Solution of the Heawood Map-Coloring Problem--Case 8
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Empire Maps on Surfaces Arxiv:1106.4235V1 [Math.GT]
University of Durham Final year project Empire Maps on Surfaces An exploration into colouring empire maps on the sphere and higher genus surfaces Author: Supervisor: Caspar de Haes Dr Vitaliy Kurlin D C 0 7 8 0 E 6 9 5 10 0 0 4 11 B 1' 3' F 3 5' 12 12' 0 7' 0 2 10' 2 A 13 9' A 1 1 8' 11' 0 0 0' 11 6' 4 4' 2' F 12 3 B 0 0 9 6 5 10 C E 0 7 8 0 arXiv:1106.4235v1 [math.GT] 21 Jun 2011 D April 28, 2011 Abstract This report is an introduction to mathematical map colouring and the problems posed by Heawood in his paper of 1890. There will be a brief discussion of the Map Colour Theorem; then we will move towards investigating empire maps in the plane and the recent contri- butions by Wessel. Finally we will conclude with a discussion of all known results for empire maps on higher genus surfaces and prove Heawoods Empire Conjecture in a previously unknown case. Contents 1 Introduction 3 1.1 Overview of the Problem . 3 1.2 History of the Problem . 3 1.3 Chapter Plan . 5 2 Graphs 6 2.1 Terminology and Notation . 6 2.2 Complete Graphs . 8 3 Surfaces 9 3.1 Surfaces and Embeddings . 9 3.2 Euler Characteristic . 10 3.3 Orientability . 11 3.4 Classification of surfaces . 11 4 Map Colouring 14 4.1 Maps and Colouring . 14 4.2 Dual Graphs . 15 4.3 Colouring Graphs . -
The Nonorientable Genus of Complete Tripartite Graphs
The nonorientable genus of complete tripartite graphs M. N. Ellingham∗ Department of Mathematics, 1326 Stevenson Center Vanderbilt University, Nashville, TN 37240, U. S. A. [email protected] Chris Stephensy Department of Mathematics, 1326 Stevenson Center Vanderbilt University, Nashville, TN 37240, U. S. A. [email protected] Xiaoya Zhaz Department of Mathematical Sciences Middle Tennessee State University, Murfreesboro, TN 37132, U.S.A. [email protected] October 6, 2003 Abstract In 1976, Stahl and White conjectured that the nonorientable genus of Kl;m;n, where l m (l 2)(m+n 2) ≥ ≥ n, is − − . The authors recently showed that the graphs K3;3;3 , K4;4;1, and K4;4;3 2 ¡ are counterexamples to this conjecture. Here we prove that apart from these three exceptions, the conjecture is true. In the course of the paper we introduce a construction called a transition graph, which is closely related to voltage graphs. 1 Introduction In this paper surfaces are compact 2-manifolds without boundary. The orientable surface of genus h, denoted S , is the sphere with h handles added, where h 0. The nonorientable surface of genus h ≥ k, denoted N , is the sphere with k crosscaps added, where k 1. A graph is said to be embeddable k ≥ on a surface if it can be drawn on that surface in such a way that no two edges cross. Such a drawing ∗Supported by NSF Grants DMS-0070613 and DMS-0215442 ySupported by NSF Grant DMS-0070613 and Vanderbilt University's College of Arts and Sciences Summer Re- search Award zSupported by NSF Grant DMS-0070430 1 is referred to as an embedding. -
Coloring Discrete Manifolds
COLORING DISCRETE MANIFOLDS OLIVER KNILL Abstract. Discrete d-manifolds are classes of finite simple graphs which can triangulate classical manifolds but which are defined entirely within graph theory. We show that the chromatic number X(G) of a discrete d-manifold G satisfies d + 1 ≤ X(G) ≤ 2(d + 1). From the general identity X(A + B) = X(A) + X(B) for the join A+B of two finite simple graphs, it follows that there are (2k)-spheres with chromatic number X = 3k+1 and (2k − 1)-spheres with chromatic number X = 3k. Examples of 2-manifolds with X(G) = 5 have been known since the pioneering work of Fisk. Current data support the that an upper bound X(G) ≤ d3(d+1)=2e could hold for all d-manifolds