<<

The early diversification of ray-finned () a n an ecomorphological approach

Weronica Klasson

Degree project in biology, 2008 Examensarbete i biologi, 20 p, 2008 Biology Education Center and Department of Physiology and Developmental Biology Supervisor: Henning Blom

The early diversification of ray-finned fishes (Actinopterygii); an ecomorphological approach

Weronica Klasson Uppsala University, Subdepartment of Evolutionary Organismal Biology, Department of Physiology and Developmental Biology. Examensarbete 30hp

Contents

Sammanfattning 2 Abstract 3 1. Introduction 4 2. Taxonomical and morphological framework 6 2.2 Shape, habitat and diet 6 2.3 Adaptation to Salt & freshwater 8 3. Environmental framework 10 3.1 Environment vs. morphology 10 3.2 Paleogeographic and paleoenvironments 11 3.3 Localities and there environments 12 3.3.1 14 3.3.2 16 4. Morphometrics analysis 19 4.1 Relative warp analysis 20 4.2 Disparity measures 21 5. Discussion 22 5.1 Ecomorphology 25 Acknowledgments 28 References 29 Appendix 1 33 List of Devonian taxa 33 List of Carboniferous taxa 34 Appendix 2 41 Relative Warp 1.1 41 Relative Warp 1.2 42 Appendix 3 43 Relative warp scores matrix 43 Relative warp scores 58 Landmarks 58 Appendix 4 64 Reconstructions of the Devonian and Carboniferous fishes 64

1 De strålfeniga fiskarnas (Actinopterygii) tidiga uppblomstring; en ekomorfologisk studie

Sammanfattning

Strålfeniga fiskar är idag den största och mest framgångsrika gruppen av fiskar och omfattar omkring 27000 arter, och finns i nästan alla olika typer av miljöer (habitat). Dagens mångfald är ett resultat av en rad uppblomstringar av vilka dom tidigaste verkar sammanfalla med såväl uppkomst och tidigaste utveckling under devon (416-359.2 miljoner år sedan) och karbon (359.2-299 miljoner år sedan). En morfometrisk analys (jämförande av kroppsformer) är gjord för att undersöka eventuella evolutionära mönster som kan urskiljas bland de devonska och karbonska strålfeniga fiskarnas kroppsformer (morfologier). Denna studie visar att den morfologiska mångfalden, som undersöks och kvantifierats med hjälp av olika numeriska metoder, kan jämföras med den taxonomiska mångfalden. Denna approach uppvisar en trend i vilken en jämn ökning av den morfologiska och taxonomiska mångfalden under den senare hälften av Devon, med en efterföljande mer explosionsartad ökning under tidig Karbon. Slutet av karbon uppvisar däremot en dramatisk minskning av såväl den morfologiska som taxonomiska mångfalden, en händelse som är svår att förstå och som kräver ytterligare studier. Denna studie har också visat att skillnader i kroppsform, även under dessa tidiga episoder av evolution, snarare beror på hur fiskarna levde och jagade (d.v.s. s.k. mikrohabitat) snarare än fysiska miljöfaktorer (t.ex. salinitet). Sex ”ekologiska kroppsformsgrupper” (ekomorfologiska grupper) har föreslagits och genom att jämföra dessa med motsvarande ”ekomorfologiska grupper” bland nulevande strålfeniga fiskar är det möjligt att dra mer omfattande slutsatser om hur de levde och jagade under devon och karbon. Noterbart med denna analys är att de devonska formerna hamnar i den ”ekomorfologiska grupper” som anses överraska sina byten, s.k. ”ligga och vänta predatorer” (“lay-in-wait-predators”), eller de som aktivt följer sina byten, s.k. ”följande predatorer” (“rover-predators”). Detta tyder på att de devonska formerna troligtvis var fiskätare snarare än plankton- och bryozo-ätare, vilka verkar representera en senare evolutionär utveckling.

