THIRTEEN COLORFUL VARIATIONS on GUTHRIE's FOUR-COLOR CONJECTURE Dedicated to the Memory of Oystein Ore THOMAS L
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Brief History of Edge-Colorings — with Personal Reminiscences
Discrete Mathematics Letters Discrete Math. Lett. 6 (2021) 38–46 www.dmlett.com DOI: 10.47443/dml.2021.s105 Review Article A brief history of edge-colorings – with personal reminiscences∗ Bjarne Toft1;y, Robin Wilson2;3 1Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark 2Department of Mathematics and Statistics, Open University, Walton Hall, Milton Keynes, UK 3Department of Mathematics, London School of Economics and Political Science, London, UK (Received: 9 June 2020. Accepted: 27 June 2020. Published online: 11 March 2021.) c 2021 the authors. This is an open access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/). Abstract In this article we survey some important milestones in the history of edge-colorings of graphs, from the earliest contributions of Peter Guthrie Tait and Denes´ Konig¨ to very recent work. Keywords: edge-coloring; graph theory history; Frank Harary. 2020 Mathematics Subject Classification: 01A60, 05-03, 05C15. 1. Introduction We begin with some basic remarks. If G is a graph, then its chromatic index or edge-chromatic number χ0(G) is the smallest number of colors needed to color its edges so that adjacent edges (those with a vertex in common) are colored differently; for 0 0 0 example, if G is an even cycle then χ (G) = 2, and if G is an odd cycle then χ (G) = 3. For complete graphs, χ (Kn) = n−1 if 0 0 n is even and χ (Kn) = n if n is odd, and for complete bipartite graphs, χ (Kr;s) = max(r; s). -
When the Vertex Coloring of a Graph Is an Edge Coloring of Its Line Graph — a Rare Coincidence
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repository of the Academy's Library When the vertex coloring of a graph is an edge coloring of its line graph | a rare coincidence Csilla Bujt¶as 1;¤ E. Sampathkumar 2 Zsolt Tuza 1;3 Charles Dominic 2 L. Pushpalatha 4 1 Department of Computer Science and Systems Technology, University of Pannonia, Veszpr¶em,Hungary 2 Department of Mathematics, University of Mysore, Mysore, India 3 Alfr¶edR¶enyi Institute of Mathematics, Hungarian Academy of Sciences, Budapest, Hungary 4 Department of Mathematics, Yuvaraja's College, Mysore, India Abstract The 3-consecutive vertex coloring number Ã3c(G) of a graph G is the maximum number of colors permitted in a coloring of the vertices of G such that the middle vertex of any path P3 ½ G has the same color as one of the ends of that P3. This coloring constraint exactly means that no P3 subgraph of G is properly colored in the classical sense. 0 The 3-consecutive edge coloring number Ã3c(G) is the maximum number of colors permitted in a coloring of the edges of G such that the middle edge of any sequence of three edges (in a path P4 or cycle C3) has the same color as one of the other two edges. For graphs G of minimum degree at least 2, denoting by L(G) the line graph of G, we prove that there is a bijection between the 3-consecutive vertex colorings of G and the 3-consecutive edge col- orings of L(G), which keeps the number of colors unchanged, too. -
Interval Edge-Colorings of Graphs
University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2016 Interval Edge-Colorings of Graphs Austin Foster University of Central Florida Part of the Mathematics Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Foster, Austin, "Interval Edge-Colorings of Graphs" (2016). Electronic Theses and Dissertations, 2004-2019. 5133. https://stars.library.ucf.edu/etd/5133 INTERVAL EDGE-COLORINGS OF GRAPHS by AUSTIN JAMES FOSTER B.S. University of Central Florida, 2015 A thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in the Department of Mathematics in the College of Sciences at the University of Central Florida Orlando, Florida Summer Term 2016 Major Professor: Zixia Song ABSTRACT A proper edge-coloring of a graph G by positive integers is called an interval edge-coloring if the colors assigned to the edges incident to any vertex in G are consecutive (i.e., those colors form an interval of integers). The notion of interval edge-colorings was first introduced by Asratian and Kamalian in 1987, motivated by the problem of finding compact school timetables. In 1992, Hansen described another scenario using interval edge-colorings to schedule parent-teacher con- ferences so that every person’s conferences occur in consecutive slots. -
