Resilient Seated Butterfly Valves
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Restriction of Per- and Polyfluoroalkyl Substances (PFAS) Under REACH
Webinar: Restriction of per- and polyfluoroalkyl substances (PFAS) under REACH Questions and answers ECHA organised a webinar on 29 October 2020 on Restriction of per- and polyfluoroalkyl substances (PFAS) under REACH. It explained the REACH restriction process and the status of ongoing work by the Netherlands, Germany, Denmark, Sweden and Norway on a potential restriction to limit the risks to the environment and human health from the manufacture and use of per- and polyfluoroalkyl substances (PFAS). This document compiles the questions and answers from the webinar. Editorial changes have been made to improve clarity, correct spelling mistakes etc. Similar questions have been combined. The document will not be updated. For the most up-to-date advice on PFAS, contact us or refer to our support material. Disclaimer: The European Chemicals Agency and the authorities from the five countries does not accept any liability with regard to the use that may be made of the information contained in this document. Use of the information in this document remains the sole responsibility of the reader. Although, the information provided on this Q&A document has been prepared with the utmost care, possible errors or omissions cannot be excluded. The European Chemicals Agency and the authorities from the five countries does not accept any liability with regards to any such errors or omissions. P.O. Box 400, FI-00121 Helsinki, Finland | Tel. +358 9 686180 | echa.europa.eu Question Answer General process We expect to notify the proposal in ECHA's registry of intention (RoI) in the first half of 2021 and to submit the completed assessment and proposal to ECHA for opinion making in the first half of 2022. -
Valve Solutions for Pulp & Paper Applications 97.01-01
BULLETIN 97.01-01 MAY 2021 VALVE SOLUTIONS FOR THE PULP & PAPER INDUSTRY The DeZURIK Difference Throughout our 250 years of combined history, DeZURIK, APCO, and HILTON have been recognized worldwide for collaborating with customers to design and engineer valves that provide superior performance and value. Each company was founded by an innovator who set out to solve a customer’s problem application. DeZURIK’s founder, Matt DeZURIK, started designing products for the Sartell Paper Mill in 1925 that included knot boring machines, consistency transmitters and shower pipes. When he noticed that valves weren’t able to seal due to pitch build-up, he invented the first Eccentric Plug Valve – a design still in use today, dutifully solving sealing problems worldwide. Today, the DeZURIK, APCO, and HILTON brands continue the tradition of partnering with our customers in the Pulp & Paper industry to provide the newest innovations in control, gate, plug, butterfly, automatic air and check DeZURIK’s original Eccentric Plug valves. Our vision is to deliver exceptional value to our customers Valve, developed in 1925 for the Sartell Paper Mill to solve a problem by applying our valve and problem-solving expertise to improve their with pitch build-up. operational performance. Full-Featured Valves for Today Applications DeZURIK recognizes the importance that control valves can play in process control performance and productivity. That’s why DeZURIK is dedicated to control valve testing. Regulating critical aspects of control valve performance such as accuracy, hysteresis, deadband and response time ensures that DeZURIK control valves provide optimum performance and help reduce costs. DeZURIK Knife Gate Valves and V-Port Ball Valves are widely used in pulping and stock prep operations throughout the mill. -
FKM Xplor™ V9T82
TRELLEBORG SEALING SOLUTIONS FKM XploRTM V9T82 EXPLOSIVE DECOMPRESSION RESISTANT MATERIALS OUTSTANDING EXTREME LOW TEMPERATURE PERFORMANCE Explosive decompression is a major concern to the oil and gas industry. It occurs when applied system pressure is released, causing absorbed gas to expand, potentially damaging elastomer seals. Trelleborg Sealing Solutions has focused on this issue and Features and benefits presents the XploR™ range, an entire family of advanced elastomers especially developed for oil and gas applications. • Unrivalled ED restistance within its material type The portfolio includes compounds in HNBR, FKM, Aflas® and • Operating temperatures from -48°C to +200°C/-54°F to Isolast® Perfluoroelastomer, each of which demonstrates +392°F with short excursions to 210°C/+410°F best-in-class Explosive Decompression (ED) resistance for • Outstanding performance at extremely low temperatures its material type. • Exceptional mechanical performance • Low long-term compression set XploR™ V9T82 combines excellent chemical and thermal • Very good chemical compatibility properties, with outstanding low temperature capability. • Extended life in aggressive media, including the hydrocarbon It exhibits superior high pressure sealing performance in and aqueous media common within oil & gas applications ED situations, which is supported by independent institute • High modulus and high strength approval to standard test protocols. Applications When the composition of the well or conditions of the application are known, FKM XploR™ V9T82 may prove the • Separation equipment optimum and most cost-effective material for your application, • Connector systems especially when operating temperatures are extremely low. • Valves • Wellhead control equipment For further information on selecting the right compound and • Tubing hangers advice on seal specification for your individual application, • Swivel stacks on Floating Production Storage and consult your local Trelleborg Sealing Solutions marketing Offloading (FPSO) vessels company. -
