Towards an Ontology Design Pattern Quality Model

Total Page:16

File Type:pdf, Size:1020Kb

Towards an Ontology Design Pattern Quality Model Link¨oping Studies in Science and Technology Licentiate Thesis No. 1606 Towards an Ontology Design Pattern Quality Model by Karl Hammar Department of Computer and Information Science Link¨oping University SE-581 83 Link¨oping, Sweden Link¨oping 2013 This is a Swedish Licentiate’s Thesis Swedish postgraduate education leads to a doctor’s degree and/or a licentiate’s degree. A doctor’s degree comprises 240 ECTS credits (4 year of full-time studies). A licentiate’s degree comprises 120 ECTS credits. Copyright c 2013 Karl Hammar ISBN 978-91-7519-570-4 ISSN 0280–7971 Printed by LiU Tryck 2013 URL: http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-93370 Towards an Ontology Design Pattern Quality Model by Karl Hammar September 2013 ISBN 978-91-7519-570-4 Link¨oping Studies in Science and Technology Licentiate Thesis No. 1606 ISSN 0280–7971 LiU–Tek–Lic–2013:40 ABSTRACT The use of semantic technologies and Semantic Web ontologies in particular have enabled many recent developments in information integration, search engines, and reasoning over formalised knowledge. Ontology Design Patterns have been proposed to be useful in sim- plifying the development of Semantic Web ontologies by codifying and reusing modelling best practices. This thesis investigates the quality of Ontology Design Patterns. The main contribution of the thesis is a theoretically grounded and partially empirically evaluated quality model for such patterns including a set of quality characteristics, indicators, measurement methods and recommendations. The quality model is based on established theory on information system quality, conceptual model quality, and ontology evaluation. It has been tested in a case study setting and in two experiments. The main findings of this thesis are that the quality of Ontology Design Patterns can be identified, formalised and measured, and furthermore, that these qualities interact in such a way that ontology engineers using patterns need to make tradeoffs regarding which qualities they wish to prioritise. The developed model may aid them in making these choices. This work has been supported by J¨onk¨oping University. Department of Computer and Information Science Link¨oping University SE-581 83 Link¨oping, Sweden Acknowledgements There are several individuals and organizations that have enabled and sup- ported this research project in different ways, to which I extend my deepest gratitude. The supervision team consisted of Kurt Sandkuhl, Vladimir Tarasov, Eva Blomqvist,andHenrik Eriksson. This large and geographically dis- tributed team have complemented one another splendidly throughout the process and have when needed provided guidance regarding everything from research methods and writing style to academic social protocol and how to arrange workshops and other events. I’ve especially appreciated their hands- off approach which has enabled me to explore different directions and learn from many mistakes. My colleagues at the Department of Computer and Electrical Engineer- ing at J¨onk¨oping University have made the last couple of years working in research not only interesting but also fun. Christer Th¨orn and Ulf Seigerroth are however worthy of particular mention in that they have not only been great coworkers but have also contributed directly to the success of this work, the former by reviewing and commenting, and the latter by keeping bosses off my back and ensuring I’ve had time to get it done. Fredrik R. Krohnman has provided encouragement and many good discussions, keeping up my interest in computer technologies and research, and motivating me to continue on the academic path. A special thank you goes to my wife Jenny, who has supported me through good and bad, and has had to put up with many a late night spent working, without any complaints. I love you. Karl Hammar J¨onk¨oping, June 2013 v vi Contents 1 Introduction 1 1.1MotivatingFactors........................ 1 1.2 Research Questions . ..................... 3 1.3Contributions........................... 4 1.4ThesisOutline.......................... 5 2 Ontologies and Ontology Design Patterns 7 2.1KnowledgeModellingandOntologies.............. 7 2.1.1 Data,Information,andKnowledge........... 7 2.1.2 Terminological and Assertional Knowledge ....... 9 2.1.3 OntologyComponents.................. 10 2.1.4 RDF,RDFS,andOWL................. 