Vizing's Theorem and Edge-Chromatic Graph
VIZING'S THEOREM AND EDGE-CHROMATIC GRAPH THEORY ROBERT GREEN Abstract. This paper is an expository piece on edge-chromatic graph theory. The central theorem in this subject is that of Vizing. We shall then explore the properties of graphs where Vizing's upper bound on the chromatic index is tight, and graphs where the lower bound is tight. Finally, we will look at a few generalizations of Vizing's Theorem, as well as some related conjectures. Contents 1. Introduction & Some Basic Definitions 1 2. Vizing's Theorem 2 3. General Properties of Class One and Class Two Graphs 3 4. The Petersen Graph and Other Snarks 4 5. Generalizations and Conjectures Regarding Vizing's Theorem 6 Acknowledgments 8 References 8 1. Introduction & Some Basic Definitions Definition 1.1. An edge colouring of a graph G = (V; E) is a map C : E ! S, where S is a set of colours, such that for all e; f 2 E, if e and f share a vertex, then C(e) 6= C(f). Definition 1.2. The chromatic index of a graph χ0(G) is the minimum number of colours needed for a proper colouring of G. Definition 1.3. The degree of a vertex v, denoted by d(v), is the number of edges of G which have v as a vertex. The maximum degree of a graph is denoted by ∆(G) and the minimum degree of a graph is denoted by δ(G). Vizing's Theorem is the central theorem of edge-chromatic graph theory, since it provides an upper and lower bound for the chromatic index χ0(G) of any graph G. -
Empire Maps on Surfaces Arxiv:1106.4235V1 [Math.GT]
University of Durham Final year project Empire Maps on Surfaces An exploration into colouring empire maps on the sphere and higher genus surfaces Author: Supervisor: Caspar de Haes Dr Vitaliy Kurlin D C 0 7 8 0 E 6 9 5 10 0 0 4 11 B 1' 3' F 3 5' 12 12' 0 7' 0 2 10' 2 A 13 9' A 1 1 8' 11' 0 0 0' 11 6' 4 4' 2' F 12 3 B 0 0 9 6 5 10 C E 0 7 8 0 arXiv:1106.4235v1 [math.GT] 21 Jun 2011 D April 28, 2011 Abstract This report is an introduction to mathematical map colouring and the problems posed by Heawood in his paper of 1890. There will be a brief discussion of the Map Colour Theorem; then we will move towards investigating empire maps in the plane and the recent contri- butions by Wessel. Finally we will conclude with a discussion of all known results for empire maps on higher genus surfaces and prove Heawoods Empire Conjecture in a previously unknown case. Contents 1 Introduction 3 1.1 Overview of the Problem . 3 1.2 History of the Problem . 3 1.3 Chapter Plan . 5 2 Graphs 6 2.1 Terminology and Notation . 6 2.2 Complete Graphs . 8 3 Surfaces 9 3.1 Surfaces and Embeddings . 9 3.2 Euler Characteristic . 10 3.3 Orientability . 11 3.4 Classification of surfaces . 11 4 Map Colouring 14 4.1 Maps and Colouring . 14 4.2 Dual Graphs . 15 4.3 Colouring Graphs . -
Acyclic Edge-Coloring of Planar Graphs
Acyclic edge-coloring of planar graphs: ∆ colors suffice when ∆ is large Daniel W. Cranston∗ January 31, 2019 Abstract An acyclic edge-coloring of a graph G is a proper edge-coloring of G such that the subgraph ′ induced by any two color classes is acyclic. The acyclic chromatic index, χa(G), is the smallest ′ number of colors allowing an acyclic edge-coloring of G. Clearly χa(G) ∆(G) for every graph G. Cohen, Havet, and M¨uller conjectured that there exists a constant M≥such that every planar ′ graph with ∆(G) M has χa(G) = ∆(G). We prove this conjecture. ≥ 1 Introduction proper A proper edge-coloring of a graph G assigns colors to the edges of G such that two edges receive edge- distinct colors whenever they have an endpoint in common. An acyclic edge-coloring is a proper coloring acyclic edge-coloring such that the subgraph induced by any two color classes is acyclic (equivalently, the edge- ′ edges of each cycle receive at least three distinct colors). The acyclic chromatic index, χa(G), is coloring the smallest number of colors allowing an acyclic edge-coloring of G. In an edge-coloring ϕ, if a acyclic chro- color α is used incident to a vertex v, then α is seen by v. For the maximum degree of G, we write matic ∆(G), and simply ∆ when the context is clear. Note that χ′ (G) ∆(G) for every graph G. When index a ≥ we write graph, we forbid loops and multiple edges. A planar graph is one that can be drawn in seen by planar the plane with no edges crossing. -
NP-Completeness of List Coloring and Precoloring Extension on the Edges of Planar Graphs
