The Paleozoic Era: Diversification of Plant and Animal Life 7

Total Page:16

File Type:pdf, Size:1020Kb

The Paleozoic Era: Diversification of Plant and Animal Life 7 Published in 2011 by Britannica Educational Publishing (a trademark of Encyclopædia Britannica, Inc.) in association with Rosen Educational Services, LLC 29 East 21st Street, New York, NY 10010. Copyright © 2011 Encyclopædia Britannica, Inc. Britannica, Encyclopædia Britannica, and the Thistle logo are registered trademarks of Encyclopædia Britannica, Inc. All rights reserved. Rosen Educational Services materials copyright © 2011 Rosen Educational Services, LLC. All rights reserved. Distributed exclusively by Rosen Educational Services. For a listing of additional Britannica Educational Publishing titles, call toll free (800) 237-9932. First Edition Britannica Educational Publishing Michael I. Levy: Executive Editor J.E. Luebering: Senior Manager Marilyn L. Barton: Senior Coordinator, Production Control Steven Bosco: Director, Editorial Technologies Lisa S. Braucher: Senior Producer and Data Editor Yvette Charboneau: Senior Copy Editor Kathy Nakamura: Manager, Media Acquisition John P. Ra erty: Associate Editor, Life and Earth Sciences Rosen Educational Services Alexandra Hanson-Harding: Senior Editor Nelson Sá: Art Director Cindy Reiman: Photography Director Matthew Cauli: Designer, Cover Design Introduction by Catherine Vanderhoof Library of Congress Cataloging-in-Publication Data The Paleozoic era : diversifi cation of plant and animal life / edited by John P. Ra erty. p. cm.—(The geologic history of Earth) “In association with Britannica Educational Publishing, Rosen Educational Services.” Includes bibliographical references and index. ISBN 978-1-61530-196-6 (eBook) 1. Geology, Stratigraphic—Paleozoic. 2. Paleoecology—Paleozoic. I. Ra erty, John P. QE654.P2413 2010 561'.112—dc22 2009051123 On the cover: Plants such as ferns (above) and ancient creatures such as the trilobite (below) were common during the Paleozoic era. SSPL via Getty Images (above); Sinclair Stammers/Photolibrary/Getty Images (below and pages 5, 29, 36, 93, 138, 187, 245, 285, 325, 326, 329, 331) On page 18: Fallen pine trees in Emerald Lake, refl ecting the Burgess Shale, British Columbia, Canada. Shutterstock.com CONTENTS Introduction 18 Chapter 1: An Overview of Paleozoic Time 29 Paleozoic Life 30 Paleozoic Geography 32 31 Chapter 2: The Cambrian Period 36 The Cambrian Environment 38 Paleogeography 38 Paleoclimate 45 Cambrian Life 46 The Fossil Record of the Precambrian-Cambrian Transition 47 Photosynthetic Organisms 51 Fauna 52 Deposits with Soft-Bodied Organisms 56 Cambrian Extinction Events 59 Signifi cant Cambrian Life-Forms 60 Burgess Shale 60 57 Conodonts 61 Denticles 64 Graptolites 65 Lamp Shells 65 Lingulids 78 Obolus 78 Stromatoporida 79 Trilobites 79 Cambrian Geology 82 Types and Distribution 82 58 The Boundaries and 94 Subdivisions of the Cambrian System 85 The Economic Significance of Cambrian Deposits 87 The Correlation of Cambrian Strata 88 Stages of the Cambrian Period 90 Fortunian Stage 90 Drumian Stage 91 Guzhangian Stage 91 Paibian Stage 92 106 Chapter 3: The Ordovician Period 93 The Ordovician Environment 93 Paleogeography 96 Sea Level 97 The Circulation of the Ocean 97 Plate Tectonics 99 Paleoclimate 101 Ordovician Life 104 107 Marine Organisms 104 Microfossils and Plankton 104 Invertebrates 105 Early Fishes 107 Reefs 108 Terrestrial Organisms 109 Earliest Land Plants 109 Animals 110 The Ordovician Radiation 110 The Exploitation of Habitats 112 Causes of the Ordovician Radiation 114 111 Ordovician Extinction Events 114 The Mass Extinction at the End of the Ordovician 114 Regional Extinctions Within the Ordovician 116 Faunal Provinces 117 Significant