2 The early diversification of ray-finned fishes (Actinopterygii); an ecomorphological approach

Abstract

The actinopterygians are the now largest and most successful group of living fishes with about 27 000 in almost every aquatic environment. This diversity is a result of numerous radiations through time, including the origins and early diversification in the Devonian and Carboniferous. Morphometric analyses have been performed in order to investigate patterns of morphological diversity during these early episodes of actinopterygian evolution. This study shows that the disparity, which has been quantified by various methods, can be correlated to the overall taxonomic diversity. This pattern of morphological and taxonomical diversification starts with a steady increase in the Devonian, followed by what appears to be a major radiation event in the early Carboniferous. However, in the late Carboniferous both the diversity and disparity drastically decreases and the reason for this is unknown. This study also shows that there are no relation between body shape and the environments salinity. Instead it seems to be the microhabitats and the way to hunt that have the most effect on body shape. Six ecomorphological groups have been detected in the studied data set, which can give clues about feeding strategies when compared to ecomorphological groups established for recent fishes. Interestingly, the ecomorphological groupings suggest that the Devonian fishes seem to be “lay-in- wait-predators” and “rover-predators”. This means that the early ray-finned fishes probably were piscivores, rather then browsers and plankton-eaters, which seems to be a later evolutionary invention.

3 1. Introduction and of and Canada (Friedman and Blom 2006). The Actinopterygii, or ray-finned Cheriolepis was followed by an fishes, belong to the osteichthyans increased record of taxa in the late (bony fishes) together with the sister Devonian, probably due to the group lobe-finned fishes extension of floodplains and deltaic (). environments. The diversification then The actinopterygians are defined by speeded up in the Early Carboniferous several characters, including the (Viséan) when more ecological niches median fin rays that are inserted became available after the placoderms directly into the body, with no became extinct. Many niches also intervening basal lobe. The primitive become available when the tetrapods diamond-shaped scales, covered with went up on land and the sarcopterygian , the pelvic girdle that are decrease in the marine environments replaced with part of the (Janvier 1996). Today there are about metapterygium and soft tissue, and the 27 000 species of ray-finned fishes presence of acrodine (a transparent cap (Hurley et al. 2007). of mineralized tissue on the tip of the The phylogeny of the basic teeth) (Janvier 1996). (oldest) Actinopterygii is based on Ray-finned fishes are the different morphological characters largest and most successful group of (Figure 1), while the recent and living fishes. They are found in every younger is based on molecular data. aquatic habitat, from the high-pressure This makes it difficult to combine the depth and salinity of the ocean to living forms with the fossil record in freshwater streams and ponds, from the phylogenetic analyses. The fossil artic coldness (-1.8C) to the tropical record may involve some problems in warmth (+40C). They are also tolerant that some taxa can be “misplaced”. For to pH level from 4 to 10 and low example, two specimens of the same oxygen levels. Some can breathe air species could be put in two different and some can even cope without taxa (or the contrary two different taxa oxygen for periods of time (Moyle et put in to one) on the basis of; sexual al. 2004). There are even species that dimorphism, different size in different can crawl on land. habitat (young/adult), local The earliest record of possible morphology changes (ecological ray-finned fishes are isolated scales species can be more common then first and fragments from the , but realized) or the taphonmy (the the oldest uncontested preservation of the fossil that could actinopterygianas to be described alter the body shape) (Moyle et al. based on articulated material is 2004). Cheriolepis (Agassiz 1835) from the

4

Figure 1. Phylogenetic tree, showing the basal actinopterygians from the Devonian (bold) and Carboniferous (C. wilidi & P. decorus are ), based on 185 morphological characters. Also note the different environments in which the fishes lived: M = Marine F = freshwater and B = Brackish (modified from Cloutier et al. 2004).

In this study the taxonomical and (2006) who explore the early morphological diversity, of several morphological diversification in the Devonian and Carboniferous coelacanth clade. actinopterygians were investigated in These types of morphometrics an environmental and temporal context methods are not mainly used on fossils to answer questions relating to the but are frequently used on recent fishes early radiation of the group. The to test various hypotheses on morphological diversity between ecomorphological questions (Costa et species have been studied to show al. 2007). A link between morphology differences in morphology depending and ecology has been shown in studies on the environment, more specifically on recent and Costa and if the species lived in marine water or Cataudella (2007) showed a fresh water environments have relationship between trophic ecology different body shapes. Such questions and morphology. Ruben and Adams can be referred to the concept of (2001) showed that ecology control the ecomorphology, which can be defined morphology more than the genes, as, “a study of the relationship between which means that the plasticity of the the ecological role of an individual and fish was more than first expected. The its morphological adaptations” morphology of a species is then shaped (Rickleffs 1990). One way to study by many factors, such as trophic levels ecomorphology is to use morphometric and structure, habitat and motility analysis (like relative warp analysis) in (Costa et al. 2007) order of quantify body shape variation Norton (1991) showed in a and then use the data to explore the study on the Cottidae family that there relevance in variables such as, salinity is a relationship between mouth size and choice of habitat. and capture techniques and the sort of This type of patterns is prey. The predator’s mouth interesting to investigate, since the morphology and attack techniques phylogeny of the Devonian taxa did together play a central role in not show any relationship between determining how successful predators ecology and phylogeny (Friedman and were at catching prey and also helps to Blom 2006). A similar approach has constrain the range of prey for the fish. been used by Friedman and Coates

