Alaska Maritime National Wildlife Refuge – Attu and Kiska Islands Alaska Maritime National Wildlife Refuge Aleutian Island Unit 95 Sterling Highway, Ste

Total Page:16

File Type:pdf, Size:1020Kb

Alaska Maritime National Wildlife Refuge – Attu and Kiska Islands Alaska Maritime National Wildlife Refuge Aleutian Island Unit 95 Sterling Highway, Ste U.S. Fish & Wildlife Service Contaminant Assessment • January 2014 Alaska Maritime National Wildlife Refuge – Attu and Kiska Islands Alaska Maritime National Wildlife Refuge Aleutian Island Unit 95 Sterling Highway, Ste. 1 Homer, AK 99603 Alaska Maritime National Phone: (907) 543-3151 U.S. Fish and Wildlife Service 1 800/344-WILD Wildlife Refuge – http://www.fws.gov January 2014 Attu and Kiska Islands Contaminant Assessment January 2014 Alaska Maritime National Wildlife Refuge – Attu and Kiska Islands Contaminant Assessment Deborah D. Rudis January 2014 This report may be cited as: Rudis, D.D. 2013. Alaska Maritime National Wildlife Refuge – Attu and Kiska Islands Contaminant Assessment. U.S. Fish and Wildlife Service, Juneau Field Office, Alaska. 146 pp. On the cover: Kiska Island Volcano. USFWS photo Executive Summary The purpose of the Contaminant Assessment Process (CAP) is to compile and summarize known past, present, and potential future contaminant issues on National Wildlife Refuges (NWRs). The CAP has gathered information to help Service personnel make informed management decisions about contaminant threats to refuge lands and resources. Because of the extent of the Alaska Maritime National Wildlife Refuge (refuge), CAP reports for this refuge cover units, sub- units, or individual islands of the refuge. This report documents known and potential contaminant issues on Attu and Kiska Islands of the Aleutian Islands Unit of the Alaska Maritime National Wildlife Refuge. Most people regard National Wildlife Refuges as untouched areas reserved for the conservation of wildlife and fish. However, during the World War II Aleutian campaign, Attu and Kiska were of strategic importance and were occupied by both Japanese and Allied forces. Remains of buildings, tent camps, gun emplacements, fuel storage tanks, pipelines, dumps, ammunition piles, utilities, vehicles, and ord- nance are found on refuge land on these islands. As the years progress, erosion exposes new sites while others are overgrown by vegetation. Both islands encompass a variety of maritime habitats, including rolling tundra where Aleutian Canada geese and rock ptarmigan nest, coastal cliffs that serve as nesting sites for thousands of seabirds, rivers where salmon spawn, and rocky shorelines where common eiders nest and feed offshore, along with sea otters that are found in the coastal kelp forest. Kiska holds the world’s largest population of least auklets on the slopes of Kiska Volcano at Sirius Point. Monitoring these and other wildlife species is a primary refuge management goal. The majority of contaminant issues on Attu and Kiska are from World War II (WWII) activities. Leakage and spills from petroleum product tank farms and other storage areas, fuel lines, burn pits, and barrel dumps are common, as are battery dumps, ammunition piles, electri- cal transformers, and debris piles. Unexploded ordnance is a serious issue on both islands, presenting potential hazards to refuge staff, visiting scientists, and the public. Soil and water sampling has been conducted at both islands by contractors for the U.S. Army Corps of Engineers, the branch of the U.S. Army responsible for assessing extent of contamination at former military sites, and its contractors. Soil, sediment, and some biota were sampled on Attu by the U.S. Fish and Wildlife Service (USFWS, Service) in the early 1990s. Additional sampling is needed on both islands to fully characterize the extent and severity of contamination. On Attu, most all of the known contaminated sites are associated with former Department of Defense (DoD) activities on refuge lands, including a series of facilities operated by the U.S. Coast Guard (USCG) as aids to navigation. On Kiska, all of the known contaminated sites are associated with DoD activities. Cleanup and remediation of DoD sites will be undertaken by the U.S. Army Corps of Engineers (ACOE) under the Formerly Used Defense Sites (FUDS) program. If and when any potentially contaminated lands presently under USCG ii Alaska Maritime National Wildlife Refuge – Attu and Kiska Islands Executive Summary jurisdiction are proposed to be conveyed back to the refuge, a full contaminant assessment