Ordovician Life-Forms 118 Bellerophon 118 Bumastus 119 Byssonychia 119 Calymene 119 Ceraurus 119 Climacograptus 120 Clonograptus 120 Constellaria 120 Cryptolithus 120 Cryptostomata 121 Cystoids 121 Didymograptus 121 Diplograptus 122 Echinosphaerites 122 Favosites 122 Hallopora 122 Halysites 123 Hesperorthis 123 Horn Corals 123 Isotelus 124 Leptaena 124 Lituites 124 Lophospira 124 Loxonema 125 139 Maclurites 125 Modiolopsis 125 Neoprioniodiform 125 Phyllograptus 126 Platystrophia 126 Plectoceras 126 Prasopora 126 Resserella 127 Rhynchotrema 127 Streptelasma 127 Strephomena 127 Tabulata 128 Tetragraptus 128 Trepostomata 128 Trochonema 128 Ordovician Geology 129 Significant Geologic Events 129 The Economic Significance of Ordovician Deposits 131 The Major Subdivisions of the Ordovician System 132 The Correlation of Ordovician Strata 132 Stages of the Ordovician Period 133 Tremadocian Stage 134 Floian Stage 134 Dapingian Stage 135 Darriwilian Stage 135 Sandbian Stage 136 Katian Stage 136 Hirnantian Stage 137 Chapter 4: The Silurian Period 138 The Silurian Environment 138 Paleogeography 140 Laurentia 141 Baltica 142 Siberia, Kazakhstania, and Other Continents 143 Gondwana 143 Paleoclimate 144 Silurian Life 146 Pentamerid Communities 147 Reef Mounds and Coral Biostromes 149 Fishes 150 Vascular Land Plants 151 Silurian Extinction Events 151 Significant Silurian Life-Forms 152 Atrypa 153 Baragwanathia 153 Birkenia 154 Chonetes 154 Conchidium 154 Cyathocrinites 155 Cystiphyllum 155 Deiphon 155 Eospirifer 155 Giant Water Scorpions 156 Goniophora 157 Leptodesma 157 Monograptus 157 Nuculana 158 Ozarkodiniforms 158 Phacops 158 Platyceras 158 Preferns 159 Rhynchotreta 160 Silurian Geology 160 The Economic Significance of Silurian Deposits 161 The Major Subdivisions of the Silurian System 163 147 Significant Geologic 189 Events 164 The Effects of Late Ordovician Glaciation 164 Silurian Sea Level 165 The Occurance and Distribution of Silurian Deposits 166 Evaporites 167 Clastic Wedges 168 Platform Margins 170 Tillites 171 Volcanic Rocks 172 The Correlation of Silurian Strata 173 Graptolites 173 Brachiopods 174 Conodonts 175 Isotope Stratigraphy 176 Establishing Silurian Boundaries 177 The Work of Roderick Murchison and Other Researchers 177 Geochemical Analyses 179 Silurian Boundaries 180 Stages of the Silurian Period 181 Rhuddanian Stage 182 Aeronian Stage 182 Telychian Stage 183 Sheinwoodian Stage 183 Homerian Stage 184 Gorstian Stage 184 Ludfordian Stage 185 Pridoli Series 185 Chapter 5: The Devonian Period 187 The Devonian Environment 190 Paleogeography 190 Paleoclimate 192 Devonian Life 192 Invertebrates 193 Vertebrates 195 Plants 197 Faunal Realms and Migrations 199 Devonian Extinction Events 200 Significant Devonian Life-Forms 202 Ammonoids 202 Antiarchs 203 Archaeopteris 203 Arctolepis 204 Arthrodires 204 196 Bactrites 205 Bothriolepis 205 Cephalaspis 206 Cheirolepis 206 Cladoselache 207 Climatius 207 Dinichthys 207 Dipterus 208 Endothyra 208 Eusthenopteron 209 Greenops 209 Heliophyllum 210 Hyenia 210 Ichthyostega 210 Monoplacophorans 211 Mucrospirifer 212 Osteolepis 212 Ostracoderms 213 Palaeospondylus 213 211 Placoderms 213 216 Polygnathiforms 214 Pteraspis 215 Rensselaeria 215 Rhipidistia 215 Rhynie Plants 216 Schizodus 217 Sphenophyllum 217 Stringocephalus 218 Stropheodonta 218 Theodossia 218 Tiktaalik Roseae 218 Tornoceras 220 Trepospira 220 Tropidoleptus 220 Worthenia 221 Xenacanthus 221 Devonian Geology 221 Significant Geologic Events 222 The Economic Significance of Devonian Deposits 224 222 The Major Subdivisions of the Devonian System 225 Establishing Devonian Boundaries 225 The Occurance and Distribution of Devonian Deposits 226 Sediment Types 229 Europe 230 Asia 234 Southern Hemisphere 235 North America 