A Note on the Golden Mean and Fibonacci Numbers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On K-Fibonacci Numbers of Arithmetic Indexes
Applied Mathematics and Computation 208 (2009) 180–185 Contents lists available at ScienceDirect Applied Mathematics and Computation journal homepage: www.elsevier.com/locate/amc On k-Fibonacci numbers of arithmetic indexes Sergio Falcon *, Angel Plaza Department of Mathematics, University of Las Palmas de Gran Canaria (ULPGC), Campus de Tafira, 35017 Las Palmas de Gran Canaria, Spain article info abstract Keywords: In this paper, we study the sums of k-Fibonacci numbers with indexes in an arithmetic k-Fibonacci numbers sequence, say an þ r for fixed integers a and r. This enables us to give in a straightforward Sequences of partial sums way several formulas for the sums of such numbers. Ó 2008 Elsevier Inc. All rights reserved. 1. Introduction One of the more studied sequences is the Fibonacci sequence [1–3], and it has been generalized in many ways [4–10]. Here, we use the following one-parameter generalization of the Fibonacci sequence. Definition 1. For any integer number k P 1, the kth Fibonacci sequence, say fFk;ngn2N is defined recurrently by Fk;0 ¼ 0; Fk;1 ¼ 1; and Fk;nþ1 ¼ kFk;n þ Fk;nÀ1 for n P 1: Note that for k ¼ 1 the classical Fibonacci sequence is obtained while for k ¼ 2 we obtain the Pell sequence. Some of the properties that the k-Fibonacci numbers verify and that we will need later are summarized below [11–15]: pffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffi n n 2 2 r1Àr2 kþ k þ4 kÀ k þ4 [Binet’s formula] Fk;n ¼ r Àr , where r1 ¼ 2 and r2 ¼ 2 . These roots verify r1 þ r2 ¼ k, and r1 Á r2 ¼1 1 2 2 nþ1Àr 2 [Catalan’s identity] Fk;nÀrFk;nþr À Fk;n ¼ðÀ1Þ Fk;r 2 n [Simson’s identity] Fk;nÀ1Fk;nþ1 À Fk;n ¼ðÀ1Þ n [D’Ocagne’s identity] Fk;mFk;nþ1 À Fk;mþ1Fk;n ¼ðÀ1Þ Fk;mÀn [Convolution Product] Fk;nþm ¼ Fk;nþ1Fk;m þ Fk;nFk;mÀ1 In this paper, we study different sums of k-Fibonacci numbers. -
On the Prime Number Subset of the Fibonacci Numbers
Introduction to Sieves Fibonacci Numbers Fibonacci sequence mod a prime Probability of Fibonacci Primes Matrix Approach On the Prime Number Subset of the Fibonacci Numbers Lacey Fish1 Brandon Reid2 Argen West3 1Department of Mathematics Louisiana State University Baton Rouge, LA 2Department of Mathematics University of Alabama Tuscaloosa, AL 3Department of Mathematics University of Louisiana Lafayette Lafayette, LA Lacey Fish, Brandon Reid, Argen West SMILE Presentations, 2010 LSU, UA, ULL Sieve Theory Introduction to Sieves Fibonacci Numbers Fibonacci sequence mod a prime Probability of Fibonacci Primes Matrix Approach Basic Definitions What is a sieve? What is a sieve? A sieve is a method to count or estimate the size of “sifted sets” of integers. Well, what is a sifted set? A sifted set is made of the remaining numbers after filtering. Lacey Fish, Brandon Reid, Argen West LSU, UA, ULL Sieve Theory Introduction to Sieves Fibonacci Numbers Fibonacci sequence mod a prime Probability of Fibonacci Primes Matrix Approach Basic Definitions What is a sieve? What is a sieve? A sieve is a method to count or estimate the size of “sifted sets” of integers. Well, what is a sifted set? A sifted set is made of the remaining numbers after filtering. Lacey Fish, Brandon Reid, Argen West LSU, UA, ULL Sieve Theory Introduction to Sieves Fibonacci Numbers Fibonacci sequence mod a prime Probability of Fibonacci Primes Matrix Approach Basic Definitions History Two Famous and Useful Sieves Sieve of Eratosthenes Brun’s Sieve Lacey Fish, Brandon Reid, Argen West -
Mathematics INSA, New Delhi CLASS NO