13 2.2OntologyApplications...................... 16 2.2.1 OntologyTypes...................... 17 2.2.2 LinkedData....................... 18 2.2.3 SemanticSearch..................... 20 2.2.4 ReasoningTasks..................... 22 2.3OntologyDevelopment...................... 25 2.3.1 METHONTOLOGY................... 25 2.3.2 On-To-Knowledge.................... 26 2.3.3 DILIGENT........................ 27 2.3.4 OntologyDevelopment101............... 28 2.4OntologyDesignPatterns.................... 29 2.4.1 ODPTypologies..................... 32 2.4.2 ODP-basedOntologyConstruction........... 34 2.5TheStateofODPResearch................... 38 2.5.1 Results.......................... 39 2.5.2 AnalysisandDiscussion................. 40 3 Evaluation and Quality Frameworks 45 3.1RelatedQualityFrameworks.................. 45 3.1.1 MAPPER ......................... 45 3.1.2 ConceptualModelQuality................ 46 3.1.3 EntityRelationshipModelQuality........... 48 vii Contents 3.1.4 InformationSystemQuality............... 50 3.1.5 PatternQuality...................... 53 3.2OntologyEvaluation....................... 54 3.2.1 O2 andoQual....................... 54 3.2.2 ONTOMETRIC..................... 55 3.2.3 OntoClean........................ 56 3.2.4 TerminologicalCycleEffects............... 58 3.2.5 ODPDocumentationTemplateEffects......... 58 4 Research Method 59 4.1 A Perspective on Methods in the Computing Disciplines . 59 4.1.1 SystematicLiteratureReview.............. 61 4.1.2 CaseStudies....................... 63 4.1.3 Interviews......................... 64 4.1.4 Experimentation..................... 65 4.2 Description of the Research Process .............. 66 4.2.1 ODPLiteratureStudy.................. 66 4.2.2 InitialQualityModelDevelopment........... 71 4.2.3 KnowledgeFusionCaseStudy............. 75 4.2.4 Learnability and Usability Evaluations ......... 78 4.2.5 PerformanceIndicatorEvaluation........... 81 5 Initial Quality Model 85 5.1QualityMetamodelDevelopment................ 85 5.2QualityModelDevelopment................... 87 5.2.1 ISO 25010 Adaptation .................. 88 5.2.2 Th¨orn’sQualities..................... 90 5.2.3 Reuse of ER Model Quality Research ......... 91 5.2.4 Reuse of Established Ontology Quality Research . 93 5.3EmpiricalPre-studies...................... 95 5.3.1 ODPDocumentationStructureInterviews....... 96 5.3.2 ODPUsageExperimentandSurvey.......... 97 5.4TheDevelopedInitialQualityModel.............. 98 5.4.1 QualityCharacteristics................. 98 5.4.2 IndicatorsandEffects..................100 6 Quality Model Evaluations 107 6.1TheKnowledgeFusionCaseStudy...............107 6.1.1 CaseCharacterisation..................107 6.1.2 Data............................109 6.1.3 Findings..........................110 6.2 Learnability and Usability Evaluations .............114 6.2.1 Results..........................115 6.2.2 Findings..........................117 6.3PerformanceIndicatorEvaluation................119 6.3.1 LiteratureStudy.....................119 viii Contents 6.3.2 IndicatorVarianceinODPRepositories........122 6.3.3 Results..........................128 7 Refined ODP Quality Model 129 7.1Metamodel............................129 7.2QualityCharacteristics......................129 7.3IndicatorsandEffects......................132 7.3.1 UpdatedIndicators....................133 7.3.2 NewIndicators......................136 8 Conclusions and Future Work 139 8.1SummaryofContributions....................139 8.2 Research Questions Revisited ..................141 8.3FutureWork...........................142 Bibliography 145 List of Figures 157 List of Tables 159 ix Contents x Chapter 1 Introduction This licentiate thesis concerns the development of a quality model for On- tology Design Patterns, with a goal towards simplifying selection and use of such patterns for non-expert ontology engineers. In the following sections the background and motivation for the licentiate project are discussed, the research questions introduced, contributions of the work summarised, and structure of the remainder of the thesis briefly described. 