5 2. Taxonomical and morphological and 17 (of 41) from the Pennsylvanian framework (Figure 2). Many of the used reconstructed taxa where made for The data used in this study (list of taxa about 50-100 years ago. This may and available reconstructions) where affect the accuracy and since the scope acquired from the literature. 18 species of this study is not to test the full (7 families) are known from the accuracy of previous work, one need to Devonian and 115 species (33 accept all potential biases. One has to families) from the Carboniferous be aware that there may also be (Appendix 1). Of theses 8 Devonian reconstructions made from incomplete and 64 Carboniferous taxa had material, therefore completed by reconstructions useful for interpolations, and qualified morphometrics analysis. The assumptions. In some cases, this study Carboniferous taxa used include 49 is using data directly from photographs species (of 74) from the of body fossils.

80 70 60 50 Total (n) 40 30 Known reconstructions 20 (n) 10 0 Dev. Miss. Penn.

Figure 2. Diagram showing the number of taxa and available reconstructions from the Devonian (Dev.) and the two epochs of the Carboniferous; the Mississippian (Miss.) and the Pennsylvanian (Penn.) (collected data from Appendix 1)

2.2 Shape, habitat and diet water temperature (Moyle et al. 2004). The size, position and shape of the The shape of a fish reveals a lot about mouth and eyes can also provide clues diet and habitat (Moyle et al. 2004; about diet. However in order to be Webb 1984). For example, the position accurate you must find stomach and/or and size of the fins dictates movement intestinal contents (gut length and prey and speed, and can thus provide clues residue), which are rarely preserved in abut hunting techniques (Webb 1984). fossils. In many cases, it is only the Speed is as well determined by the body form and morphology that environment yields information on what their diet (accessibility/approachability) and the (Janvier 2002).

6

Figure 3. The different shape types/groups; 1-6 the modern fishes (generalize) (Moyle et al. 2004) and A-E the Devonian and Carboniferous equivalence (Appendix 1). The bottom fishes seem not to have any observed equivalence in the Devonian and Carboniferous time. 1, Rover-predator. 2, Lay-in-wait-predator. 3, Surface-originated fish. 4, Eel-like fish. 5, Deep-body fish. 6, Bottom fish (Bottom rover). A, Woodichthys bearsdeni B, Howqualepis rostridens C, Pyritocephalus sculptus D, Tarrasius problematicus E, superbus

According to Moyle and Cech (2004) Moronidae) and the marine tuna there are six different body types, (Thunnus sp.). depending on lifestyle; rover-predator, Lay-in-wait-predators have lay-in-wait-predator, surface-oriented fusiform, torpedo-like bodies with fish, bottom fish, deep-bodied fish and flattened heads, large mouths and eel-like fish (Figure 3). All six modern many sharp teeth. They also have large groups are found in both marine and caudal fins, in addition to dorsal and fresh water environments. anal fins positioned far back on the Rover-predators have fusiform body, and give the fish thrust used for bodies, pointed heads with terminal ambushing fast-moving prey (i.e., mouths, forked tails and evenly freshwater pikes (Esocidae) and the distributed fins. They are constantly marine barracuda (Sphyraenidae)). moving and capture prey by pursuit. Surface-oriented fishes are a They are living in open water or in small with an upward-pointing mouth, moving water (stream), i.e., the fresh a dorsal flatten head and large eyes. water (Centrarchidae and They have a fusiform to deep body and stocky-bodied with the