Mathematics INSA, New Delhi CLASS NO. WISE CHECK LIST Page : 1 ------------------------- Date : 5/06/2012 ------------------------------------------------------------------------- Accn No. T i t l e / A u t h o r Copies ------------------------------------------------------------------------- 18748 Physicalism in mathematics / Irvine, A.D. 340. 1 : Kluwer Academic, 1990 51.001.1 IRV 16606 Wittgenstein's philosophy of mathematics / Klenk, V.H. 1 : Martinus Nijhoff, 1976 51.001.1 KLE 18031 Mathematics in philosophy : Selected essay / Parsons, 1 Charles. : Cornell University Press, 1983 51.001.1 PAR HS 2259 Introduction to mathematical philosophy / Russell, Bertrand. : George Allen & Unwin, 1975 51.001.1 RUS 17664 Nature mathematized : Historical and philosophical 1 case studies in classical modern natural philosophy : Proceedings / Shea, William R. 340. : D. Reidel 51.001.1 SHE 18910 Mathematical intuition: phenomenology and mathematical 1 knowledge / Tieszen, Richard L. : Kluwer Academic Publishing, 1989 51.001.1 TIE 15502 Remarks on the foundations of mathematics 1 / Wittgenstein, Ludwig. : Basil Black Will, 1967 51.001.1 WIT 5607 Foundations of mathematics : Study in the philosophy 1 of science / Beth, Evert W. : North-Holland Publishing , 1959 51.001.3:16 BET 16621 Developing mathematics in third world countries : 1 Proceedings / Elton, M.E.A. 340. : North-Holland, 1979 51.001.6(061.3) ELT 15888 Optimal control theory / Berkovitz, L.D. : Springer- 1 Verlag, 1974 51:007 BER file:///C|/Documents%20and%20Settings/Abhishek%20Sinha/Desktop/Mathematics.txt[7/20/2012 5:09:31 PM] 29 Mathematics as a cultural clue : And other essays 1 / Keyser, Cassius Jackson. : Yeshiva University, 1947 51:008 KEY 9914 Foundations of mathematical logic / Curry, Haskell B. -
Fibonacci Number
Fibonacci number From Wikipedia, the free encyclopedia • Have questions? Find out how to ask questions and get answers. • • Learn more about citing Wikipedia • Jump to: navigation, search A tiling with squares whose sides are successive Fibonacci numbers in length A Fibonacci spiral, created by drawing arcs connecting the opposite corners of squares in the Fibonacci tiling shown above – see golden spiral In mathematics, the Fibonacci numbers form a sequence defined by the following recurrence relation: That is, after two starting values, each number is the sum of the two preceding numbers. The first Fibonacci numbers (sequence A000045 in OEIS), also denoted as Fn, for n = 0, 1, … , are: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, ... (Sometimes this sequence is considered to start at F1 = 1, but in this article it is regarded as beginning with F0=0.) The Fibonacci numbers are named after Leonardo of Pisa, known as Fibonacci, although they had been described earlier in India. [1] [2] • [edit] Origins The Fibonacci numbers first appeared, under the name mātrāmeru (mountain of cadence), in the work of the Sanskrit grammarian Pingala (Chandah-shāstra, the Art of Prosody, 450 or 200 BC). Prosody was important in ancient Indian ritual because of an emphasis on the purity of utterance. The Indian mathematician Virahanka (6th century AD) showed how the Fibonacci sequence arose in the analysis of metres with long and short syllables. Subsequently, the Jain philosopher Hemachandra (c.1150) composed a well-known text on these. -
Book of Abstracts
IIT Gandhinagar, 16-17 March 2013 Workshop on Promoting History of Science in India ABSTRACTS Prof. Roddam Narasimha Barbarous Algebra, Inferred Axioms: Eastern Modes in the Rise of Western Science A proper assessment of classical Indic science demands greater understanding of the roots of the European scientific miracle that occurred between the late 16th and early 18th centuries. It is here proposed that, in the exact sciences, this European miracle can be traced to the advent of ‘barbarous’ (i.e. foreign) algebra, as Descartes called it, and to a new epistemology based on ‘inferred’ axioms as advocated by Francis Bacon and brilliantly implemented by Isaac Newton. Both of these developments can be seen as representing a calculated European departure from Hellenist philosophies, accompanied by a creative Europeanization of Indic modes of scientific thinking. Prof. Roddam Narasimha, an eminent scientist and the chairman of Engineering Mechanics Unit at the Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, has made contributions to the epistemology of Indian science. He was awarded Padma Vishushan this year. Email: [email protected] Prof. R.N. Iyengar Astronomy in Vedic Times: Indian Astronomy before the Common Era Astronomy popularly means knowledge about stars, planets, sun, moon, eclipses, comets and the recent news makers namely, asteroids and meteorites. Ancient people certainly knew something about all of the above though not in the same form or detail as we know now. The question remains what did they know and when. To a large extent for the Siddhāntic period (roughly starting with the Common Era CE) the above questions have been well investigated. -