Comprehensive Testing to Measure the Jtespoi^Se^Yf Jhuorocarbdn Rubber (FKM) Whanfomtank1 Waste Simulant
2t 2000 SANDIA REPORT SAND2000-032SA 5 i Unlimited Release Rrinted February 2000 Comprehensive Testing to Measure the jtespoi^se^yf JHuorocarbdn Rubber (FKM) WHanfoMTank1 Waste Simulant Paul J. Nigrey and DenniS'L. Bolton Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia'is a multiprogram laboratory operated by Sandia Corporation, a Lock'heed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000. Approved for public release; further dissemination unlimited. Sandia National Laboratories Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors. Printed in the United States of America. This report has been reproduced directly from the best available copy. -
Xyfluor Chemical Compatibility Guide
456456 Xyfluor® Chemical Compatibility Xyfluor® is a proprietary, highly fluorinated elastomer. The oxygen in the polymer backbone provides outstanding low-temperature capabilities - far better than FKM or FFKM elastomers. The polymer provides improved resistance to many harsh chemicals that can attack the hydrogen in FKM elastomers. The chemical resistance of Xyfluor® approaches but is not equivalent to FFKM elastomers. A = Swell < 10% after exposure. Suitable. B = Swell > 10% & < 20% after exposure. Generally suitable. C = Swell >20% & < 40% after exposure. May be suitable in some situations. D = Swell > 40% after exposure. Not suitable. N = Insufficient data. Test: Full immersion, Room Temperature, 3 days The information contained herein is believed to be reliable, but no representation, guarantees or warranties of any kind are made to its accuracy or suitability for any purpose. Full-scale testing and end-product performance are the responsibility of the user. CHEMICAL RATING CHEMICAL RATING acetaldehyde A amomnium phosphate A acetic acid, ammonium stearate A glacial A ammonium sulfate A hot A ammonium thiocyanate A 5% A amyl acetate A/B acetic anhydride A amyl alcohol A acetone A amyl nitrate A acetone cyanohydrin A aniline A acetyl chloride A aniline hydrochloride A acetylene gas A anti-freeze, alcohol or glycol based A acrylonitrile A aqua regia N adipic acid A argon gas A alcohol, denatured A arsenic acid A alkyl benzene A ash slurry A alkyl-arylsulphonic acid A asphalt A alumina trihydrate N barium chloride A aluminum acetate -
Hydrogen Peroxide Material Compatibility Chart from ISM and IS
ver 09-Jul-2020 Hydrogen Peroxide Material Compatibility Chart All wetted surfaces should be made of materials that are compatible with hydrogen peroxide. The wetted area or surface of a part, component, vessel or piping is a surface which is in permanent contact with or is permanently exposed to the process fluid (liquid or gas). Less than 8% concentration H2O2 is considered a non-hazardous substance. Typically encountered versions are baking soda-peroxide toothpaste (0.5%), contact lens sterilizer (2%), over-the-counter drug store Hydrogen Peroxide (3%), liquid detergent non-chlorine bleach (5%) and hair bleach (7.5%). At 8% to 28% H2O2 is rated as a Class 1 Oxidizer. At these concentrations H2O2 is usually encountered as a swimming pool chemical used for pool shock treatments. In the range of 28.1% to 52% concentrations, H2O2 is rated as a Class 2 Oxidizer, a Corrosive and a Class 1 Unstable (reactive) substance. At these concentrations, H2O2 is considered industrial strength grade. Concentrations from 52.1% to 91% are rated as Class 3 Oxidizers, Corrosive and Class 3 Unstable (reactive) substances. H2O2 at these concentrations are used for specialty chemical processes. At concentrations above 70%, H2O2 is usually designated as high-test peroxide (HTP). Concentrations of H2O2 greater than 91% are currently used as rocket propellant. At these concentrations, H2O2 is rated as a Class 4 Oxidizer, Corrosive and a Class 3 Unstable (reactive) substance. Compatibility Compatibility Compatibility Compatibility Material 10% H2O2 30% H2O2 50% -
EPDM & FKM Chemical Resistance Guide