7 placed far back on the body. They are because the sediments themselves may often living in stagnant fresh- to be hard to interpret, but also because of brackish-waters. Capture plankton, other ecological and taphonomic insects and small fishes (i.e., the fresh variables such as migration and post- water Mosquitofish (Gambusia) and depositional transportation. the marine and fresh water Killerfish Many recent species are not (Fundulidae)). obligate salt- or fresh-water and have Eel-like fishes have elongated parts of there life cycles in salt- or/and bodies and a blunt or wedge-shaped fresh-water environments and heads. The tail is tapering or rounded. migration through different salinities is They are adapted to live in crevices common. For recent fish there are three and holes in reefs and rocks and main ways for to migrate; 1) maneuvering thru tight beds of plants. Potamondromy, through freshwater There is also some living borrowed in and they are incapable of passing soft sediment and some free swimming through long distances of saltwater, in open waters (i.e., the marine and with salinity over 3% salt (>25-30 ppt). fresh water Eels (Anguilliformes) and 2) Oceanodromy, through saltwater, the fresh water Loaches (Cobitidae)). but can also be found in freshwater, Deep-body fishes are laterally mainly for continental dispersal. 3) flattened (compressiform) with a deep Diadromy migrates through both, but body, long dorsal and anal fin. The spends different parts of their life cycle head has large eyes, a short snout with in salt- or/and fresh-water (Moyle et al. a small and posterior mouth. They are 2004). All tree of these ways of adapted to maneuver in tight migrate would also probably exist for environments, like , dense the fossil species. beds of plants or tight schools (of own There are five broad types of species). They are picking small recent estuarine (transitional off the bottom or water environments between salt water and column. Many deep-body are fresh water) fishes that are good associated with the bottom but some examples of how different fish group are associated with the open water, the lives and may have lived; 1) planktivores (Herrings (Clupea sp)). Freshwater fish, fishes that lives in The open water deep-body fishes use water with less then 0.5% salt (3-5ppt the flattened body-shape for (until 15ppt)) i.e., catfish (Ictalurus camouflage, which makes them less catus). 2) Diatromous fish, fish that visible from below. spend different parts of their life cycle Bottom fishes have many in salt- or/and fresh-water i.e., salmon different forms but all adapted to a life (Salmonidae). 3) True estuarine fish, on the bottom and in most the swim fish that spent there life cycle entire in bladder is reduced or absent. The the estuarine i.e., ( bodies is flatten in one or another americana). 4) directions and there are five main Nondependent marine fish, commonly forms of bottom fishes; bottom rovers, found in the lower parts of the bottom clingers, bottom hiders, flatfish estuarine, but only seasonally and are and rattails. important fore the shallow-water marine environments i.e., herring 2.3 Adaptation to salinity (Clupea). 5) Dependent marine fish, It can be difficult to determine in only use the lower parts of the eustrine which paleoenvironmental conditions (shallow marine water) for spawning the fossils lived (Appendix 1) not only i.e., croakers (Sciaenidae) (Moyle et al.

8 2004). This means that most marine (Westoll 1944) is necessary to the (water with more than 3% salt) fishes mobility. fish use two main live in the shallow water near strategies to tolerate different salinity continental shelves and fresh water levels. The marine use a fishes lives in upper parts of streams, hypoosmotically system, which means rivers and in lakes on the continent. that they actively drink water to Two variables can be used to explain replace the water lost through osmosis. the distribution of marine fishes, the Contrary to marine teleosts, freshwater richness of species decreases with 1) teleosts are hyperosmotic and have an water depth and 2) latitude. For internal salt concentration is 1/3-1/4 example, forty percent of all recent (of the surrounding fresh water) which marine fishes live in the tropics means that they actively get rid of shallow water. Marine environments water and take up salt. Basically, the are not as frequently studied as teleost take up water and get rid of freshwater ones and are mainly divided salts, or the other way around, using into temperature regions (tropic, modified gills and kidneys (Moyle et subtropics, temperate, sub-artic and al. 2004). Usually the marine fish are arctic) (Moyle et al. 2004). more tolerant of freshwater than The biggest problem that freshwater fishes are of saltwater. marine fish encounter is low oxygen There are other adaptation solubility in saltwater that increases strategies to increase salt with both temperature and salinity concentration, such as (Moyle et al. 2004). To overcome the Osmoregulation, which means that problem with the salinity, a species their body fluids adapt to match the must adapt to new conditions, which environment, but they can only tolerate may take some time. Westoll (1944) slight changes in salinity. Hagfish suggested, based on this observation, mainly use this strategy. that the majority of Devonian and Another strategy maintains Carboniferous fishes was freshwater inorganic internal salinity fishes and that the ones found in (approximately 1/3 of the seawater) by marine sediment where transported balancing a large concentration of after death and/or that only a few was organic salts (urea and Trimethylamine successfully adapted to salt waters. oxide (TMAO)) in the blood. This This is hard to prove and would be a means that, to some extent, the fish can challenge for future studies. actively alter the concentration of The adaptations necessary to organic salt in the blood, by modified survive in higher salinity included a gills and the movement of urea. This more efficient ways to take in oxygen strategy is used by most and modify the internal salt balance. It elasmobranches (Moyle et al. 2004). can also involve chancing the morphology since saltwater has higher buoyancy and altering the morphology/fin size (heterocercal tail) and/or reducing the swim bladder