involving rigorous sampling should be com- pleted by the present land managers before the Service accepts any of these properties. Because some of the contaminated sites on Attu are associated with long-term ongoing fuel leaks, these areas are a hazard to birds that forage in these upland locations. There are also sites where fuel still flows into nearby streams during warm weather periods. In addition, groundwater contamination by petroleum hydrocarbons may also be a concern at former tank farm sites. These sites should be a priority for further investigation, cleanup, and remediation actions. The Great Circle Route for ocean-going transport brings over 3,000 vessels per year through the area between the Near Islands (the island complex that includes Attu) and the Rat Islands (where Kiska is located). Because of the potential for future oil spills, spill response pre- paredness through spill contingency planning is one way for the refuge to prepare for such potentially damaging events. Collection of adequate baseline data prior to spill events is important for damage assessment efforts when spill incidents occur that affect Service trust resources. The remote location of these islands will present considerable response challenges, should significant spills occur. Sites in the western Aleutians may be subject to long-range atmo- spheric and oceanic transport of contaminants from sources in Asia, and migratory birds may serve as a biotic vector for transport of both contaminants and nutrients, particularly through guano deposition, to these island ecosystems. Marine debris will continue to present ongoing challenges for the refuge. Potential transport of debris associated with the March 2011 Japan tsunami may exacerbate an already significant problem. Contaminant Assessment iii Table of Contents Executive Summary .......................................................................................................................................................ii Acronyms and Abbreviations .......................................................................................................................................ix Acknowledgments .........................................................................................................................................................xi Author’s Notes ...............................................................................................................................................................xi Contaminant Assessment Process ...............................................................................................................................1 The Contaminant Assessment Process in Alaska ...............................................................................................1 The Alaska Maritime National Wildlife Refuge and the Islands of Attu and Kiska .............................................3 Attu and Kiska Islands ..........................................................................................................................................3 Attu ....................................................................................................................................................................5 Kiska and Little Kiska ....................................................................................................................................8 Land Status ...........................................................................................................................................................11 Attu ..................................................................................................................................................................11 U.S. Coast Guard Lands ...............................................................................................................................11 Aleut Corporation Lands ..............................................................................................................................12 National Historic Landmark .......................................................................................................................14 Kiska ...............................................................................................................................................................14 Alaska National Interests Lands Conservation Act (ANILCA) .............................................................16 Defense Environmental Restoration Program (DERP) ..........................................................................16 Attu .................................................................................................................................................................................17 Contaminant Investigations ................................................................................................................................17 U.S. Army Corps of Engineers (ACOE) ...................................................................................................17 U.S. Fish and Wildlife Service (USFWS, Service) ...................................................................................17 Navy Town Petroleum Contamination ........................................................................................................20
Recommended publications
  • Mercury Concentrations in Multiple Tissues of Kittlitz's Murrelets (Brachyramphus Brevirostris)
    Marine Pollution Bulletin xxx (xxxx) xxx–xxx Contents lists available at ScienceDirect Marine Pollution Bulletin journal homepage: www.elsevier.com/locate/marpolbul Mercury concentrations in multiple tissues of Kittlitz's murrelets (Brachyramphus brevirostris) ⁎ Leah A. Kenneya, , Robb S.A. Kalera, Michelle L. Kisslingb, Alexander L. Bondc, Collin A. Eagles-Smithd a U.S. Fish and Wildlife Service, Anchorage, AK, USA b U.S. Fish and Wildlife Service, Juneau, AK, USA c Ardenna Research, Potton, Sandy, Bedfordshire SG19 2QA, United Kingdom d U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, Corvallis, OR, USA ARTICLE INFO ABSTRACT Keywords: Mercury (Hg) is a non-essential, toxic metal that is distributed worldwide. Mercury biomagnifies in food webs Blood and can threaten the health of top predators such as seabirds. The Kittlitz's murrelet (Brachyramphus brevirostris) Eggshell is a seabird endemic to Alaska and the Russian Far East and is a species of conservation concern in the region. We Excrement determined Hg concentrations in eggshells, guano, blood, and feathers of Kittlitz's murrelets sampled from four Guano locations in Alaska. Mercury concentrations in eggshells, guano, and blood were low compared to other seabird Feather species. Mean Hg concentrations of breast feathers from Adak Island and Glacier Bay were significantly greater Seabird than those from Agattu Island or Icy Bay. Two Kittlitz's murrelets at Glacier Bay and one Kittlitz's murrelet at Adak Island had Hg concentrations above those associated with
    [Show full text]
  • Miles, A.K., M.A. Ricca, R.G. Anthony, and J.A. Estes. 2009
    Environmental Toxicology and Chemistry, Vol. 28, No. 8, pp. 1643–1654, 2009 ᭧ 2009 SETAC Printed in the USA 0730-7268/09 $12.00 ϩ .00 ORGANOCHLORINE CONTAMINANTS IN FISHES FROM COASTAL WATERS WEST OF AMUKTA PASS, ALEUTIAN ISLANDS, ALASKA, USA A. KEITH MILES,*† MARK A. RICCA,† ROBERT G. ANTHONY,‡ and JAMES A. ESTES§ †U.S. Geological Survey, Western Ecological Research Center, Davis Field Station, 1 Shields Avenue, University of California, Davis, California 95616 ‡U.S. Geological Survey, Oregon Cooperative Fish and Wildlife Research Unit, 104 Nash Hall, Oregon State University, Corvallis, Oregon 97331 §Department of Ecology and Evolutionary Biology, Center for Ocean Health, 100 Schaffer Road, University of California, Santa Cruz, California 95060, USA (Received 2 October 2008; Accepted 6 March 2009) Abstract—Organochlorines were examined in liver and stable isotopes in muscle of fishes from the western Aleutian Islands, Alaska, in relation to islands or locations affected by military occupation. Pacific cod (Gadus macrocephalus), Pacific halibut (Hippoglossus stenolepis), and rock greenling (Hexagrammos lagocephalus) were collected from nearshore waters at contemporary (decommissioned) and historical (World War II) military locations, as well as at reference locations. Total (⌺) polychlorinated biphenyls (PCBs) dominated the suite of organochlorine groups (⌺DDTs, ⌺chlordane cyclodienes, ⌺other cyclodienes, and ⌺chlo- rinated benzenes and cyclohexanes) detected in fishes at all locations, followed by ⌺DDTs and ⌺chlordanes; dichlorodiphenyldi- chloroethylene (p,pЈDDE) composed 52 to 66% of ⌺DDTs by species. Organochlorine concentrations were higher or similar in cod compared to halibut and lowest in greenling; they were among the highest for fishes in Arctic or near Arctic waters. Organ- ochlorine group concentrations varied among species and locations, but ⌺PCB concentrations in all species were consistently higher at military locations than at reference locations.