The "Greatest European Mathematician of the Middle Ages"
Who was Fibonacci? The "greatest European mathematician of the middle ages", his full name was Leonardo of Pisa, or Leonardo Pisano in Italian since he was born in Pisa (Italy), the city with the famous Leaning Tower, about 1175 AD. Pisa was an important commercial town in its day and had links with many Mediterranean ports. Leonardo's father, Guglielmo Bonacci, was a kind of customs officer in the North African town of Bugia now called Bougie where wax candles were exported to France. They are still called "bougies" in French, but the town is a ruin today says D E Smith (see below). So Leonardo grew up with a North African education under the Moors and later travelled extensively around the Mediterranean coast. He would have met with many merchants and learned of their systems of doing arithmetic. He soon realised the many advantages of the "Hindu-Arabic" system over all the others. D E Smith points out that another famous Italian - St Francis of Assisi (a nearby Italian town) - was also alive at the same time as Fibonacci: St Francis was born about 1182 (after Fibonacci's around 1175) and died in 1226 (before Fibonacci's death commonly assumed to be around 1250). By the way, don't confuse Leonardo of Pisa with Leonardo da Vinci! Vinci was just a few miles from Pisa on the way to Florence, but Leonardo da Vinci was born in Vinci in 1452, about 200 years after the death of Leonardo of Pisa (Fibonacci). His names Fibonacci Leonardo of Pisa is now known as Fibonacci [pronounced fib-on-arch-ee] short for filius Bonacci. -
Twelve Simple Algorithms to Compute Fibonacci Numbers Arxiv
Twelve Simple Algorithms to Compute Fibonacci Numbers Ali Dasdan KD Consulting Saratoga, CA, USA [email protected] April 16, 2018 Abstract The Fibonacci numbers are a sequence of integers in which every number after the first two, 0 and 1, is the sum of the two preceding numbers. These numbers are well known and algorithms to compute them are so easy that they are often used in introductory algorithms courses. In this paper, we present twelve of these well-known algo- rithms and some of their properties. These algorithms, though very simple, illustrate multiple concepts from the algorithms field, so we highlight them. We also present the results of a small-scale experi- mental comparison of their runtimes on a personal laptop. Finally, we provide a list of homework questions for the students. We hope that this paper can serve as a useful resource for the students learning the basics of algorithms. arXiv:1803.07199v2 [cs.DS] 13 Apr 2018 1 Introduction The Fibonacci numbers are a sequence Fn of integers in which every num- ber after the first two, 0 and 1, is the sum of the two preceding num- bers: 0; 1; 1; 2; 3; 5; 8; 13; 21; ::. More formally, they are defined by the re- currence relation Fn = Fn−1 + Fn−2, n ≥ 2 with the base values F0 = 0 and F1 = 1 [1, 5, 7, 8]. 1 The formal definition of this sequence directly maps to an algorithm to compute the nth Fibonacci number Fn. However, there are many other ways of computing the nth Fibonacci number. -
Fibonacci Is Not a Pizza Topping Bevel Cut April, 2020 Andrew Davis Last Month I Saw an Amazing Advertisement Appearing in Our Woodworking Universe