9 3. Environmental framework (shads (Dorosoma)) or bottom feeding (carpsuckeres (Carpiodes)), the fishes 3.1 Environment vs morphology in the streams bottom are very similar to the “bottom-fishes” found in the Different environments demand lakes. different adaptations and studies on Lake habitats, can be divided in recent groups have provided a better to three main zones and include the understanding of how the body-shape aquatic plant zone, which is relates to habitats. From this general characterized by the presence of dense understanding, Moyle and Cech (2004) vegetation small fish and invertebrates. formed a generalized model for body- The main lay-in-wait-predators are shape and habitat relationship for found here and are associated with logs fishes in streams, lakes, costal habitats and rocks. Deepwater zones are and reefs. located below the vegetation, aquatic Stream habitats, fish species plant zone and are distinguished by that inhabit streams must be able to dark, cold water with silty-bottom adapt to this ever-changing (White sucker, Catostomus environment because temperatures and commersoni). flow rates fluctuate depending on Open-water zones are seasonality and the time of year. Three characterized by large schools of main zones exist in association with juveniles, plankton and large predators temperate streams; (Walleye (Percidae)). 1) The erosional zone is Costal habitats or estuaries are characterized by high-gradients, rocky transitional environments, mostly bottoms and pools of cold water. The between freshwater and marine fish that inhabit this environment are ecosystems and usually have varying usually streamlined and active (Trout salinity depending on the season and (Salmonidae)) or small bottom amount of freshwater input. Estuaries dwellers (i.e. sculpins (Cottoidea) and commonly have large populations of dace (Cyprinidea)). zooplankton, their predators and other 2) The intermediate zone, or invertebrates. the long middle reaches of tributary Reefs have a vast diversity of streams, typically have moderate fishes and microhabitats, which has gradients, warmer water temperatures, made it a prosperous place for the ray- equal amounts of shallow riffles and finned fishes. There are three different deep and rock or mud-bottomed pools. types of feeding strategies and body The fish associated with this plans in the reefs; 1) Generalized environment are typically not deep- carnivores, 2) specialized carnivores bodied and have a body plan that is and 3) Herbivores. somewhere in between streamlined and In group 1 they are classic deep-bodied (i.e. suckers (Catostomus) rover-predators, a generalized and darters (Etheostomatinae)). carnivore that eats large preys, which 3) The depositional zone occurs is most noticed on the reef and is small in the warm, turbid and sluggish lower and colorful, in small family groups or part of the stream system, where the large in large schools browse over the bottoms are muddy and have aquatic reefs, which are divided in to tree plants. The fish found here are groups a) nocturnal, b) crepuscular and typically deep-bodied forms that are c) diurnal types. adopted for, picking small In group 2, the specializes from plants (sunfish), plankton feeding carnivore they are eight different

10 groups; 1) Ambushers that use (Chaetodontidae)). 6) Cleaners are elaborate camouflage to surprise the small, specialized invertebrate feeders prey (i.e., scorpionfish and are eating ectoparasites and dead (Scorpaenidae)). 2) Water-column or diseased tissue from other fishes, stalker that is a group that is silvery, like Gobies (Gobiidea). Planktivors elongated and has a pointed snout full that are feeding on zooplankton are of of sharp teethes, that surprises the prey two types, the 7) Diural planktivors by looking invisible in the water- which has a streamlined (between column. They have a fin structure that rover-predators and deep-body fishes) is typical fore lay-in-wait predators body, deeply forked or lunate tail, fine (i.e., trumpetfishes (Aulostomidea)). 3) gill rakers and a small, flexible Crevice predators and 4) Concealed- upturned mouths (example, prey feeders which actively seek their Pomacentridae). In addition, the 8) prey, Concealed-prey feeders with the Naturnal planktivore is roughly the barbells, like the goatfish (Mullidea) same but have a large and less flexible and Crevice predators in crevices and mouth and large eyes. small caves, they have therefore The last group, the herbivores elongated bodies and small heads, like make up approximately 20 % of all moray eels (Muraenidae). 5) Diurnal fishes inhabit the reefs and are small, predators on benthic invertebrates are brightly colored, numerous, but among the most colorful and particular lacking in Varity, there main sources looking fiches, they are mainly deep- of food is the algae covering the reefs, bodied, with a elongated snout and i.e., surgeonfishes (Acanthuridae) tiny, sharp teethes (i.e., butterflyfish