    [Show full text]
  • Resource Utilization in Atka, Aleutian Islands, Alaska
    RESOURCEUTILIZATION IN ATKA, ALEUTIAN ISLANDS, ALASKA Douglas W. Veltre, Ph.D. and Mary J. Veltre, B.A. Technical Paper Number 88 Prepared for State of Alaska Department of Fish and Game Division of Subsistence Contract 83-0496 December 1983 ACKNOWLEDGMENTS To the people of Atka, who have shared so much with us over the years, go our sincere thanks for making this report possible. A number of individuals gave generously of their time and knowledge, and the Atx^am Corporation and the Atka Village Council, who assisted us in many ways, deserve particular appreciation. Mr. Moses Dirks, an Aleut language specialist from Atka, kindly helped us with Atkan Aleut terminology and place names, and these contributions are noted throughout this report. Finally, thanks go to Dr. Linda Ellanna, Deputy Director of the Division of Subsistence, for her support for this project, and to her and other individuals who offered valuable comments on an earlier draft of this report. ii TABLE OF CONTENTS ACKNOWLEDGMENTS . e . a . ii Chapter 1 INTRODUCTION . e . 1 Purpose ........................ Research objectives .................. Research methods Discussion of rese~r~h*m~t~odoio~y .................... Organization of the report .............. 2 THE NATURAL SETTING . 10 Introduction ........... 10 Location, geog;aih;,' &d*&oio&’ ........... 10 Climate ........................ 16 Flora ......................... 22 Terrestrial fauna ................... 22 Marine fauna ..................... 23 Birds ......................... 31 Conclusions ...................... 32 3 LITERATURE REVIEW AND HISTORY OF RESEARCH ON ATKA . e . 37 Introduction ..................... 37 Netsvetov .............. ......... 37 Jochelson and HrdliEka ................ 38 Bank ....................... 39 Bergslind . 40 Veltre and'Vll;r;! .................................... 41 Taniisif. ....................... 41 Bilingual materials .................. 41 Conclusions ...................... 42 iii 4 OVERVIEW OF ALEUT RESOURCE UTILIZATION . 43 Introduction ............
    [Show full text]
  • Late-Quaternary Geomorphic Processes: Effects on the Ancient Aleuts of Umnak Island in the Aleutians
    Late-Quaternary Geomorphic Processes: Effects on the Ancient Aleuts of Umnak Island in the Aleutians ROBERT F. BLACK1 ABSTRACT. Glaciation, volcanic activity, marine processes and wind action affected in various ways the lives of the ancient Aleuts of Umnak Island, who first settled at Anangula about 8,400 BP following deglaciation some 3,000 years earlier. Expanding alpine glaciers reached the sea in places about 3,000 BP without the nearby peoples being much affected. A catastrophic eruption of Okmok Volcano about 8,250 BP is suggested as the cause of the abandonment of the oldest known siteof Anangula, and subsequentmigration westward into thecentral Aleutians. Cutting of strandflats between 8,250 and 3,000 BP led to the development of a very large, accessible, year- round food resource, and an apparent proliferationof settlements. In marked contrast to other parts of Beringia, Umnak Island became the site most favourable for human settlement. RfiSUMe: Les processus géomorphologiques fini-quaternaires et leurs conséquencespour les anciens Aléoutes de Me d’Umnak dans les Aléoutiennes. La glaciation, l’activite vol- canique, les processus marins et l’actiondu vent ont affect6 de diverses façonsla vie des anciens Aleoutes de l’ile d‘Umnak, qui s’établirent B Anangula vers 8400 AP, soit environ 3000 ans après la deglaciation. Les glaciers alpins en expansion atteignirentla mer par endroit vers 3000 AP sans que les habitants du voisinage soient beaucoup affectes. On suppose qu’une eruption catastrophique du volcan Okmok vers 8250 AP a caud l’abandon du plus vieux site COMU d’Anangula et une migration vers l’ouest jusqu’au centre des A16outiennes.