237 The Correlation of Devonian Strata 238 Stages of the Devonian Period 239 Lochkovian Stage 239 Pragian Stage 240 Emsian Stage 241 Eifelian Stage 241 Givetian Stage 242 258 Frasnian Stage 243 Famennian Stage 244 Chapter 6: The Carboniferous Period 245 The Carboniferous Environment 245 Paleogeography 246 Paleoclimate 247 Carboniferous Life 248 Invertebrates 249 Plants 251 Fishes 252 Amphibians and Early Reptiles 253 Significant Carboniferous Life-Forms 254 Calamites 254 Composita 255 Cordaitales 255 Cryptoblastus 255 Dictyoclostus 256 Dielasma 256 Diplovertebron 256 Edaphosaurus 257 Euphemites 257 Fenestella 258 Fusulina 258 Fusulinella 259 Fusulinids 259 Gastrioceras 260 Labyrinthodonts 260 Lebachia 261 Lepidodendron 261 Linoproductus 262 Lophophyllum 263 Myalina 263 Neospirifer 263 262 Nuculopsis 264 Pentremites 264 Phillipsia 264 Platycrinites 264 Seed Ferns 265 Sigillaria 266 Wedekindellina 266 Carboniferous Geology 267 Significant Geologic Events 268 The Major Subdivisions of the Carboniferous System 269 The Economic Significance of Carboniferous Deposits 270 The Occurance and Distribution of Carboniferous Deposits 270 Mississippian Limestones 271 Pennsylvanian Cyclothems, Tillites, and Turbidites 273 The Correlation of Carboniferous Strata 276 265 Missippian Subsystem 276 Pennsylvanian Subsystem 277 Stages of the Carboniferous Period 278 Mississippian Subperiod 278 Tournaisian Stage 279 Vise´an Stage 280 Serpukhovian Stage 281 Pennsylvanian Subperiod 282 Bashkirian Stage 282 Moscovian Stage 283 Kasimovian Stage 283 Gzhelian Stage 284 Chapter 7: The Permian Period 285 The Permian Environment 286 Paleogeography 286 Paleoclimate 288 Permian Life 289 The Emergence of Important Reptiles 291 Permian Mass Extinction 293 Temperature Crises and the Permian Extinction 294 The Alteration of the Carbon Cycle 295 Other Potential Causes of the Permian Extinction 296 287 Significant Permian Life-Forms 296 Bradysaurus 396 Cacops 297 292 Captorhinus 297 Cynodonts 298 Diadectes 299 Dimetrodon 300 Eryops 300 Glossopteris 301 Leptodus 302 Limnoscelis 302 Mesosaurus 303 Moschops 303 Parafusulina 304 Paraschwagerina 304 Pseudoschwagerina 304 298 Schwaserina 305 Seymouria 305 Tapinocephalus 306
Recommended publications
  • Bryozoan Studies 2019
    BRYOZOAN STUDIES 2019 Edited by Patrick Wyse Jackson & Kamil Zágoršek Czech Geological Survey 1 BRYOZOAN STUDIES 2019 2 Dedication This volume is dedicated with deep gratitude to Paul Taylor. Throughout his career Paul has worked at the Natural History Museum, London which he joined soon after completing post-doctoral studies in Swansea which in turn followed his completion of a PhD in Durham. Paul’s research interests are polymatic within the sphere of bryozoology – he has studied fossil bryozoans from all of the geological periods, and modern bryozoans from all oceanic basins. His interests include taxonomy, biodiversity, skeletal structure, ecology, evolution, history to name a few subject areas; in fact there are probably none in bryozoology that have not been the subject of his many publications. His office in the Natural History Museum quickly became a magnet for visiting bryozoological colleagues whom he always welcomed: he has always been highly encouraging of the research efforts of others, quick to collaborate, and generous with advice and information. A long-standing member of the International Bryozoology Association, Paul presided over the conference held in Boone in 2007. 3 BRYOZOAN STUDIES 2019 Contents Kamil Zágoršek and Patrick N. Wyse Jackson Foreword ...................................................................................................................................................... 6 Caroline J. Buttler and Paul D. Taylor Review of symbioses between bryozoans and primary and secondary occupants of gastropod