1.1 Motivating Factors The work presented in this thesis falls within the Information Logistics re- search area, which is concerned with various types of problems pertaining to information provision and information flow. To name but a few: in the aca- demic domain, where researchers seeking to find unexplored areas for study need structured information about what kind of research is being done and where; in product development, where keeping track of different sets of pos- sibly conflicting requirements is necessary to avoid costly product failures; and in disaster management and recovery, where the need for rapid and cor- rect information on which to base decisions is crucial in preventing injuries or even saving lives. In order to explore and solve information logistics problems three differ- ent perspectives are commonly employed [1]: • The information demand perspective, in which researchers study what individual or group has need of which information, in which presenta- tion format, in a certain context or situation. This can involve factors such as the task for which information is to be used, the effect of ge- ographical
Recommended publications
  • Realising the Potential of Algal Biomass Production Through Semantic Web and Linked Data
    LEAPS: Realising the Potential of Algal Biomass Production through Semantic Web and Linked data ∗ Monika Solanki Johannes Skarka Craig Chapman KBE Lab Karlsruhe Institute of KBE Lab Birmingham City University Technology (ITAS) Birmingham City University [email protected] [email protected] [email protected] ABSTRACT In order to derive fuels from biomass, algal operation plant Recently algal biomass has been identified as a potential sites are setup that facilitate biomass cultivation and con- source of large scale production of biofuels. Governments, version of the biomass into end use products, some of which environmental research councils and special interests groups are biofuels. Microalgal biomass production in Europe is are funding several efforts that investigate renewable energy seen as a promising option for biofuels production regarding production opportunities in this sector. However so far there energy security and sustainability. Since microalgae can be has been no systematic study that analyses algal biomass cultivated in photobioreactors on non-arable land this tech- potential especially in North-Western Europe. In this paper nology could significantly reduce the food vs. fuel dilemma. we present a spatial data integration and analysis frame- However, until now there has been no systematic analysis work whereby rich datasets from the algal biomass domain of the algae biomass potential for North-Western Europe. that include data about algal operation sites and CO2 source In [20], the authors assessed the resource potential for mi- sites amongst others are semantically enriched with ontolo- croalgal biomass but excluded all areas not between 37◦N gies specifically designed for the domain and made available and 37◦S, thus most of Europe.
    [Show full text]
  • From Cataloguing Cards to Semantic Web 1
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Scientific Open-access Literature Archive and Repository Archeologia e Calcolatori 20, 2009, 111-128 REPRESENTING KNOWLEDGE IN ARCHAEOLOGY: FROM CATALOGUING CARDS TO SEMANTIC WEB 1. Introduction Representing knowledge is the basis of any catalogue. The Italian Ca- talogue was based on very valuable ideas, developed in the late 1880s, with the basic concept of putting objects in their context. Initially cataloguing was done manually, with typewritten cards. The advent of computers led to some early experimentations, and subsequently to the de�nition of a more formalized representation schema. The web produced a cultural revolution, and made the need for technological and semantic interoperability more evi- dent. The Semantic Web scenario promises to allow a sharing of knowledge, which will make the knowledge that remained unexpressed in the traditional environments available to any user, and allow objects to be placed in their cultural context. In this paper we will brie�y recall the principles of cataloguing and lessons learned by early computer experiences. Subsequently we will descri- be the object model for archaeological items, discussing its strong and weak points. In section 5 we present the web scenario and approaches to represent knowledge. 2. Cataloguing: history and principles The Italian Catalogue of cultural heritage has its roots in the experiences and concepts, developed in the late 1880s and early 1900s, by the famous art historian Adolfo Venturi, who was probably one of the �rst scholars to think explicitly in terms of having a frame of reference to describe works of art, emphasizing as the main issue the context in which the work had been produced.
