHE_P1_M11 CHEMISTRY Paper No. 1: ORGANIC CHEMISTRY- I (Nature of Bonding and Stereochemistry) Module 11: Crown Ethers, Complexes and Cryptands TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction 3. Summary CHEMISTRY Paper No. 1: ORGANIC CHEMISTRY- I (Nature of Bonding and Stereochemistry) Module 11: Crown Ethers, Complexes and Cryptands 1. Learning Outcomes After studying this module, you shall be able to Learn what are ‘crown ethers’ and ‘cryptands’. Understand the structural details of crypts and crown ethers Analyze the size to cavity ratio for encapsulation of appropriate metal atom in the cavities of both crown ethers and cryptands. Learn about the synthesis, applications and uses of crown ethers and cryptands. 2. Introduction 2.1 Crypts and Crown Ethers: Introduction Crypts and crown ethers constitute an important and an interesting class of complexing ligands. Apart from metal complexes, a variety of unusual species among which 'alkalides' and 'electrides' was made possible through them and they require special mention. The crowns and crypts are enormously studied due to their increasing applications varied chemical and physical processes. Their use as biochemical models further draws greater interest towards them. 2.2 Structure of Crown ethers and Crypts: The study of crown ethers grew enormously after Pedersen’s finding of crown ethers and their abilities to bind strongly with metal ions in 1967. When the Nobel was conferred upon the three chemists Pederson, Cram and Lehn in 1987, the advances in host guest and supramolecular chemistry gained special attention.
    [Show full text]