    [Show full text]
  • Two New Crinoids from Lower Mississippian Rocks in Southeastern Kentucky
    TWO NEW CRINOIDS FROM LOWER MISSISSIPPIAN ROCKS IN SOUTHEASTERN KENTUCKY BY GEORGE M. EHLERS AND ROBERT V. KESLING Reprinted from JOURNAL OF PALEONTOLOGY Val. 37, No. 5, September, 1963 JOURNALOF PALEONTOLOGY,V. 37, NO. 5, P. 1028-1041, PLS. 133,134, 3 TEXT-FIGS., SEPTEMBER,1963 TWO NEW CRINOIDS FROM L20\'C7ERMISSISSIPPIAN ROCKS IN SOUTHEASTERN KENTUCKY GEORGE M. EHLERS AKD ROBERT V. ICESLING Museum of Paleontology, The University of Michigan .~BsTR.~~T-AII~~~~specimens collected many years ago bl- the senior author and his students near Mill Springs, Kentucky, are a new species of Agaricocrinzis and a new speries of Actino- crinites. Although only one specimen of each is known, it is well preserved. The new Agnrico- crinus bears a resemblance to A. ponderoszts Wood, and the new Actinocriniles to four species described by Miller & Gurley: A. spergenensis, A. botuztosz~s,A. gibsoni, and A. shnronensis. A preliminary survey of species assigned to Agaricocrinz~ssuggests that revision of the genus is overdue. Although the occurrence of the specimens leaves some doubt as to their stratigraphic posi- tion, we conclude that they both probably weathered from the Fort Payne formation and rolled down the slope onto the New Providence, where they were found. The sites where the crinoids were picked up are now deeply inundated by water impounded by the Wolf Creek dam on the Cumberland River. INTRODUCTION onto the New Providence, \$here they were OTH of the new crinoids described here are found. rZt present, both the New Providence B from Lower Mississippian rocks in the valley formation and the I~asalbeds of the Fort Payne of the Cumberland River in Wayne and Russell are underwater at the type locality of the new Counties, Kentucky.
    [Show full text]
  • 03-Alekseev and Goreva (Neognathodus).P65
    Lucas, S.G., et al. eds., 2013, The Carboniferous-Permian Transition. New Mexico Museum of Natural History and Science, Bulletin 60. 1 THE CONODONT NEOGNATHODUS BOTHROPS MERRILL, 1972 AS THE MARKER FOR THE LOWER BOUNDARY OF THE MOSCOVIAN STAGE (MIDDLE PENNSYLVANIAN) ALEXANDER S. ALEKSEEV1 AND NATALIA V. GOREVA 2 1 Department of Paleontology, Geological Faculty, Moscow State University, Russia, email: aaleks@geol. msu.ru; 2 Geological institute of Russian Academy of Science, Moscow, Russia, email: [email protected] Abstract—The Moscovian Stage constitutes the Middle Pennsylvanian Series of the Carboniferous System, but a biostratigraphic marker and GSSP for it have not yet been designated. The exact position of the Moscovian boundary cannot be defined properly because in the type area the basal Vereian unconformably overlies the Mississippian limestone or the alluvial and lagoonal Aza Formation of the uppermost Bashkirian. The Task Group to establish a GSSP close to the existing Bashkirian-Moscovian boundary suggested several potential markers among foraminifers and conodonts, but the search for a marker near traditional base of the global Moscovian Stage has stalled. It may be more productive to search for FADs in the lower Moscovian, above the traditional base, to designate the lower boundary of the stage. Relatively rich Vereian and Kashirian conodont assemblages have been recovered from the southwest Moscow Basin, as well as from the Oka-Tsna Swell. The most complete information on the distribution of conodonts in the Vereian- Kashirian boundary interval was obtained from the Yambirno section (Oka-Tsna Swell). The greatest change in conodont assemblages does not occur near the level of the traditional base of the Moscovian, but stratigraphically higher.