EPDM & FKM Chemical Resistance Guide SECOND EDITION EPDM & FKM CHEMICAL RESISTANCE GUIDE Elastomers: Ethylene Propylene (EPDM) Fluorocarbon (FKM) Chemical Resistance Guide Ethylene Propylene (EPDM) & Fluorocarbon (FKM) 2nd Edition © 2020 by IPEX. All rights reserved. No part of this book may be used or reproduced in any manner whatsoever without prior written permission. For information contact: IPEX, Marketing, 1425 North Service Road East, Oakville, Ontario, Canada, L6H 1A7 ABOUT IPEX At IPEX, we have been manufacturing non-metallic pipe and fittings since 1951. We formulate our own compounds and maintain strict quality control during production. Our products are made available for customers thanks to a network of regional stocking locations from coast-to-coast. We offer a wide variety of systems including complete lines of piping, fittings, valves and custom-fabricated items. More importantly, we are committed to meeting our customers’ needs. As a leader in the plastic piping industry, IPEX continually develops new products, modernizes manufacturing facilities and acquires innovative process technology. In addition, our staff take pride in their work, making available to customers their extensive thermoplastic knowledge and field experience. IPEX personnel are committed to improving the safety, reliability and performance of thermoplastic materials. We are involved in several standards committees and are members of and/or comply with the organizations listed on this page. For specific details about any IPEX product, contact our customer service department. INTRODUCTION Elastomers have outstanding resistance to a wide range of chemical reagents. Selecting the correct elastomer for an application will depend on the chemical resistance, temperature and mechanical properties needed. Resistance is a function both of temperatures and concentration, and there are many reagents which can be handled for limited temperature ranges and concentrations. -
Bing 64 (CV) Carburetor Part 2 (Starting Carb)
Bing 64 (CV) Carburetor Part 2 (Starting Carb) In Part 1, we examined the basic prin- cipals of operation of the CV (Constant Velocity) carbu- retor. In this article we will take an in depth look into one of the most misunderstood subsystems of the carburetor, the “Starting Carb”. It is often referred to as the “choke”, however, this doesn’t properly de- scribe the operation of the Starting Carb. A choke is, really, a valve on the inlet side of a carburetor used to restrict the flow of air through the carburetor. This results in a low pressure with the intake manifold and carburetor sys- tem as a whole. This is different from the carburetor butterfly valve which is located down stream from the fuel nozzle which also restricts the airflow creating a low pressure, but only within the intake manifold. The choke valve which is located before the fuel nozzle pres- ents a low pressure to the entire carb. This low pressure, naturally draws more fuel through the carb and into the intake manifold resulting in an enriched mixture. The Figure: 1 Starting Carbure- tor in the Closed /Off position starting carburetor, on the other hand, is in fact a separate carburetor within the larger carburetor. This starting carb provides for an enriched mixture by introduc- ing addition fuel as well as air during the starting sequence. The starting carb on the CV carb is different from that incor- porated into the slide type carburetors used on the Rotax 2 stroke engines. The (Bing 54) carburetors, used on the 2 stroke engines also use a starting carb, Figure: 2 Starting Carb Exploded View but it operates in an On/Off capacity. -
New Developments in Properties for Ethylene Acrylate Polymers
18 Rubber & Plastics News • November 30, 2020 www.rubbernews.com www.rubbernews.com Technical Technical New developments in properties for ethylene acrylate polymers By Patricia Panne, Klaus Kammerer, Serge Bouvier, Ed McBride, Mark Stewart, Steve Oriani and Elias Wang Executive summary DuPont Vamac-brand ethylene acrylic elastomer (AEM) was introduced in 1975 and has been used successfully for many years in the Ethylene acrylate (AEM) polymers transportation sector, where excellent resistance to heat, engine fluids and low temperature flexibility is required. were first introduced to the elastomer With the introduction of the Vamac Ultra grades, a step-change improvement in processability, performance and customer value market more than 40 years ago. They for targeted applications has been achieved. Increasing demands for improved temperature stability led recently to the development are non-crystalline copolymers of eth- of the VMX5000 series of pre-compounds to offer compounds in applications with a 10-15°C higher heat resistance over conventional ylene and methyl acrylate. carbon black-filled AEM compounds. Resistance to engine oils and acids remains excellent, which makes the VMX5000 pre-com- Both monomers add to the high tem- pounds an interesting cost-effective alternative to FKM materials in the temperature range between -35°C and +175°C. perature stability, and the completely sat- For dynamic hose applications, slow-curing polymers (Vamac GXF, Ultra HT and HT-OR) have been introduced. While com- urated polymer chain imparts excellent pounds using the Ultra grades offer better physical properties, they sometimes lead to high extrusion pressure and therefore re- resistance to ozone, oxidation and weath- quire lower hardness compounds (<70 ShA). -
Valve Assembly 1 Inch Metal Seated Stainless Steel Flanged Ball Valve