Figure 4. Map of landmass positions in the early Devonian (390Ma) (Scotese 1997)

3.2 Paleogeographic and nektonic invertebrates (i.e., paleoenvironments ammonoides) and appeared in the Devonian seas. On land, the During the Devonian, the lands were plants and insects become more wide collected into two large continents spread and not restricted to the marshy (Figure 4), Gondwana and Euramerica habitats. (Laurussia), which later fused to one The Devonian has been super continent in the Permian. The sea regarded largely as warm and humid levels were relative high, but become period, with a drop in temperatures in lower at the end of the Devonian. The the Late Devonian, due to glaciations. seas were producing large reef In the late Devonian cooling many taxa complexes by stromatoporoids and seem to disappear, which left many , and many new taxa of different

11 niches open fore the early 385.3 Ma, Frasnian 385.3-374.5 Ma Carboniferous taxa (Stanley 1998). and Famennian 374.5-359.2 Ma The Stages in the middle/late (Gradstein et al. 2005). Devonian period is 391.8-

Figure 5. Map of the landmasses during the Carboniferous (Scotese 1997).

In the Carboniferous, the two (probably around the equator) and continents collided and mountains many new kinds of plants. With the started to build up (Figure 5). The new plant come also new “land Carboniferous started with ice on the ” such as flying insects poles, which stayed during the whole (Stanley 1998). Carboniferous time period. The The period has been separated latitudinal temperature gradient where into two, the Mississippian 359.2- steep with glaciers until the latitude of 318.1Ma ( 359.2-345.3Ma, 30o, the rest was warm and humid Viséan 345.3-326.4Ma, Namurian equatorial environments. The sea 326.4-315 Ma) and Pennsylvanian levels started to rise in the early 318.1-299Ma (Westphalian 315-306.5 Carboniferous, so warm shallow seas Ma, Stephanian 306.5-299 Ma) spread out during the early (Gradstein et al. 2005) Carboniferous. The transition from Early (Mississippian) to Late 3.3 Localities and their environments (Pennsylvanian) Carboniferous is marked with two main events, a global In this study taxa from about 29 decline in sea level and a heavy localities have been used (Table 1). of the marina fauna, Common for all these are that the probably due to an expansion of the localities have provided us with glaciers. The freshwater habitats specimens preserved well enough for expanded and diversified. At the same making reasonable reconstructions. time the mollusks, sharks and ray- They are all found in the Devonian and finned fishes were common members Carboniferous in a variety of in the freshwater faunas. The environments similar to the recent Carboniferous is known for it massive lakes, lagoons, bays, rivers and coal forming properties, which indicate swamps. a warm and humid environment

12 Table 1. The Devonian and Carboniferous localities, name, age, freshwater/marine water and a short description (data collected from 3.3.1-3.3.2). F=Freshwater M=Marine water B=Brackish water Marine / Locality Period/ Stage Freshwater Description

Scotland: Shetland, Exnaboe; Exnaboe Devonian/ Givetian F Tropical basin

Scotland: Grampian, Tynet Burn; Orcadian lake Devonian/ Eifelian-Givetian F Tropical lake Germany: Cologne; Bergisch-Gladbach - Paffrath Trough Devonian/ Givetian-Frasnian M Deep sea Belgium: Famenne Formation (Assise de Mariembourg) Devonian/ Famennian M Open sea

Canada: Quebec; Escuminac Bay Devonian/ Famennian M Shallow bay United States: Red Hill, Pennsylvania; Catskill Formation, Devonian/ Famennian F Assembly in a delta United States: Skinners Run, Ohio; Ohio shale/ , Devonian/ Famennian M Deep basinal facies

Greenland: Obruschew Bjerg Formation Devonian/ Famennian F Lake

Siberia: Krasnoyarski Kran Devonian/ Famennian M - : Mount Howitt, Victoria; Avon Rriver Group Devonian/ Frasnian M Lagoon