    [Show full text]
  • Bedrock Geology of Altenburg Quadrangle, Jackson County
    BEDROCK GEOLOGY OF ALTENBURG QUADRANGLE Institute of Natural Resource Sustainability William W. Shilts, Executive Director JACKSON COUNTY, ILLINOIS AND PERRY COUNTY, MISSOURI STATEMAP Altenburg-BG ILLINOIS STATE GEOLOGICAL SURVEY E. Donald McKay III, Interim Director Mary J. Seid, Joseph A. Devera, Allen L. Weedman, and Dewey H. Amos 2009 360 GEOLOGIC UNITS ) ) ) 14 Qal Alluvial deposits ) 13 18 Quaternary Pleistocene and Holocene 17 360 ) 15 360 16 14 0 36 ) 13 Qf Fan deposits ) Unconformity Qal ) & 350 tl Lower Tradewater Formation Atokan ) ) Pennsylvanian 360 ) &cv Caseyville Formation Morrowan 24 360 ) Unconformity ) 17 Upper Elviran undivided, Meu ) Waltersburg to top of Degonia 19 20 Qal 21 22 23 ) 24 ) Mv Vienna Limestone 360 o ) 3 Mts ) 350 Mts Tar Springs Sandstone ) 20 360 ) Mgd 360 30 ) Mgd Glen Dean Limestone ) 21 350 360 Mts 29 ) Qal Hardinsburg Sandstone and J N Mhg Chesterian ) Golconda Formations h Æ Qal Mav anc 28 27 Br ) N oJ 26 25 JN 85 N ) Cypress Sandstone through J Mcpc Dsl 500 Paint Creek Formation JN N ) J o Mts N 5 J s ) Dgt 600 J N 70 J N Mgd Yankeetown Formation s ) Myr Db 80 28 Æ and Renault Sandstone N J 29 N J N ) Sb J Mgd Mississippian o Dgt Ssc 25 Clines o N 25 Msg 27 ) Qal J 80 s 3 Mav Aux Vases Sandstone N J N Mts o MILL J MISSISSIPPI 34 ) Qal J N ) N J Dsl 35 N 26 J o N 25 J Mgd Mgd ) Msg Ste. Genevieve Limestone 500 o Db DITCH J 20 Mgd N N N ) J J o RIVER o N 600 J 80 N ) 10 o J Mav Æ Msl St.
    [Show full text]
  • The Recent Molluscan Marine Fauna of the Islas Galápagos
    THE FESTIVUS ISSN 0738-9388 A publication of the San Diego Shell Club Volume XXIX December 4, 1997 Supplement The Recent Molluscan Marine Fauna of the Islas Galapagos Kirstie L. Kaiser Vol. XXIX: Supplement THE FESTIVUS Page i THE RECENT MOLLUSCAN MARINE FAUNA OF THE ISLAS GALApAGOS KIRSTIE L. KAISER Museum Associate, Los Angeles County Museum of Natural History, Los Angeles, California 90007, USA 4 December 1997 SiL jo Cover: Adapted from a painting by John Chancellor - H.M.S. Beagle in the Galapagos. “This reproduction is gifi from a Fine Art Limited Edition published by Alexander Gallery Publications Limited, Bristol, England.” Anon, QU Lf a - ‘S” / ^ ^ 1 Vol. XXIX Supplement THE FESTIVUS Page iii TABLE OF CONTENTS INTRODUCTION 1 MATERIALS AND METHODS 1 DISCUSSION 2 RESULTS 2 Table 1: Deep-Water Species 3 Table 2: Additions to the verified species list of Finet (1994b) 4 Table 3: Species listed as endemic by Finet (1994b) which are no longer restricted to the Galapagos .... 6 Table 4: Summary of annotated checklist of Galapagan mollusks 6 ACKNOWLEDGMENTS 6 LITERATURE CITED 7 APPENDIX 1: ANNOTATED CHECKLIST OF GALAPAGAN MOLLUSKS 17 APPENDIX 2: REJECTED SPECIES 47 INDEX TO TAXA 57 Vol. XXIX: Supplement THE FESTIVUS Page 1 THE RECENT MOLLUSCAN MARINE EAUNA OE THE ISLAS GALAPAGOS KIRSTIE L. KAISER' Museum Associate, Los Angeles County Museum of Natural History, Los Angeles, California 90007, USA Introduction marine mollusks (Appendix 2). The first list includes The marine mollusks of the Galapagos are of additional earlier citations, recent reported citings, interest to those who study eastern Pacific mollusks, taxonomic changes and confirmations of 31 species particularly because the Archipelago is far enough from previously listed as doubtful.