    [Show full text]
  • Wildlife Protection Guidelines for Alaska
    Wildlife Protection Guidelines for Alaska Alaska Regional Response Team, Wildlife Protection Committee Revision 5 – August 2012 2018 Administrative Update Revision 5 – August 2012 Administrative Update: March 2018 1 Table of Contents I. Introduction ........................................................................................................................... G-5 A. Background G-5 B. Objectives ........................................................................................................................... G-5 C. Scope of Wildlife Protection Guidelines for Alaska ............................................................... G-6 1. Geographic Area ............................................................................................................. G-6 2. Wildlife Resources .......................................................................................................... G-8 3. Wildlife Resource Agencies ............................................................................................. G-8 D. Committee Organization and Development of Guidelines ................................................... G-8 1. Committee Organization ................................................................................................. G-8 2. Development of Guidelines ............................................................................................ G-9 E. Relationship to National Planning Requirements and Guidance .......................................... G-9 F. Procedures for Revisions and
    [Show full text]
  • Identifying Nesting Habitat of Kittlitz's
    Kenney & Kaler: NestingShort habitat Notes of Kittlitz’s Murrelets 73 IDENTIFYING NESTING HABITAT OF KITTLITZ’S MURRELETS BRACHYRAMPHUS BREVIROSTRIS: OLD NESTS LEAD TO A NEW BREEDING RECORD LEAH A. KENNEY1 & ROBB S.A. KALER2 1Alaska Maritime National Wildlife Refuge, Homer, AK, USA ([email protected]) 2Migratory Bird Management, US Fish and Wildlife Service, Anchorage, AK, USA Received 2 September 2012, accepted 27 December 2012 Kittlitz’s Murrelet (Brachyramphus brevirostris) is one of the rarest Kittlitz’s Murrelets at Agattu Island (hereafter, Agattu). In 2009, the breeding seabirds in the North Pacific and one of the least known second year of the Agattu murrelet study, we revisited all previously in North America. With a patchy distribution in both Alaska and discovered nests and noted that several nest sites had increased the Russian Far East, the Kittlitz’s Murrelet population in Alaska plant cover compared with the surrounding area. Specifically, nest is estimated at 19 578 individuals (range 8 190–36 193; BirdLife scrapes where a murrelet chick survived for at least 10–15 days International 2012). Owing to its small population size, restricted contained dense mosses (Tetraplodon mnioides; a coprophilous moss distribution, and an apparent rapid population decline, the US Fish usually found growing on fecal materials and animal remains) and and Wildlife Service (USFWS) has proposed Kittlitz’s Murrelet as grasses (Poaceae). Kittlitz’s Murrelet adults provision their young a candidate species for listing under the Endangered Species Act with marine fishes at the nest scrape during the 24–40 day nestling (USFWS 2009). period (Day et al. 1999, Kaler et al.
    [Show full text]
  • Grischenko Annals 1
    Paper in: Patrick N. Wyse Jackson & Mary E. Spencer Jones (eds) (2002) Annals of Bryozoology: aspects of the history of research on bryozoans. International Bryozoology Association, Dublin, pp. viii+381. BRYOZOAN STUDIES IN THE BERING SEA 97 History of investigations and current state of knowledge of bryozoan species diversity in the Bering Sea Andrei V. Grischenko Systematics and Evolution, Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo, 060–0810, Japan 1. Introduction 2. Investigations of the American bryozoological school 3. Investigations of the Russian bryozoological school 4. Current knowledge on the bryozoans of the Bering Sea 4.1. Total diversity 4.2 Regional diversity 5. Discussion 6. Acknowledgements 1. Introduction The Bryozoa are one of the most abundant and widely distributed groups of macrobenthos in the Bering Sea. Although investigations of the phylum have taken place over a century, knowledge of species diversity in this sea is still very incomplete. The coastal waters of the Bering Sea belong territorially to Russia and the United States of America and, accordingly, study of the bryofauna has been achieved generally by the efforts of the Russian and American bryozoological schools. For a number of reasons, their investigations were conducted independently and, because the investigators identified specimens collected within their “national” sea areas, species occurring in the eastern and southeastern shelves of the sea were generally studied by American scientists and those in western coastal waters by Russians. Therefore the history of bryozoan investigations of the Bering Sea is most usefully presented according to the two lines of research. 2. Investigations of the American bryozoological school The first reliable data about bryozoans in the Bering Sea were connected with biological investigations of the Alaskan shelf and reported by Alice Robertson.1 She recorded three species – Membranipora membranacea (L.), Bugula purpurotincta (later changed to B.