NP-completeness of list coloring and precoloring extension on the edges of planar graphs D´aniel Marx∗ 17th October 2004 Abstract In the edge precoloring extension problem we are given a graph with some of the edges having a preassigned color and it has to be decided whether this coloring can be extended to a proper k-edge-coloring of the graph. In list edge coloring every edge has a list of admissible colors, and the question is whether there is a proper edge coloring where every edge receives a color from its list. We show that both problems are NP-complete on (a) planar 3-regular bipartite graphs, (b) bipartite outerplanar graphs, and (c) bipartite series-parallel graphs. This improves previous results of Easton and Parker [6], and Fiala [8]. 1 Introduction In graph vertex coloring we have to assign colors to the vertices such that neighboring vertices receive different colors. Starting with [7] and [28], a gener- alization of coloring was investigated: in the list coloring problem each vertex can receive a color only from its prescribed list of admissible colors. In the pre- coloring extension problem a subset W of the vertices have preassigned colors and we have to extend this precoloring to a proper coloring of the whole graph, using only colors from a given color set C. It can be viewed as a special case of list coloring: the list of a precolored vertex consists of a single color, while the list of every other vertex is C. A thorough survey on list coloring, precoloring extension, and list chromatic number can be found in [26, 1, 12, 13]. -
31 Aug 2020 Injective Edge-Coloring of Sparse Graphs
Injective edge-coloring of sparse graphs Baya Ferdjallah1,4, Samia Kerdjoudj 1,5, and André Raspaud2 1LIFORCE, Faculty of Mathematics, USTHB, BP 32 El-Alia, Bab-Ezzouar 16111, Algiers, Algeria 2LaBRI, Université de Bordeaux, 351 cours de la Libération, 33405 Talence Cedex, France 4Université de Boumerdès, Avenue de l’indépendance, 35000, Boumerdès, Algeria 5Université de Blida 1, Route de Soumâa BP 270, Blida, Algeria September 1, 2020 Abstract An injective edge-coloring c of a graph G is an edge-coloring such that if e1, e2, and e3 are three consecutive edges in G (they are consecutive if they form a path or a cycle of length three), then e1 and e3 receive different colors. The minimum integer k such that, G has an injective edge-coloring with k ′ colors, is called the injective chromatic index of G (χinj(G)). This parameter was introduced by Cardoso et al. [12] motivated by the Packet Radio Network ′ problem. They proved that computing χinj(G) of a graph G is NP-hard. We give new upper bounds for this parameter and we present the rela- tionships of the injective edge-coloring with other colorings of graphs. The obtained general bound gives 8 for the injective chromatic index of a subcubic graph. If the graph is subcubic bipartite we improve this last bound. We prove that a subcubic bipartite graph has an injective chromatic index bounded by arXiv:1907.09838v2 [math.CO] 31 Aug 2020 6. We also prove that if G is a subcubic graph with maximum average degree 7 8 less than 3 (resp. -
The Nonorientable Genus of Complete Tripartite Graphs
The nonorientable genus of complete tripartite graphs M. N. Ellingham∗ Department of Mathematics, 1326 Stevenson Center Vanderbilt University, Nashville, TN 37240, U. S. A. [email protected] Chris Stephensy Department of Mathematics, 1326 Stevenson Center Vanderbilt University, Nashville, TN 37240, U. S. A. [email protected] Xiaoya Zhaz Department of Mathematical Sciences Middle Tennessee State University, Murfreesboro, TN 37132, U.S.A. [email protected] October 6, 2003 Abstract In 1976, Stahl and White conjectured that the nonorientable genus of Kl;m;n, where l m (l 2)(m+n 2) ≥ ≥ n, is − − . The authors recently showed that the graphs K3;3;3 , K4;4;1, and K4;4;3 2 ¡ are counterexamples to this conjecture. Here we prove that apart from these three exceptions, the conjecture is true. In the course of the paper we introduce a construction called a transition graph, which is closely related to voltage graphs. 1 Introduction In this paper surfaces are compact 2-manifolds without boundary. The orientable surface of genus h, denoted S , is the sphere with h handles added, where h 0. The nonorientable surface of genus h ≥ k, denoted N , is the sphere with k crosscaps added, where k 1. A graph is said to be embeddable k ≥ on a surface if it can be drawn on that surface in such a way that no two edges cross. Such a drawing ∗Supported by NSF Grants DMS-0070613 and DMS-0215442 ySupported by NSF Grant DMS-0070613 and Vanderbilt University's College of Arts and Sciences Summer Re- search Award zSupported by NSF Grant DMS-0070430 1 is referred to as an embedding. -