Fibonacci is Not a Pizza Topping Bevel Cut April, 2020 Andrew Davis Last month I saw an amazing advertisement appearing in our woodworking universe. You might say that about all of the Woodpeckers advertisements – promoting good looking, even sexy tools and accessories for the woodworker who has money to burn or who does some odd task many times per day. I don’t fall into either category, though I often click on the ads to see the details and watch a video or two. These days I seem to have time to burn, if not money. Anyway, as someone who took too many math courses in my formative years, this ad absolutely caught my attention. I was left guessing two things: what is a Fibonacci and why would anyone need such a tool? Mr. Fibonacci and his Numbers Mathematician Leonardo Fibonacci was born in Pisa – now Italy – in 1170 and is credited with the first CNC machine and plunge router. Fibonacci popularized the Hindu–Arabic numeral system in the Western World (thereby replacing Roman numerals) primarily through his publication in 1202 called the Book of Calculation. Think how hard it would be to do any woodworking today if dimensions were called out as XVI by XXIV (16 x 24). But for this bevel cut article, the point is that he introduced Europe to the sequence of Fibonacci numbers. Fibonacci numbers are a sequence in which each number is the sum of the two preceding numbers. Here are the first Fibonacci numbers. 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418. -
First Awakenings and Fibonacci: the Dark Ages Refers to the Period Ca
First Awakenings and Fibonacci: The Dark Ages refers to the period ca. 450-1050 in Europe. Originally it was applied to the period after the fall of Rome and before the Italian Renaissance (ca. 1400) but present usage refers to the period ca 1050-1400 as the Middle Ages to acknowledge a somewhat more enlightened period. After the fall of Rome, the only unifying force was the Christian Church. The Church did support education of the clergy and there were monastic schools where the trivium (rhetoric, grammar and logic) was taught and “logic” was little emphasized. Later the quadrivium (arithmetic, astrology, harmonia and geometry) was also taught and lay people might hire teachers. The books available were few: It was the fall of Toledo in 1085 and of Sicily in 1091 to the Christians that gave Europe access to the learning and the libraries of the Arab world and marked the end of the Dark ages. Cordoba’s library had 600,000 volumes The Dark Ages were marked by invasions: the first ones helped undermine the Roman empire; later invasions were by Magyars, Saracens and especially the Vikings. There was great insecurity and little political unity. One exception was the Carolingian dynasty in France. The grandfather of Charlemagne (Charles Martel) had helped to stop the advance of the Moors at the Battle of Tours in 732. On Christmas Day 800 AD, Pope Leo III crowned Charlemagne the first Holy Roman Emperor. There was a brief period, the “Carolingian Enlightenment” when education and learning were encouraged. Alcuin of York was recruited to oversee the education and he decided every abbey was to have its own school and the curriculum was to include the quadrivium and trivium both. -
Aryabhatiya with English Commentary
ARYABHATIYA OF ARYABHATA Critically edited with Introduction, English Translation. Notes, Comments and Indexes By KRIPA SHANKAR SHUKLA Deptt. of Mathematics and Astronomy University of Lucknow in collaboration with K. V. SARMA Studies V. V. B. Institute of Sanskrit and Indological Panjab University INDIAN NATIONAL SCIENCE ACADEMY NEW DELHI 1 Published for THE NATIONAL COMMISSION FOR THE COMPILATION OF HISTORY OF SCIENCES IN INDIA by The Indian National Science Academy Bahadur Shah Zafar Marg, New Delhi— © Indian National Science Academy 1976 Rs. 21.50 (in India) $ 7.00 ; £ 2.75 (outside India) EDITORIAL COMMITTEE Chairman : F. C. Auluck Secretary : B. V. Subbarayappa Member : R. S. Sharma Editors : K. S. Shukla and K. V. Sarma Printed in India At the Vishveshvaranand Vedic Research Institute Press Sadhu Ashram, Hosbiarpur (Pb.) CONTENTS Page FOREWORD iii INTRODUCTION xvii 1. Aryabhata— The author xvii 2. His place xvii 1. Kusumapura xvii 2. Asmaka xix 3. His time xix 4. His pupils xxii 5. Aryabhata's works xxiii 6. The Aryabhatiya xxiii 1. Its contents xxiii 2. A collection of two compositions xxv 3. A work of the Brahma school xxvi 4. Its notable features xxvii 1. The alphabetical system of numeral notation xxvii 2. Circumference-diameter ratio, viz., tz xxviii table of sine-differences xxviii . 