    [Show full text]
  • Biological Monitoring in the Central Aleutian Islands, Alaska in 2009-2015
    AMNWR 2015/16 BIOLOGICAL MONITORING IN THE CENTRAL ALEUTIAN ISLANDS, ALASKA IN 2009-2015 Brie A. Drummond and Jeffrey C. Williams Key words: Alaska, Aleutian Islands, black-legged kittiwake, common murre, fork-tailed storm-petrel, Kasatochi Island, Koniuji Island, Leach's storm-petrel, Oceanodroma furcata, Oceanodroma leucorhoa, pelagic cormorant, Phalacrocorax pelagicus, Phalacrocorax urile, populations, productivity, red-faced cormorant, red-legged kittiwake, reproductive performance, Rissa brevirostris, Rissa tridactyla, thick-billed murre, Ulak Island, Uria aalge, Uria lomvia U.S. Fish and Wildlife Service Alaska Maritime National Wildlife Refuge 95 Sterling Highway, Suite 1 Homer, Alaska 99603 December 2015 Cite as: Drummond, B. A. and J. C. Williams. 2015. Biological monitoring in the central Aleutian Islands, Alaska in 2009-2015. U.S. Fish and Wildl. Serv. Rep., AMNWR 2015/16. Homer, Alaska. Ulak Island from the ridge above the storm-petrel plot. TABLE OF CONTENTS Page INTRODUCTION ........................................................................................................................................... 1 STUDY AREA ............................................................................................................................................... 2 METHODS .................................................................................................................................................... 3 ACKNOWLEDGMENTS ...............................................................................................................................
    [Show full text]
  • Adak Army Base and Adak Naval Operating Base and Or Common Adak Naval Station (Naval Air Station Adak) 2
    N?S Ferm 10-900 OMB Mo. 1024-0018 (342) NHL - WWM, PACIFIC Eip. 10-31-84 Uncled States Department off the Interior National Park Service For NPS UM only National Register off Historic Places received Inventory Nomination Form date entered See instructions in How to Complete National Register Forms Type all entries complete applicable sections ' _______ 1. Name__________________ historic Adak Army Base and Adak Naval Operating Base and or common Adak Naval Station (Naval Air Station Adak) 2. Location street & number not (or publication city, town vicinity of state Alaska code 02 county Aleutian Islands code 010 3. Classification Category Ownership Status Present Use __ district X public __ occupied __ agriculture __ museum building(s) private __ unoccupied commercial park structure both work in progress educational private residence X site Public Acquisition Accessible entertainment religious object in process X yes: restricted government __ scientific being considered .. yes: unrestricted industrial transportation __ no ,_X military __ other: 4. Owner off Property name United States Navy street & number Adak Naval Station, U.S. Department of the Navy city, town FPO Seattle vicinity of state Washington 98791 5. Location off Legal Description courthouse, registry of deeds, etc. United States Navy street & number Adak Naval Station. U.S. Department of the Navy city, town FPO Seattle state Washington 98791 6. Representation in Existing Surveys y title None has this property been determined eligible? yes J^L no date federal _ _ state __ county local depository for survey records city, town state 7. Description Condition Check one Check one __ excellent __ deteriorated __ unaltered _K original site __ good X_ ruins _X altered __ moved date _.__._.
    [Show full text]
  • Moose Hunters in - Southwest Alaska a Better Opportunity to Evaluate Antlers
    280 AN EVALUATION OF TROPHY MOOSE MANAGEMENT ON THE ALASKA PENINSULA Christian A. Smith, Alaska Dept. of Fish and Game, King Salmon, Alaska James B. Faro, Alaska Dept. of Fish and Game, Anchorage, Alaska Nicholas C. Steen, Alaska Dept. of Fish and Game, King Salmon, Alaska '" Abstract: an experimental trophy management program was initiated on the Alaska Peninsula in 1976 with the imple­ mentation of a regulation requiring that all harvested bull moose (AZaes aZaes gigas) have antlers with at least a 50 inch spread. The regulation was designed to protect bulls under 5 years of age, to test the capability of hunters to comply with minimum size requirements, and to determine the potential for maintaining trophy class bulls in the population through this approach. The first two objectives have been accomplished. Nearly 70 - percent of the harvested bulls have been 5 or more years old and only 4 percent of the bulls taken were illegal. Adequate survey data are not available to determine current proportions of trophy bulls in the herd. In view of the declining nature of the population and increasing frequency - of 5 year olds in the kill, however, it seems likely that current harvests may be curtailing recruitment beyond age 5. Although this may not further affect average trophy size, availability of trophy class animals could eventually be - limited to the size of the 5 year old cohort. The moose population of the central Alaska Peninsula, Game Management - Unit 9E, appears to have established via i11111igration southwest from the Naknek River drainage in the early 1930's (Faro 1969).