G, generalizing a conjecture of Albertson-Stromquist [1], stating X(G) ≤ 5 for all 2-manifolds. For a d-manifold, Fisk has introduced the (d − 2)-variety O(G). This graph O(G) has maximal simplices of dimension (d − 2) and correspond to complete complete subgraphs Kd−1 of G for which the dual circle has odd cardinality. In general, O(G) is a union of (d − 2)-manifolds. We note that if O(S(x)) is either empty or a (d − 3)-sphere for all x then O(G) is a (d − 2)-manifold or empty. The knot O(G) is already interesting for 3-manifolds G because Fisk has demonstrated that every possible knot can appear as O(G) for some 3-manifold. For 4-manifolds G especially, the Fisk variety O(G) is a 2-manifold in G as long as all O(S(x)) are either empty or a knot in every unit 3-sphere S(x). -
Embeddings of Graphs
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Discrete Mathematics 124 (1994) 217-228 217 North-Holland Embeddings of graphs Carsten Thomassen Mathematisk Institut, Danmarks Tekniske Hojskoie. Bygning 303, DK-Lyngby. Denmark Received 2 June 1990 Abstract We survey some recent results on graphs embedded in higher surfaces or general topological spaces. 1. Introduction A graph G is embedded in the topological space X if G is represented in X such that the vertices of G are distinct elements in X and an edge in G is a simple arc connecting its two ends such that no two edges intersect except possibly at a common end. Graph embeddings in a broad sense have existed since ancient time. Pretty tilings of the plane have been produced for aestetic or religious reasons (see e.g. [7]). The characterization of the Platonic solids may be regarded as a result on tilings of the sphere. The study of graph embeddings in a more restricted sense began with the 1890 conjecture of Heawood [S] that the complete graph K, can be embedded in the orientable surface S, provided Euler’s formula is not violated. That is, g >&(n - 3)(n -4). Much work on graph embeddings has been inspired by this conjecture the proof of which was not completed until 1968. A complete proof can be found in Ringel’s book [12]. Graph embedding problems also arise in the real world, for example in connection with the design of printed circuits. Also, algorithms involving graphs may be very sensitive to the way in which the graphs are represented. -
Linfan Mao Smarandache Multi-Space Theory
LINFAN MAO SMARANDACHE MULTI-SPACE THEORY (Partially post-doctoral research for the Chinese Academy of Sciences) HEXIS Phoenix, AZ 2006 Linfan MAO Academy of Mathematics and Systems Chinese Academy of Sciences Beijing 100080, P.R.China [email protected] SMARANDACHE MULTI-SPACE THEORY HEXIS Phoenix, AZ 2006 This book can be ordered in a paper bound reprint from: Books on Demand ProQuest Information & Learning (University of Microfilm International) 300 N.Zeeb Road P.O.Box 1346, Ann Arbor MI 48106-1346, USA Tel:1-800-521-0600(Customer Service) http://wwwlib.umi.com/bod Peer Reviewers: Y.P.Liu, Department of Applied Mathematics, Beijing Jiaotong University, Beijing 100044, P.R.China. F.Tian, Academy of Mathematics and Systems, Chinese Academy of Sciences, Bei- jing 100080, P.R.China. J.Y.Yan, Graduate Student College, Chinese Academy of Sciences, Beijing 100083, P.R.China. E.L.Wei, Information school, China Renmin University, Beijing 100872, P.R.China. Copyright 2006 by Hexis and Linfan Mao Phoenix United States Many books can be downloaded from the following Digital Library of Science: http://www.gallup.unm.edu/˜ smarandache/eBooks-otherformats.htm ISBN: 1-931233-14-4 Standard Address Number: 297-5092 Printed in the United States of America Preface A Smarandache multi-space is a union of n different spaces equipped with some different structures for an integer n 2, which can be used both for discrete or ≥ connected spaces, particularly for geometries and spacetimes in theoretical physics. We are used to the idea that our space has three dimensions: length, breadth and height; with time providing the fourth dimension of spacetime by Einstein. -