3. The 4. Formula for sin 0, when 6>rc/2 xxviii 5. Solution of indeterminate equations xxviii 6. Theory of the Earth's rotation xxix 7. The astronomical parameters xxix 8. Time and divisions of time xxix 9. Theory of planetary motion xxxi - 10. Innovations in planetary computation xxxiii 11. -
Logo Competition HISTORY and PEDAGOGY of MATHEMATICS
International Study Group on the Relations Between HISTORY and PEDAGOGY of MATHEMATICS NEWSLETTER An Affiliate of the International Commission on Mathematical Instruction No. 49 March 2002 HPM Advisory Board: Fulvia Furinghetti, Chairperson Dipartimento di Matematica (Università di Genova), via Dodecaneso 35, 16146 Genova, Italy Peter Ransom, Editor ([email protected]), The Mountbatten School and Language College, Romsey, SO51 5SY, UK Jan van Maanen, The Netherlands, (former chair); Florence Fasanelli, USA, (former chair); Ubiratan D’Ambrosio, Brazil, (former chair) occasions for meetings to replace the European Message from our Chairperson Summer University that was not possible to organise. The proceedings of all these conferences will offer a document on how To the members of HPM, research in our field is proceeding. I hope that our Newsletter is reaching all the people involved and/or interested in the subject of • The Newsletter is not enough to make strong HPM and also that it answers your expectations. and fruitful contacts among researchers. We are We have now new regional contacts: thanks to all working to have our own site. I heartily thank of them. Karen Dee Michalowicz who managed to host us in the HPM America web site, which is now I’m looking back to the first issue and I’m again alive. checking which of the promises I wrote in my address have been kept. Things have changed a • I would like to have a logo for our Group; thus bit because I miss the wise presence of John and I I launch among the readers a logo competition. now have new responsibilities in my academic It has to be simple enough for the computer to work, nevertheless I would like to look at the cope. -
Mineral Development and Ecological Sustainability Dr
Science Horizon Volume 5 Issue 11 November, 2020 President, Odisha Bigyan Academy Editorial Board Prof. Pramod Chandra Mishra Prof. Niranjan Barik Editor Prof. Ramesh Chandra Parida Er. Mayadhar Swain Dr. Choudhury Satyabrata Nanda Managing Editor Dr. Rajballav Mohanty Er. Bhagat Charan Mohanty Secretary, Odisha Bigyan Academy Dr. Nilambar Biswal CONTENTS Subject Author Page 1. Editorial : Climate Change and Carbon Neutrality Er. Mayadhar Swain 2 2. The Mysterious Concept of Mass - III Dr. Bijay Kumar Parida 4 3. Mineral Development and Ecological Sustainability Dr. Sundara Narayana Patro 7 4. Behaviour Development of The Child Dr. (Mrs.) Pritishri Parhi 12 5. Let Us Find L.C.M. Dr. Archana Panigrahi 15 6. A Brief History of Indian Math-Magicians Purusottam Sahoo 17 7. O Mighty Planet Venus Vaibhavi Karthik 24 8. One Interesting Series of Nilakantha Er. Mayadhar Swain 25 9. Dragonfly: The Hawk of the Insect World Dr. Raj Ballav Mohanty 26 Dr. Taranisen Panda 10. Stories of Genes: II The Genetic Code G.B.N. Chainy 27 11. Mask: A Need For Survival Dr. Pranab Kumar Ghosh 32 12. Humus - The Skeleton of Soil Meenakhi Prusty 37 Monika Ray 13. Quiz: Covid-19 Pandemic Dr. Bibhuti Narayan Biswal 43 14. Recent News on Science & Technology 45 Cover Design : Kalakar Sahoo NOVEMBER, 2020 // EDITORIAL // CLIMATE CHANGE AND CARBON NEUTRALITY At present Global Warming and Climate the atmosphere from burning of fossil fuels Change are the main environmental problems like coal, petroleum oil and natural gas in faced by Earth. The problem is created by factories and thermal power plants. Also lot of man.