    [Show full text]
  • Download Slides
    a platform for all that we know savas parastatidis http://savas.me savasp transition from web to apps increasing focus on information (& knowledge) rise of personal digital assistants importance of near-real time processing http://aptito.com/blog/wp-content/uploads/2012/05/smartphone-apps.jpg today... storing computing computers are huge amounts great tools for of data managing indexing example google and microsoft both have copies of the entire web (and more) for indexing purposes tomorrow... storing computing computers are huge amounts great tools for of data managing indexing acquisition discovery aggregation organization we would like computers to of the world’s information also help with the automatic correlation analysis and knowledge interpretation inference data information knowledge intelligence wisdom expert systems watson freebase wolframalpha rdbms google now web indexing data is symbols (bits, numbers, characters) information adds meaning to data through the introduction of relationship - it answers questions such as “who”, “what”, “where”, and “when” knowledge is a description of how the world works - it’s the application of data and information in order to answer “how” questions G. Bellinger, D. Castro, and A. Mills, “Data, Information, Knowledge, and Wisdom,” Inform. pp. 1–4, 2004 web – the data platform web – the information platform web – the knowledge platform foundation for new experiences “wisdom is not a product of schooling but of the lifelong attempt to acquire it” representative examples wolframalpha watson source:
    [Show full text]
  • Knowledge Extraction for Hybrid Question Answering
    KNOWLEDGEEXTRACTIONFORHYBRID QUESTIONANSWERING Von der Fakultät für Mathematik und Informatik der Universität Leipzig angenommene DISSERTATION zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat.) im Fachgebiet Informatik vorgelegt von Ricardo Usbeck, M.Sc. geboren am 01.04.1988 in Halle (Saale), Deutschland Die Annahme der Dissertation wurde empfohlen von: 1. Professor Dr. Klaus-Peter Fähnrich (Leipzig) 2. Professor Dr. Philipp Cimiano (Bielefeld) Die Verleihung des akademischen Grades erfolgt mit Bestehen der Verteidigung am 17. Mai 2017 mit dem Gesamtprädikat magna cum laude. Leipzig, den 17. Mai 2017 bibliographic data title: Knowledge Extraction for Hybrid Question Answering author: Ricardo Usbeck statistical information: 10 chapters, 169 pages, 28 figures, 32 tables, 8 listings, 5 algorithms, 178 literature references, 1 appendix part supervisors: Prof. Dr.-Ing. habil. Klaus-Peter Fähnrich Dr. Axel-Cyrille Ngonga Ngomo institution: Leipzig University, Faculty for Mathematics and Computer Science time frame: January 2013 - March 2016 ABSTRACT Over the last decades, several billion Web pages have been made available on the Web. The growing amount of Web data provides the world’s largest collection of knowledge.1 Most of this full-text data like blogs, news or encyclopaedic informa- tion is textual in nature. However, the increasing amount of structured respectively semantic data2 available on the Web fosters new search paradigms. These novel paradigms ease the development of natural language interfaces which enable end- users to easily access and benefit from large amounts of data without the need to understand the underlying structures or algorithms. Building a natural language Question Answering (QA) system over heteroge- neous, Web-based knowledge sources requires various building blocks.
    [Show full text]
  • Datatone: Managing Ambiguity in Natural Language Interfaces for Data Visualization Tong Gao1, Mira Dontcheva2, Eytan Adar1, Zhicheng Liu2, Karrie Karahalios3
    DataTone: Managing Ambiguity in Natural Language Interfaces for Data Visualization Tong Gao1, Mira Dontcheva2, Eytan Adar1, Zhicheng Liu2, Karrie Karahalios3 1University of Michigan, 2Adobe Research 3University of Illinois, Ann Arbor, MI San Francisco, CA Urbana Champaign, IL fgaotong,[email protected] fmirad,[email protected] [email protected] ABSTRACT to be both flexible and easy to use. General purpose spread- Answering questions with data is a difficult and time- sheet tools, such as Microsoft Excel, focus largely on offer- consuming process. Visual dashboards and templates make ing rich data transformation operations. Visualizations are it easy to get started, but asking more sophisticated questions merely output to the calculations in the spreadsheet. Asking often requires learning a tool designed for expert analysts. a “visual question” requires users to translate their questions Natural language interaction allows users to ask questions di- into operations on the spreadsheet rather than operations on rectly in complex programs without having to learn how to the visualization. In contrast, visual analysis tools, such as use an interface. However, natural language is often ambigu- Tableau,1 creates visualizations automatically based on vari- ous. In this work we propose a mixed-initiative approach to ables of interest, allowing users to ask questions interactively managing ambiguity in natural language interfaces for data through the visualizations. However, because these tools are visualization. We model ambiguity throughout the process of often intended for domain specialists, they have complex in- turning a natural language query into a visualization and use terfaces and a steep learning curve. algorithmic disambiguation coupled with interactive ambigu- Natural language interaction offers a compelling complement ity widgets.