The Choice Number Versus the Chromatic Number for Graphs Embeddable on Orientable Surfaces
THE CHOICE NUMBER VERSUS THE CHROMATIC NUMBER FOR GRAPHS EMBEDDABLE ON ORIENTABLE SURFACES NIRANJAN BALACHANDRAN AND BRAHADEESH SANKARNARAYANAN Abstract. We show that for loopless 6-regular triangulations on the torus the gap between the choice number and chromatic number is at most 2. We also show that the largest gap for graphs p embeddable in an orientable surface of genus g is of the order Θ( g), and moreover for graphs p p with chromatic number of the order o( g= log(g)) the largest gap is of the order o( g). 1. Introduction We shall denote by N the set of natural numbers f0; 1; 2;:::g. For a graph G = (V; E), the notation v ! w shall indicate that the edge v ∼ w 2 E is oriented from the vertex v to the vertex w.A graph G is directed if every edge of G is oriented. All logarithms in this paper are to the base 2. We freely make use of the Bachmann{Landau{Knuth notations, but state them briefly for completeness below. Let f and g be positive functions of real variables. (1) f = o(g) if limx!1 f(x)=g(x) = 0; (2) f ≤ O(g) if there is a constant M > 0 such that lim supx!1 f(x)=g(x) ≤ M; (3) f ≥ Ω(g) if g ≤ O(f); and (4) f = Θ(g) if Ω(g) ≤ f ≤ O(g). A (vertex) coloring of a graph G = (V; E) is an assignment of a \color" to each vertex, that is, an assignment v 7! color(v) 2 N for every v 2 V (G). -
Package 'Igraph'
Package ‘igraph’ February 28, 2013 Version 0.6.5-1 Date 2013-02-27 Title Network analysis and visualization Author See AUTHORS file. Maintainer Gabor Csardi <[email protected]> Description Routines for simple graphs and network analysis. igraph can handle large graphs very well and provides functions for generating random and regular graphs, graph visualization,centrality indices and much more. Depends stats Imports Matrix Suggests igraphdata, stats4, rgl, tcltk, graph, Matrix, ape, XML,jpeg, png License GPL (>= 2) URL http://igraph.sourceforge.net SystemRequirements gmp, libxml2 NeedsCompilation yes Repository CRAN Date/Publication 2013-02-28 07:57:40 R topics documented: igraph-package . .5 aging.prefatt.game . .8 alpha.centrality . 10 arpack . 11 articulation.points . 15 as.directed . 16 1 2 R topics documented: as.igraph . 18 assortativity . 19 attributes . 21 autocurve.edges . 23 barabasi.game . 24 betweenness . 26 biconnected.components . 28 bipartite.mapping . 29 bipartite.projection . 31 bonpow . 32 canonical.permutation . 34 centralization . 36 cliques . 39 closeness . 40 clusters . 42 cocitation . 43 cohesive.blocks . 44 Combining attributes . 48 communities . 51 community.to.membership . 55 compare.communities . 56 components . 57 constraint . 58 contract.vertices . 59 conversion . 60 conversion between igraph and graphNEL graphs . 62 convex.hull . 63 decompose.graph . 64 degree . 65 degree.sequence.game . 66 dendPlot . 67 dendPlot.communities . 68 dendPlot.igraphHRG . 70 diameter . 72 dominator.tree . 73 Drawing graphs . 74 dyad.census . 80 eccentricity . 81 edge.betweenness.community . 82 edge.connectivity . 84 erdos.renyi.game . 86 evcent . 87 fastgreedy.community . 89 forest.fire.game . 90 get.adjlist . 92 get.edge.ids . 93 get.incidence . 94 get.stochastic . -
THIRTEEN COLORFUL VARIATIONS on GUTHRIE's FOUR-COLOR CONJECTURE Dedicated to the Memory of Oystein Ore THOMAS L