Australia: Gogo station; Gogo Formation Devonian/ Frasnian M Reef Australia:, Williambury Station; Gneudna Formation Devonian/ Givetian-Frasnian M -

Scotland: Foulden Carboniferous/ Viséan F/B Swamp

Scotland: Dumfries; Glencartholm Volcanic beds Carboniferous/ Viséan F(B/M) Quiet delta

Scotland: Edinburg, Lothian; Wardie Carboniferous/ Viséan B Deep and wide lagoon Scotland: Glasgow, Bearsden; Manse Burn Formation Carboniferous/ Namurian M(F) Bay (probable)

United Kingdom: Lancashire; Coal Measures Carboniferous/ Westphalian B Fluvio-delta United Kingdom: Newsham, Northumberland; Low Main coal/Low Main seam Carboniferous/ Westphalian F Swamp/ Old flood Czech Republic: Bohemian Massif; Kladno and Carboniferous/ Westphalian- Slany Formation Stephanian F Lake/ River system France: Massif Central; Lake Commentery and Montceau-les-Mines Carboniferous/ Stephanian F Lake/ Swamp South Africa: Soetendals Vlei/ Lake Mentz; Carboniferous/ Upper Witteberg series Mississippian F(B) Lake/ Wide river

United States: Montana; Bear Gulch Carboniferous/ Namurian M Tropical Bay Swampy lowlands, United States: Illinois; Mazon Creek Carboniferous/ Pennsylvannian F(M/B) Rivers and Bays

United States: Pennsylvania; Cannelton Member Carboniferous/Westphalian F Swamp United States: Linton, Ohio Jeffersson; Upper Freeport Coal Carboniferous/Westphalian F Swamp Canada: Nova Scotia; Albert and Joggins Subtropical Basin and formations, parsboror Carboniferous F(B) Swamps

Australia: Victoria; Mansfield Basin/group Carboniferous F Basin with tides

13

Figure 6. The Devonian localities approximately location in the modern world (modified from http://www.debian.net/devel/developers.loc.sv.html).

3.3.1 Devonian Germany: Cologne; Bergisch- Scotland: Shetland, Exnaboe Gladbach - Paffrath Trough The fauna in Exnaboe fish bed is from The Bergisch-Gladbach formation the late Givetian (Dineley et al. 1999). dates back to the Devonian and may The Exnaboe represents a non-marine represent a bathyal marine deposit, which form a part of the Old environment (Øving 1961). Red Sandstone and has a range from the Silurian to the Devonian. Belgium: Famenne Formation (Assise Palaeogeographic reconstructions de Mariembourg) suggest that the continent lay in The Famenne Formation has been tropical to sub-tropical latitudes from characterized as a relatively open the equator to about 30º south. marine environment that was deposited on a shallow epicontinental platform Scotland: Grampian, Tynet Burn; (Thorez et al. 2006). Orcadian Lake The Orcadian Basin was deposited in Canada: Quebec; Escuminac Bay the mid Devonian and are a part of the Escuminac Bay sediments represent a south Old Red Sandstone. The basin shallow marine (or brackish (Chidiac involved a series of large shallow 1996)) basin and may have been a part freshwater lakes (Dineley et al, 1999; of the epicontinental sea associated Stephenson et al. 2006) up to 50 000 with the ocean (Prichonnet et al. 1996). km2 in area. The palaeolatitude of the Escuminac Bay is located on the Gaspé area was between 15° and 30° S. This Peninsula, Québec, and was formed means a tropical climate, with periods during the late Devonian in the latitude of drying (ephemeral) and refilling of 10-12 south of the equator. The from seasonal rainfall (in orders of latitude of the paleoenvironment periods of thousand of years), which suggests a dry climate but the basin resulted in a fluctuation in the lakes was protected from drying out by depth and areal (Stephenson et al. seasonal transport of water and 2006). sediment from the terrestrial surrounding (Prichonnet et al. 1996).