A Multigraph May Contain Parallel Edges. Definition 1 Edge Coloring Of
Edge Coloring A multigraph may contain parallel edges. Definition 1 Edge coloring of a graph G is an assignment of colors to its edges so that adjacent edges are assigned distinct colors. Definition 2 The chromatic index, or the edge-chromatic number of a graph G is the smallest integer n for which there is an edge coloring of G which uses n colors. 1 Edge coloring is a special case of vertex coloring. Definition 3 For a given G = (V,E), the line graph L(G) is a graph H whose set of vertices is E and the set of edges consists of all pairs (ei,e2) where e1 and e2 are adjacent edges in G. Theorem 1 For a simple graph H, there is a solution G to L(G)= H iff H decomposes into complete subgraphs, with each vertex of H appearing in at most two of these complete subgraphs. Proposition 1 Every edge coloring is a partition of the edges into matchings. Proposition 2 There is an edge-coloring of G in n colors iff there is a vertex coloring of L(G) which uses n colors. 2 For a graph G, χ′(G) and ∆(G) denote the chromatic index and the maximum vertex degree respectively. Theorem 2 ∀G, χ′(G) ≥ ∆(G). Proof. Obvious. Theorem 3 ∀G, χ′(G) ≤ 2∆(G) − 1. Proof. Apply the greedy algorithm: color edges one-by-one, using for each edge the smallest positive integer which is available. Theorem 4 ∀G, if G is bipartite, then χ′(G)=∆(G). Proof. Not obvious. -
Coloring Discrete Manifolds
COLORING DISCRETE MANIFOLDS OLIVER KNILL Abstract. Discrete d-manifolds are classes of finite simple graphs which can triangulate classical manifolds but which are defined entirely within graph theory. We show that the chromatic number X(G) of a discrete d-manifold G satisfies d + 1 ≤ X(G) ≤ 2(d + 1). From the general identity X(A + B) = X(A) + X(B) for the join A+B of two finite simple graphs, it follows that there are (2k)-spheres with chromatic number X = 3k+1 and (2k − 1)-spheres with chromatic number X = 3k. Examples of 2-manifolds with X(G) = 5 have been known since the pioneering work of Fisk. Current data support the that an upper bound X(G) ≤ d3(d+1)=2e could hold for all d-manifolds G, generalizing a conjecture of Albertson-Stromquist [1], stating X(G) ≤ 5 for all 2-manifolds. For a d-manifold, Fisk has introduced the (d − 2)-variety O(G). This graph O(G) has maximal simplices of dimension (d − 2) and correspond to complete complete subgraphs Kd−1 of G for which the dual circle has odd cardinality. In general, O(G) is a union of (d − 2)-manifolds. We note that if O(S(x)) is either empty or a (d − 3)-sphere for all x then O(G) is a (d − 2)-manifold or empty. The knot O(G) is already interesting for 3-manifolds G because Fisk has demonstrated that every possible knot can appear as O(G) for some 3-manifold. For 4-manifolds G especially, the Fisk variety O(G) is a 2-manifold in G as long as all O(S(x)) are either empty or a knot in every unit 3-sphere S(x). -
Edge-Colouring of Join Graphs Caterina De Simonea, C.P
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Theoretical Computer Science 355 (2006) 364–370 www.elsevier.com/locate/tcs Note Edge-colouring of join graphs Caterina De Simonea, C.P. de Mellob,∗ aIstituto di Analisi dei Sistemi ed Informatica (IASI), CNR, Rome, Italy bInstituto de Computação, UNICAMP, Brasil Received 29 October 2004; received in revised form 9 November 2005; accepted 28 December 2005 Communicated by D.-Z. Du Abstract A join graph is the complete union of two arbitrary graphs. We give sufficient conditions for a join graph to be 1-factorizable. As a consequence of our results, the Hilton’s Overfull Subgraph Conjecture holds true for several subclasses of join graphs. © 2006 Elsevier B.V. All rights reserved. Keywords: Edge-colourings; Join graphs; Overfull graphs 1. Introduction The graphs in this paper are simple, that is they have no loops or multiple edges. Let G = (V, E) be a graph; the degree of a vertex v, denoted by dG(v), is the number of edges incident to v; the maximum degree of G, denoted by (G), is the maximum vertex degree in G; G is regular if the degree of every vertex is the same. An edge-colouring of a graph G = (V, E) is an assignment of colours to its edges so that no two edges incident to the same vertex receive the same colour. An edge-colouring of G using k colours (k edge-colouring) is then a partition of the edge set E into k disjoint matchings.