THIRTEEN COLORFUL VARIATIONS ON GUTHRIE'S FOUR-COLOR CONJECTURE Dedicated to the memory of Oystein Ore THOMAS L. SAATY, Universityof Pennsylvania INTRODUCTION After careful analysis of information regarding the origins of the four-color conjecture, Kenneth 0. May [1] concludes that: "It was not the culmination of a series of individual efforts that flashed across the mind of Francis Guthrie while coloring a map of England ... his brother communicated the conjecture, but not the attempted proof to De Morgan in October, 1852." His information also reveals that De Morgan gave it some thought and com- municated it to his students and to other mathematicians, giving credit to Guthrie. In 1878 the first printed reference to the conjecture, by Cayley, appeared in the Proceedings of the London Mathematical Society. He wrote asking whether the conjecture had been proved. This launched its colorful career involving 4 number of equivalent variations, conjectures, and false proofs, which to this day, leave the question of sufficiency wide open in spite of the fact that it is known to hold for a map of no more than 39 countries. Our purpose here is to present a short, condensed version (with definitions) of most equivalent forms of the conjecture. In each case references are given to the original or related paper. For the sake of brevity, proofs are omitted. The reader will find a rich source of information regarding the problem in Ore's famous book [1], "The Four-Color Problem". A number of conjectures given here are not in any of the books published so far. -
A Practical 4-Coloring Method of Planar Graphs
A Practical 4-coloring Method of Planar Graphs Mingshen Wu1 and Weihu Hong2 1Department of Math, Stat, and Computer Science, University of Wisconsin-Stout, Menomonie, WI 54751 2Department of Mathematics, Clayton State University, Morrow, GA, 30260 ABSTRACT An interesting coloring formula was conjectured by The existence of a 4-coloring for every finite loopless planar Heawood in 1890 [7]: For a given genus g > 0, the minimum graph (LPG) has been proven even though there are still number of colors necessary to color all graphs drawn on the some remaining discussions on the proof(s). How to design surface of that genus is given by a proper 4-coloring for a LPG? The purpose of this note is 7++ 1 48g to introduce a practical 4-coloring method that may provide γ ()g = . 2 a proper 4-coloring for a map or a LPG that users may be interested in. The coloring process may be programmable with an interactive user-interface to get a fast proper For example, with genus g =1, it is a doughnut-shaped coloring. object. γ (1)= 7 means the chromatic number is seven. Picture 2 shows that the seven regions (with seven different Key words: 4-coloring, two-color subgraph, triangulation colors) can be topologically put on a torus such that the seven regions are mutually adjacent each other on the torus. 1 Brief historical review So, it clearly requires at least seven colors to be able to give In 1852, Francis Guthrie, a college student, noticed that only a proper coloring of maps on the torus. -
§B. Graphs on Surfaces
Spring Semester 2015{2016 MATH41072/MATH61072 Algebraic Topology Supplementary read- ing xB. Graphs on Surfaces B.1 Definition. A graph G is a 1-dimensional simplicial complex (see Definition 4.3) which can be thought of as a finite set V = V (G) of vertices and a set E = E(G) of pairs of vertices called edges (see Definition 4.12). The degree of a vertex is the number of edges containing that vertex. A graph G is connected if for each pair of vertices v, v0 2 V (G) we can find a sequence of edges fv0; v1g, fv1; v2g,... fvn−1; vng 2 E(G) such that v0 = v 0 and vn = v (cf. Definition 2.3(b)). B.2 Examples. (a) The complete graph on n vertices Kn has all possible n 2 edges. (b) The complete bipartate graph Km;n has a vertex set V = V1 t V2 where V1 consists of m vertices and V2 consists of n vertices and the edge set is E = fv1; v2g j v1 2 V1; v2 2 V2 . B.3 Definition. A graph G can be embedded in a surface S if the geo- metric realization of G (thought of as a 1-dimensional simplicial complex) is homeomorphic to a subspace of S. A graph which embeds in S2 is called a planar graph (since embeddability 2 2 in S is clearly equivalent to embeddability in R . B.4 Remark. It is a consequence of the Triangulation Theorem (Theo- rem 2.7) that G may be embedded in S if and only if there is a triangulation of S, i.e. -