    [Show full text]
  • Conodont Faunas Across the Mid-Carboniferous Boundary From
    Conodont faunas across the mid-Carboniferous boundary from the Barcaliente Formation at La Lastra (Palentian Zone, Cantabrian Mountains, northwest Spain); geological setting, sedimentological characters and faunal descriptions T.I. Nemyrovska, R.H. Wagner, C.F. Winkler Prins & I. Montañez Nemyrovska, T.I., Wagner, R.H., Winkler Prins, C.F. & Montañez, I. Conodont faunas across the mid- Carboniferous boundary from the Barcaliente Formation at La Lastra (Palentian Zone, Cantabrian Mountains, northwest Spain); geological setting, sedimentological characters and faunal descriptions. Scripta Geologica, 143: 127-183, 8 figs., 4 pls, 1 table, Leiden, December 2011. Tamara I. Nemyrovska, Institute of Geological Sciences, National Academy of Sciences of Ukraine, Gonchar Str., 55-b, 01054 Kiev, Ukraine ([email protected]); Robert H. Wagner, Centro Paleobotánico, IMGEMA Jardín Botánico de Córdoba, Avenida de Linneo s/n, E 14004 Córdoba, Spain (cr1wagro@uco. es); Cor F. Winkler Prins, NCB Naturalis, Postbus 9517, 2300 RA Leiden, The Netherlands (Cor.Winkler@ ncbnaturalis.nl); Isabel Montañez, Department of Geology, University of California, Davis, CA 95616, U.S.A. (ipmontañ[email protected]). Keywords — Serpukhovian, Bashkirian, biostratigraphy, palaeoecology. Two different tectono-stratigraphic domains are recognised in the Cantabrian Mountains, Asturian-Leo- nese (Cantabrian Zone) and Palentian (Palentian Zone). The area under investigation belongs to the south- ern part of the Palentian Domain and attention is focused on the Upper Viséan to lowermost Bashkirian limestones at the village of La Lastra in northern Palencia. A new geological map of the Palentian Zone is accompanied by a more detailed map centred on La Lastra. The Barcaliente Limestone Formation (Ser- pukhovian to lowermost Bashkirian) occurs in the overturned limb of a recumbent anticline which consti- tutes the head of a south-verging major thrust unit, the Carrionas Thrust Sheet (Palentian Zone).
    [Show full text]
  • Western North Greenland (Laurentia)
    BULLETIN OF THE GEOLOGICAL SOCIETY OF DENMARK · VOL. 69 · 2021 Trilobite fauna of the Telt Bugt Formation (Cambrian Series 2–Miaolingian Series), western North Greenland (Laurentia) JOHN S. PEEL Peel, J.S. 2021. Trilobite fauna of the Telt Bugt Formation (Cambrian Series 2–Mi- aolingian Series), western North Greenland (Laurentia). Bulletin of the Geological Society of Denmark, Vol. 69, pp. 1–33. ISSN 2245-7070. https://doi.org/10.37570/bgsd-2021-69-01 Trilobites dominantly of middle Cambrian (Miaolingian Series, Wuliuan Stage) Geological Society of Denmark age are described from the Telt Bugt Formation of Daugaard-Jensen Land, western https://2dgf.dk North Greenland (Laurentia), which is a correlative of the Cape Wood Formation of Inglefield Land and Ellesmere Island, Nunavut. Four biozones are recognised in Received 6 July 2020 Daugaard-Jensen Land, representing the Delamaran and Topazan regional stages Accepted in revised form of the western USA. The basal Plagiura–Poliella Biozone, with Mexicella cf. robusta, 16 December 2020 Kochiella, Fieldaspis? and Plagiura?, straddles the Cambrian Series 2–Miaolingian Series Published online 20 January 2021 boundary. It is overlain by the Mexicella mexicana Biozone, recognised for the first time in Greenland, with rare specimens of Caborcella arrojosensis. The Glossopleura walcotti © 2021 the authors. Re-use of material is Biozone, with Glossopleura, Clavaspidella and Polypleuraspis, dominates the succes- permitted, provided this work is cited. sion in eastern Daugaard-Jensen Land but is seemingly not represented in the type Creative Commons License CC BY: section in western outcrops, likely reflecting the drastic thinning of the formation https://creativecommons.org/licenses/by/4.0/ towards the north-west.