    [Show full text]
  • Directions in AI Research and Applications at Siemens Corporate
    AI Magazine Volume 11 Number 1 (1991)(1990) (© AAAI) Research in Progress of linguistic phenomena. The com- Directions in AI Research putational work concerns questions of adequate processing models and algorithms, as embodied in the and Applications at actual interfaces being developed. These topics are explored in the Siemens Corporate Research framework of three projects: The nat- ural language consulting dialogue and Development project (Wisber) takes up research- oriented topics (descriptive grammar formalisms and linguistically adequate grammar specification, handling of Wolfram Buettner, Klaus Estenfeld, discourse, and so on), the data-access Hans Haugeneder, and Peter Struss project (Sepp) focuses on the practi- cal application of state-of-the-art technology, and the work on gram- mar-development environments ■ Many barriers exist today that prevent particular, Prolog extensions; and (4) (Ape) centers on the problem of ade- effective industrial exploitation of current design and analysis of neural networks. quate tools for specifying linguistic and future AI research. These barriers can The lab’s 26 researchers are orga- knowledge sources and efficient pro- only be removed by people who are work- nized into four groups corresponding cessing methods. ing at the scientific forefront in AI and to these areas. Together, they provide Wisber is jointly funded by the know potential industrial needs. Siemens with innovative software The Knowledge Processing Laboratory’s German government and several research and development concentrates in technologies, appropriate applications, industrial and academic partners. the following areas: (1) natural language prototypical implementations of AI The goal of the project is to develop interfaces to knowledge-based systems and systems, and evaluations of new a knowledge-based advice-giving databases; (2) theoretical and experimen- techniques and trends.
    [Show full text]
  • A Framework for Ontology-Based Library Data Generation, Access and Exploitation
    Universidad Politécnica de Madrid Departamento de Inteligencia Artificial DOCTORADO EN INTELIGENCIA ARTIFICIAL A framework for ontology-based library data generation, access and exploitation Doctoral Dissertation of: Daniel Vila-Suero Advisors: Prof. Asunción Gómez-Pérez Dr. Jorge Gracia 2 i To Adelina, Gustavo, Pablo and Amélie Madrid, July 2016 ii Abstract Historically, libraries have been responsible for storing, preserving, cata- loguing and making available to the public large collections of information re- sources. In order to classify and organize these collections, the library commu- nity has developed several standards for the production, storage and communica- tion of data describing different aspects of library knowledge assets. However, as we will argue in this thesis, most of the current practices and standards available are limited in their ability to integrate library data within the largest information network ever created: the World Wide Web (WWW). This thesis aims at providing theoretical foundations and technical solutions to tackle some of the challenges in bridging the gap between these two areas: library science and technologies, and the Web of Data. The investigation of these aspects has been tackled with a combination of theoretical, technological and empirical approaches. Moreover, the research presented in this thesis has been largely applied and deployed to sustain a large online data service of the National Library of Spain: datos.bne.es. Specifically, this thesis proposes and eval- uates several constructs, languages, models and methods with the objective of transforming and publishing library catalogue data using semantic technologies and ontologies. In this thesis, we introduce marimba-framework, an ontology- based library data framework, that encompasses these constructs, languages, mod- els and methods.
    [Show full text]
  • Ontologies to Interpret Remote Sensing Images: Why Do We Need Them?