Topics in Trivalent Graphs
Topics in Trivalent Graphs Marijke van Gans January sssssssssssssssssssss sssssssssss ss s sss ssssssssss ssssss ss. .......s. .. .s .s sssssss ssssssss .s .... .. ........s.......................... ssssssss ssss ................ .s.. ...s ......... ssss ssss ........ ......... sss sssss ..... ..... ssss ssss.s .... ..... sssss sssss... ....s..... sssss ssss ..... .ssss sss.s . ....sssss ssss.................s .. .... sss ss ... .. .....s.. sss sss .. .. .. ssss ssss .. .. ......s........ sss ssss..s ..s .. ss sss ........... ........ .. .ssss sss ....s ......... ......... s. ...s ........s. ssss ssss .......... .... .......... .... sss ss ........s.......... .. .. ss ssss ...... .. ss ss......s.... .. sss ss....s... ..ssss ss..s.. .. ..s... s........ s sss.s. .... ................. sss ss .. ... .........s.. ss sss . ... .....sss s .. .. .sss s . .. ss s .. .. s s s..................s. s s . .. s s .. .. sss ss . ... sss sss .. .. .s....ss ss . ... .........ssss ss.ss .. ... ..........s.. s ss....s . ...s.......... ..... ssss sss...... .....sss sss.....s. .. .sss ss.. .....s . ss ssss............. .. .. ss ss.s.... .......s s.. ..s ssss ss ............. ......... ..................s..... ss ssss s.... ...... s........ .. ..sss ss......... ... .. sss ss..s .. .. ...s ssss sss .. .. ............sss ss ... .. .sssss sssss ...s. .. ..s.....sss ss.s...s............. ..s...sss ssss .s .. ..s..ssss sss......s ..s.. sssss ss..sss .... ..... sssss ssss ..... ..... ssss ssss .s... ....s sss ssssssss s............ ............. ssss ss.s..s....s...s..s -
On Genus G Orientable Crossing Numbers of Small Complete Graphs
On Genus g Orientable Crossing Numbers of Small Complete Graphs Yoonah Lee Abstract The current state of knowledge of genus g orientable crossing num- bers of complete graphs through K11 is reviewed. It is shown that cr3(K10) = 3; cr3(K11) ≤ 14; and cr4(K11) = 4: It is established with the aid of an algorithm that there are precisely two non-isomorphic embeddings of K9 with a hexagon with all its vertices distinct on a surface of genus 3. Introduction Given a surface S and a graph G, a drawing of G has edges with two distinct vertices as endpoints and no vertices that share three edges [1]. The crossing number of G on S, denoted crS(G), is the minimum number of crossings in any drawing of G on S. Good drawings are considered to have three conditions: no arc connecting two nodes intersects itself, two arcs have at most one point of intersection, and two arcs with the same node have no other intersecting points. Optimal drawings have the minimum number of crossings of G on S [2]. It can be shown that optimal drawings are good drawings. The crossing numbers of complete graphs Kn on orientable surfaces Sg of positive genus has been an object of interest since Heawood's map-coloring conjecture in 1890 [3]. Despite significant progress, the values of the crossing number for even rather small complete graphs on these surfaces has been arXiv:1902.02759v1 [math.CO] 7 Feb 2019 unclear. But when Kn−1 can be embedded in Sg; adding a vertex to the embedding and connecting it to each of the n − 1 vertices can in some cases produce a drawing with the lowest possible number of crossings, and in other cases a different method is required.