    [Show full text]
  • Treatise on Invertebrate Paleontology
    PART H, Revised BRACHIOPODA VOLUMES 2 & 3: Linguliformea, Craniiformea, and Rhynchonelliformea (part) ALWYN WILLIAMS, S. J. CARLSON, C. H. C. BRUNTON, L. E. HOLMER, L. E. POPOV, MICHAL MERGL, J. R. LAURIE, M. G. BASSETT, L. R. M. COCKS, RONG JIA-YU, S. S. LAZAREV, R. E. GRANT, P. R. RACHEBOEUF, JIN YU-GAN, B. R. WARDLAW, D. A. T. HARPER, A. D. WRIGHT, and MADIS RUBEL CONTENTS INFORMATION ON TREATISE VOLUMES ...................................................................................... x EDITORIAL PREFACE .............................................................................................................. xi STRATIGRAPHIC DIVISIONS .................................................................................................. xxiv COORDINATING AUTHOR'S PREFACE (Alwyn Williams) ........................................................ xxv BRACHIOPOD CLASSIFICATION (Alwyn Williams, Sandra J. Carlson, and C. Howard C. Brunton) .................................. 1 Historical Review .............................................................................................................. 1 Basis for Classification ....................................................................................................... 5 Methods.......................................................................................................................... 5 Genealogies ....................................................................................................................... 6 Recent Brachiopods .......................................................................................................
    [Show full text]
  • Type and Figured Fossils in the Worthen Collection at the Illinois
    s Cq&JI ^XXKUJtJLI 14oGS: CIR 524 c, 2 TYPE AND FIGURED FOSSILS IN THE WORTHEN COLLECTION AT THE ILLINOIS STATE GEOLOGICAL SURVEY Lois S. Kent GEOLOGICAL ILLINOIS Illinois Department of Energy and Natural Resources, STATE GEOLOGICAL SURVEY DIVISION CIRCULAR 524 1982 COVER: This portrait of Amos Henry Worthen is from a print presented to me by Worthen's great-grandson, Arthur C. Brookley, Jr., at the time he visited the Illinois State Geological Survey in the late 1950s or early 1960s. The picture is the same as that published in connection with the memorial to Worthen in the appendix to Vol. 8 of the Geological Survey of Illinois, 1890. -LSK Kent, Lois S., Type and figured fossils in the Worthen Collection at the Illinois State Geological Survey. — Champaign, III. : Illinois State Geological Survey, 1982. - 65 p. ; 28 cm. (Circular / Illinois State Geological Survey ; 524) 1. Paleontology. 2. Catalogs and collections. 3. Worthen Collection. I. Title. II. Series. Editor: Mary Clockner Cover: Sandra Stecyk Printed by the authority of the State of Illinois/1982/2500 II I IHOI'.MAII '.I 'II Of.ir.AI MIHVI y '> 300 1 00003 5216 TYPE AND FIGURED FOSSILS IN THE WORTHEN COLLECTION AT THE ILLINOIS STATE GEOLOGICAL SURVEY Lois S. Kent | CIRCULAR 524 1982 ILLINOIS STATE GEOLOGICAL SURVEY Robert E. Bergstrom, Acting Chief Natural Resources Building, 615 East Peabody Drive, Champaign, IL 61820 TYPE AND FIGURED FOSSILS IN THE WORTHEN COLLECTION AT THE ILLINOIS STATE GEOLOGICAL SURVEY CONTENTS Acknowledgments 2 Introduction 2 Organization of the catalog 7 Notes 8 References 8 Fossil catalog 13 ABSTRACT This catalog lists all type and figured specimens of fossils in the part of the "Worthen Collection" now housed at the Illinois State Geological Survey in Champaign, Illinois.
    [Show full text]
  • 2Nd International Trilobite Conference (Brock University, St. Catharines, Ontario, August 22-24, 1997) ABSTRACTS
    2nd International Trilobite Conference (Brock University, St. Catharines, Ontario, August 22-24, 1997) ABSTRACTS. Characters and Parsimony. Jonathan M. Adrain, Department of Palaeontology, The Natural History Museum, London SW7 5BD, United King- dom; Gregory D. Edgecombe, Centre for Evolutionary Research, Australian Museum, 6 College Street, Sydney South, New South Wales 2000, Australia Character analysis is the single most important element of any phylogenetic study. Characters are simply criteria for comparing homologous organismic parts between taxa. Homology of organismic parts in any phylogenetic study is an a priori assumption, founded upon topological similarity through some or all stages of ontogeny. Once homolo- gies have been suggested, characters are invented by specifying bases of comparison of organismic parts from taxon to taxon within the study group. Ideally, all variation in a single homology occurring within the study group should be accounted for. Comparisons are between attributes of homologous parts, (e.g., simple presence, size of some- thing, number of something), and these attributes are referred to as character states. Study taxa are assigned member- ship in one (or more, in the case of polymorphisms) character-state for each character in the analysis. A single char- acter now implies discrete groupings of taxa, but this in itself does not constitute a phylogeny. In order to suggest or convey phylogenetic information, the historical status of each character-state, and of the the group of taxa it sug- gests, must be evaluated. That is, in the case of any two states belonging to the same character, we need to discover whether one state is primitive (broadly speaking, ancestral) or derived (representative of an evolutionary innovation) relative to the other.