    Ontologies to interpret remote sensing images : why do we need them? Damien Arvor, Mariana Belgiu, Zoe Falomir, Isabelle Mougenot, Laurent Durieux To cite this version: Damien Arvor, Mariana Belgiu, Zoe Falomir, Isabelle Mougenot, Laurent Durieux. Ontologies to inter- pret remote sensing images : why do we need them?. GIScience and Remote Sensing, Taylor & Francis: STM, Behavioural Science and Public Health Titles, 2019, pp.1-29. 10.1080/15481603.2019.1587890. halshs-02079438 HAL Id: halshs-02079438 https://halshs.archives-ouvertes.fr/halshs-02079438 Submitted on 26 Mar 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. GIScience & Remote Sensing ISSN: 1548-1603 (Print) 1943-7226 (Online) Journal homepage: https://www.tandfonline.com/loi/tgrs20 Ontologies to interpret remote sensing images: why do we need them? Damien Arvor, Mariana Belgiu, Zoe Falomir, Isabelle Mougenot & Laurent Durieux To cite this article: Damien Arvor, Mariana Belgiu, Zoe Falomir, Isabelle Mougenot & Laurent Durieux (2019): Ontologies to interpret remote sensing images: why do we need them?, GIScience & Remote Sensing To link to this article: https://doi.org/10.1080/15481603.2019.1587890 © 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
    [Show full text]
  • Question Answering
    Question Answering What is Ques+on Answering? Dan Jurafsky Ques%on Answering One of the oldest NLP tasks (punched card systems in 1961) Simmons, Klein, McConlogue. 1964. Indexing and ( ( Dependency Logic for Answering English Quesons. !"#$%&' )&*#'%+,-.'$/#0$ American Documentaon 15:30, 196-204 What do worms eat? Worms eat grass Horses with worms eat grass worms horses worms eat with eat eat grass worms grass what Birds eat worms Grass is eaten by worms birds worms eat eat 2 worms grass Dan Jurafsky Ques%on Answering: IBM’s Watson • Won Jeopardy on February 16, 2011! WILLIAM WILKINSON’S “AN ACCOUNT OF THE PRINCIPALITIES OF WALLACHIA AND MOLDOVIA” Bram Stoker INSPIRED THIS AUTHOR’S MOST FAMOUS NOVEL 3 Dan Jurafsky Apple’s Siri 4 Dan Jurafsky Wolfram Alpha 5 Dan Jurafsky Types of Ques%ons in Modern Systems • Factoid ques+ons • Who wrote “The Universal Declara4on of Human Rights”? • How many calories are there in two slices of apple pie? • What is the average age of the onset of au4sm? • Where is Apple Computer based? • Complex (narrave) ques+ons: • In children with an acute febrile illness, what is the efficacy of acetaminophen in reducing fever? • What do scholars think about Jefferson’s posi4on on dealing with pirates? 6 Dan Jurafsky Commercial systems: mainly factoid quesons Where is the Louvre Museum located? In Paris, France What’s the abbreviaon for limited L.P. partnership? What are the names of Odin’s ravens? Huginn and Muninn What currency is used in China? The yuan What kind of nuts are used in marzipan? almonds What instrument does
    [Show full text]
  • Ques+On Answering
    Queson Answering Debapriyo Majumdar Information Retrieval – Spring 2015 Indian Statistical Institute Kolkata Adapted from slides by Dan Jurafsky (Stanford) and Tao Yang (UCSB) Queson Answering One of the oldest NLP tasks (punched card systems in 1961) Simmons, Klein, McConlogue. 1964. Indexing and Dependency Logic for Answering English Ques%on: Poten%al-Answers: Questions. American Documentation 15:30, 196-204 What do worms eat? Worms eat grass Horses with worms eat grass worms horses worms eat with eat eat grass worms grass what Birds eat worms Grass is eaten by worms birds worms eat eat worms grass 2 Ques%on Answering: IBM’s Watson § Won Jeopardy on February 16, 2011! WILLIAM WILKINSON’S “AN ACCOUNT OF THE PRINCIPALITIES OF WALLACHIA AND MOLDOVIA” Bram Stoker INSPIRED THIS AUTHOR’S MOST FAMOUS NOVEL 3 Apple’s Siri § A seemingly “limited” set of few possible questions § Answers based on contextual parameters 4 Wolfram Alpha, Google 5 Wolfram Alpha But in this case, Google returns a standard list of document links 6 Types of Ques%ons in Modern Systems § Factoid questions – Answers are short – The question can be rephrased as “fill in the blanks” question Examples: – Who directed the movie Titanic? – How many calories are there in two slices of apple pie? – Where is Louvre museum located? § Complex (narrative) questions: – What precautionary measures should we take to be safe from swine flu? – What do scholars think about Jefferson’s position on dealing with pirates? 7 Paradigms for QA § IR-based approaches – TREC QA Track (AskMSR, ISI,