VALVE ASSEMBLY 1 INCH METAL SEATED STAINLESS STEEL FLANGED BALL VALVE Product Description • Live loaded packing • Electric actuator FOR MORE INFORMATION CALL: 800.774.5630 www.valin.com 1 1/2 INCH STAINLESS STEEL THREADED END BALL VALVE Product Description • Spring-diaphragm actuator • Limit switch • Solenoid pilot valve FOR MORE INFORMATION CALL: 800.774.5630 www.valin.com 3 INCH THREE-WAY STAINLESS STEEL BALL VALVE Product Description • Rack and pinion pneumatic actuator FOR MORE INFORMATION CALL: 800.774.5630 www.valin.com 4 INCH RUBBER SEATED BUTTERFLY VALVE Product Description • Electric actuator FOR MORE INFORMATION CALL: 800.774.5630 www.valin.com 6 INCH METAL SEATED STAINLESS STEEL FLANGED BALL VALVE Product Description • High temperature stem extension • Spring return pneumatic piston actuator • Limit switch FOR MORE INFORMATION CALL: 800.774.5630 www.valin.com 18 INCH HIGH PERFORMANCE BUTTERFLY VALVE Product Description • Custom made mounting hardware for an electric actuator FOR MORE INFORMATION CALL: 800.774.5630 www.valin.com 24 INCH HIGH PERFORMANCE BUTTERFLY VALVE Product Description • Rack and pinion pneumatic piston actuator • Limit switch FOR MORE INFORMATION CALL: 800.774.5630 www.valin.com 3 INCH SOFT SEATED CARBON STEEL FLANGED BALL VALVE Product Description • Spring-diaphragm pneumatic actuator • Custom mounting of third party digital positioner FOR MORE INFORMATION CALL: 800.774.5630 www.valin.com TWO-WAY AND THREE-WAY BRASS 3 PIECE BALL VALVES Product Description • Custom mounting of electric actuators FOR MORE -
EPDM & FKM Chemical Resistance Guide
EPDM & FKM Chemical Resistance Guide SECOND EDITION EPDM & FKM CHEMICAL RESISTANCE GUIDE Elastomers: Ethylene Propylene (EPDM) Fluorocarbon (FKM) Chemical Resistance Guide Ethylene Propylene (EPDM) & Fluorocarbon (FKM) 2nd Edition © 2020 by IPEX. All rights reserved. No part of this book may be used or reproduced in any manner whatsoever without prior written permission. For information contact: IPEX, Marketing, 1425 North Service Road East, Oakville, Ontario, Canada, L6H 1A7 ABOUT IPEX At IPEX, we have been manufacturing non-metallic pipe and fittings since 1951. We formulate our own compounds and maintain strict quality control during production. Our products are made available for customers thanks to a network of regional stocking locations from coast-to-coast. We offer a wide variety of systems including complete lines of piping, fittings, valves and custom-fabricated items. More importantly, we are committed to meeting our customers’ needs. As a leader in the plastic piping industry, IPEX continually develops new products, modernizes manufacturing facilities and acquires innovative process technology. In addition, our staff take pride in their work, making available to customers their extensive thermoplastic knowledge and field experience. IPEX personnel are committed to improving the safety, reliability and performance of thermoplastic materials. We are involved in several standards committees and are members of and/or comply with the organizations listed on this page. For specific details about any IPEX product, contact our customer service department. INTRODUCTION Elastomers have outstanding resistance to a wide range of chemical reagents. Selecting the correct elastomer for an application will depend on the chemical resistance, temperature and mechanical properties needed. Resistance is a function both of temperatures and concentration, and there are many reagents which can be handled for limited temperature ranges and concentrations. -
Throttling Butterfly Valves
Throttling Butterfly Valves TBV-OP-LIT 01/04 TBV-D, TBV-G, for Throttling Butterfly Valves TBV-IQA and TBV-IQD for Throttling Butterfly IQ Valves UVD90-G for Universal Valve Drives Nor-Cal Products, Inc. In Europe 1967 South Oregon St. 2 Charlton Business Park Yreka, CA 96097, USA Crudwell Road, Malmesbury Tel: 800-824-4166 Wiltshire SN16 9RU, UK Fax: 530-842-9130 Tel: +44 (0) 1666 826822 www.n-c.com Fax: +44 (0) 1666 826823 INTELLISYS THROTTLING BUTTERFLY VALVES TBV-OP-LIT 01/04 Call toll free 800-824-4166 or 530-842-4457 • FAX 530-842-9130 3 INTELLISYS THROTTLING BUTTERFLY VALVES Table of Contents 1.0.................Introduction.........................................................................................................................................4 2.0.................Device specification - General...............................................................................................................5 2.1............Device specification - TBV series valves..................................................................................................6 2.2............Device specification - TBV-IQ series valves .............................................................................................7 3.0.................Unpacking and installation...................................................................................................................8 4.0.................Theory of operation..............................................................................................................................9