    [Show full text]
  • Silurian and Earliest Devonian Birkeniid Anaspids from the Northern Hemisphere
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/233484471 Silurian and earliest Devonian birkeniid anaspids from the Northern Hemisphere Article in Transactions of the Royal Society of Edinburgh Earth Sciences · June 2002 DOI: 10.1017/S0263593300000250 CITATIONS READS 47 725 3 authors: Henning Blom Tiiu Märss Uppsala University Tallinn University of Technology 429 PUBLICATIONS 3,403 CITATIONS 100 PUBLICATIONS 1,270 CITATIONS SEE PROFILE SEE PROFILE C. Giles Miller Natural History Museum, London 81 PUBLICATIONS 575 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Conodonts from the Silurian and Ordovician of Oman, Saudi Arabia and Iran View project Silurian and Devonian vertebrate microremains View project All content following this page was uploaded by C. Giles Miller on 30 October 2014. The user has requested enhancement of the downloaded file. Transactions of the Royal Society of Edinburgh: Earth Sciences, 92, 263±323, 2002 (for 2001) Silurian and earliest Devonian birkeniid anaspids from the Northern Hemisphere H. Blom, T. MaÈ rss and C. G. Miller ABSTRACT: The sculpture of scales and plates of articulated anaspids from the order Birkeniida is described and used to clarify the position of scale taxa previously left in open nomenclature. The dermal skeleton of a well-preserved squamation of Birkenia elegans Traquair, 1898 from the Silurian of Scotland shows a characteristic ®nely tuberculated sculpture over the whole body. Rhyncholepis parvula Kiñr, 1911, Pterygolepis nitida (Kiñr, 1911) and Pharyngolepis oblonga Kiñr, 1911, from the Silurian of Norway show three other sculpture types.
    [Show full text]
  • Smithsonian Miscellaneous Collections
    SMITHSONIAN MISCELLANEOUS COLLECTIONS PART OF VOLUME LIII CAMBRIAN GEOLOGY AND PALEONTOLOGY No. 4.-CLASS1F1CAT10N AND TERMINOLOGY OF THE CAMBRIAN BRACHIOPODA With Two Plates BY CHARLES D. WALCOTT No. 1811 CITY OF WASHINGTON published by the smithsonian institution October 13, 1908] CAMBRIAN GEOLOGY AND PALEONTOLOGY No. 4.—CLASSIFICATION AND TERAIINOLOGY OF THE CAMBRIAN BRACHIOPODA^ By CHARLES D. WALCOTT (With Two Plates) CONTENTS Page Introduction i.^g Schematic diagram of evclution 139 Development in Cambrian time 141 Scheme of classification 141 Structure of the shell 149 Microscopic structure of the Cambrian Brachiopcda 150 Terminology relating to the shell 153 Definitions 154 INTRODUCTION My study of the Cambrian Brachiopoda has advanced so far that it is decided to pubHsh, in advance of the monograph,- a brief out- Hne of the classification, accompanied by (a) a schematic diagram of evolution and scheme of classification; (&) a note, with a diagram, on the development in Cambrian time; (c) a note on the structural characters of the shell, as this profoundly affects the classification; and (d) a. section on the terminology used in the monograph. The monograph, illustrated by 104 quarto plates and numerous text fig- ures, should be ready for distribution in the year 1909. SCHEMATIC DIAGRAM OF EVOLUTION In order to formulate, as far as possible, in a graphic manner a conception of the evolution and lines of descent of the Cambrian Brachiopoda, a schematic diagram (see plate 11) has been prepared for reference. It is necessarily tentative and incomplete, but it will serve to point out my present conceptions of the lines of evolution of the various genera, and it shows clearly the very rapid development of the primitive Atrematous genera in early Cambrian time.
    [Show full text]