    [Show full text]
  • Using a Natural Language Understanding System to Generate Semantic Web Content
    Final version to appear, International Journal on Semantic Web and Information Systems, 3(4), 2007. (http://www.igi-pub.com/) 1 Using a Natural Language Understanding System to Generate Semantic Web Content Akshay Java, Sergei Nirneburg, Marjorie McShane, Timothy Finin, Jesse English, Anupam Joshi University of Maryland, Baltimore County, Baltimore MD 21250 {aks1,sergei,marge,finin,english1,joshi}@umbc.edu Abstract We describe our research on automatically generating rich semantic annotations of text and making it available on the Semantic Web. In particular, we discuss the challenges involved in adapting the OntoSem natural language processing system for this purpose. OntoSem, an implementation of the theory of ontological semantics under continuous development for over fifteen years, uses a specially constructed NLP-oriented ontology and an ontological- semantic lexicon to translate English text into a custom ontology-motivated knowledge representation language, the language of text meaning representations (TMRs). OntoSem concentrates on a variety of ambiguity resolution tasks as well as processing unexpected input and reference. To adapt OntoSem’s representation to the Semantic Web, we developed a translation system, OntoSem2OWL, between the TMR language into the Semantic Web language OWL. We next used OntoSem and OntoSem2OWL to support SemNews, an experimental web service that monitors RSS news sources, processes the summaries of the news stories and publishes a structured representation of the meaning of the text in the news story. Index Terms semantic web, OWL, RDF, natural language processing, information extraction I. INTRODUCTION A core goal of the development of the Semantic Web is to bring progressively more meaning to the information published on the Web.
    [Show full text]
  • Using Distributional Semantics for Automatic Taxonomy Induction
    Using Distributional Semantics for Automatic Taxonomy Induction Bushra Zafar Michael Cochez Usman Qamar College of Electrical & Fraunhofer – FIT College of Electrical & Mechanical Engineering, Sankt Augustin, Germany Mechanical Engineering, National University of michael.cochez@fit.fraunhofer.de National University of Science and Technology Science and Technology Islamabad, Pakistan Informatik 5 Islamabad, Pakistan [email protected] RWTH Aachen University [email protected] DE-52056 Aachen, Germany Abstract—Semantic taxonomies are powerful tools that provide ontology learning, semantic relation classification, and so structured knowledge to Natural Language Processing (NLP), on [9]. A number of different theories and methodologies Information Retreval (IR), and general Artificial Intelligence have been proposed to induce taxonomy automatically. Very (AI) systems. These taxonomies are extensively used for solving knowledge rich problems such as textual entailment and question common are pattern-based approaches. The working principle answering. In this paper, we present a taxonomy induction system of these approaches is to define patterns or rules first and and evaluate it using the benchmarks provided in the Taxonomy find matching text in a large textual corpus. Often a form Extraction Evaluation (TExEval2) Task. The task is to identify of bootstrapping is used. The system iteratively learns more hyponym-hypernym relations and to construct a taxonomy from patterns from the corpus by deriving patterns from the results a given domain specific list. Our approach is based on a word embedding, trained from a large corpus and string-matching found in the previous round. In this paper we focus on a approaches. The overall approach is semi-supervised. We propose distributional semantics approach.
    [Show full text]