    [Show full text]
  • Article Is Available On- Rise Derived from Satellite Imagery, Nat
    The Cryosphere, 15, 1845–1862, 2021 https://doi.org/10.5194/tc-15-1845-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Spatially and temporally resolved ice loss in High Mountain Asia and the Gulf of Alaska observed by CryoSat-2 swath altimetry between 2010 and 2019 Livia Jakob1, Noel Gourmelen1,2,3, Martin Ewart1, and Stephen Plummer4 1Earthwave Ltd, Edinburgh, EH9 3HJ, UK 2School of GeoSciences, University of Edinburgh, Edinburgh, EH8 9XP, UK 3IPGS UMR 7516, Université de Strasbourg, CNRS, Strasbourg, 67000, France 4European Space Agency, ESA-ESTEC, Noordwijk, 2201 AZ, the Netherlands Correspondence: Livia Jakob ([email protected]) Received: 25 June 2020 – Discussion started: 27 July 2020 Revised: 23 February 2021 – Accepted: 26 February 2021 – Published: 14 April 2021 Abstract. Glaciers are currently the largest contributor to sea HMA ice loss is sustained until 2015–2016, with a slight de- level rise after ocean thermal expansion, contributing ∼ 30 % crease in mass loss from 2016, with some evidence of mass to the sea level budget. Global monitoring of these regions gain locally from 2016–2017 onwards. remains a challenging task since global estimates rely on a variety of observations and models to achieve the required spatial and temporal coverage, and significant differences re- main between current estimates. Here we report the first ap- 1 Introduction plication of a novel approach to retrieve spatially resolved elevation and mass change from radar altimetry over entire Glaciers store less than 1 % of the mass (Farinotti et al., 2019) mountain glaciers areas. We apply interferometric swath al- and occupy just over 4 % of the area (RGI Consortium, 2017) timetry to CryoSat-2 data acquired between 2010 and 2019 of global land ice; however their rapid rate of mass loss has over High Mountain Asia (HMA) and in the Gulf of Alaska accounted for almost a third of the global sea level rise dur- (GoA).
    [Show full text]
  • Aleuts: an Outline of the Ethnic History
    i Aleuts: An Outline of the Ethnic History Roza G. Lyapunova Translated by Richard L. Bland ii As the nation’s principal conservation agency, the Department of the Interior has re- sponsibility for most of our nationally owned public lands and natural and cultural resources. This includes fostering the wisest use of our land and water resources, protecting our fish and wildlife, preserving the environmental and cultural values of our national parks and historical places, and providing for enjoyment of life through outdoor recreation. The Shared Beringian Heritage Program at the National Park Service is an international program that rec- ognizes and celebrates the natural resources and cultural heritage shared by the United States and Russia on both sides of the Bering Strait. The program seeks local, national, and international participation in the preservation and understanding of natural resources and protected lands and works to sustain and protect the cultural traditions and subsistence lifestyle of the Native peoples of the Beringia region. Aleuts: An Outline of the Ethnic History Author: Roza G. Lyapunova English translation by Richard L. Bland 2017 ISBN-13: 978-0-9965837-1-8 This book’s publication and translations were funded by the National Park Service, Shared Beringian Heritage Program. The book is provided without charge by the National Park Service. To order additional copies, please contact the Shared Beringian Heritage Program ([email protected]). National Park Service Shared Beringian Heritage Program © The Russian text of Aleuts: An Outline of the Ethnic History by Roza G. Lyapunova (Leningrad: Izdatel’stvo “Nauka” leningradskoe otdelenie, 1987), was translated into English by Richard L.
    [Show full text]