14 United States: Red Hill, Pennsylvania; be a freshwater lake, probably with Catskill Formation, low oxygen conditions on the bottom The Red Hill sediments represents a (or in the water mass) (Friedman and shallow, fluvial assembly in the Blom 2006). Duncannon Member in the Catskill Formation, which was a late Devonian Siberia: Krasnoyarski Kran freshwater assemblage in a deltaic The Krasnoyarski Kran is of marine system. Red Hill was located on origin, from the Famennian. The latitude 20 south of the equator in a sediments is exposed in a quarry near subtropical, seasonal climate. The the Atshinsk-Albakan railroad fossils show signs of being transported (Prokofiev 2002). but are preserved in tree-dimensions and have been dated to the late Australia: Mount Howitt, Victoria; Famennien (Daeschler 2000). Avon Rriver Group The Avon river group represents a United States: Skinners Run, Ohio; freshwater lagoon within a river Ohio Shale/Cleveland Shale system and the sediment has been The Cleveland shale is a part of a deep dated to the Frasnian. It is located basinal facies of the Catskill delta and along Howqua River at the base of has been interpreted as a deep marine Mount Howitt, central Victoria (about environment. It seems like that the 45 km east of Mansfield) (Long 1988). shale’s hade periods of flux in the bottom oxygen level and under the Australia: Gogo station; Gogo Devonian–Mississippian the black Formation shale were built up of terrestrial Gogo Formation is the inter-reef part sediment under dysoxic/anoxic of a gigantic marine barrier reef. The conditions. More recently a high- formation is known for its exceptional energy facies has been identified and soft tissue preservation and has may have occurred locally at water limestone nodules in shale deposits and depths much shallower than first is from the Frasnian. Gogo station is suggested (Rimmer et al. 2004). 250 km SE of Derby in the Fritzroy Skinners Run is a bed in the base of the Trough. The Fritzroy Trough lies on Cleveland shale, south of Cuyahoga the nothen flank of Cunning basin, river and north of Willow. Skinners which was near-shore shelf in the Run is dated to the Late Famennian middle Devonian (Gardiner 1984). (Dunkle 1964). Australia:, Williambury Station; Greenland: Obruschew Bjerg Gneudna Formation Formation Gneudna formation is a marine Obruschew Bjerg Formation is a Late assemblage of Givetian-Frasnian age Famennian formation, now located in in Western Australia (Gardiner 1984). eastern Greenland and is interpreted to

15

Figure 7. The Carboniferous localitys approximately location in the modern world (modified from http://www.debian.net/devel/developers.loc.sv.html).

3.3.2 Carboniferous

Scotland: Foulden from the sea. The water in the lagoon The Foulden area was perhaps a where probably brackish with more or swamp that became submerged into a less salinity from time to time (Dineley semi-permanent, relatively deep (5m) et al. 1999). lake with occasional marine flooding. The lake is interpreted to be fresh- to Scotland: Glasgow, Bearsden; Manse brackish-water, with some marine Burn Formation, influence and dates back to the Viséan The Manse Burn fish beds fauna tells (Dineley et al. 1999). us about sequential marine and non- marine environments with varying Scotland: Dumfries; Glencartholm salinity and oxygenation, with Volcanic Bed “seasonal” changes (seasonal can in The Glencartholm Volcanic Bed is this context mean in periods of interpreted to be a relatively quiet thousand of years). The bed is of freshwater environment with some Numurian age (Dineley et al. 1999). influence of brackish- and deltaic- water. There are also some marine United Kingdom: Lancashire; Coal invertebrates, but not in the same beds Measures as the fishes. The fossils represent a The Coal Measures sediments death-assemblage that suggests rapid represent a brackish, fluvio-deltic burial in addition to low pH and setting from the Westphalian oxygen levels. The Glencartholm (Anderson et al. 1997). Volcanic Bed is from the early Viséan (Dineley et al. 1999). United Kingdom: Northumberland, Newsham; Low Main coal/Low Main Scotland: Edinburgh, Lothian; Wardie seam The sedements at Wardie was formed Low Main seam sediments seems to in a lagoonal setting and is estimated to have been an old flood channel filled be approximately 50 km diameter with peat, that had re-flooded and (Dineley et al. 1999) and dates back to become a large and deep freshwater the Viséan. The lagoon were relative lake. The lake was probably stagnant and was frequently isolated surrounded by a swamp-forest at the

16 time of the fishes. From the the Stephanian (Racheboeuf et al. Westphalian B (Boyd 1984). 2002).

Czech Republic: Bohemian Massif South Africa: Soetendals Vlei/ Lake In the Stephanian the Bohemian Massif Mentz; Upper Witteberg series was a freshwater lake, of over 5000 Soetendals Vlei and Lake Mentz with km2 in size. The lake where positioned surroundings are representing in the 2-3 north of the equator, and has been Upper Witteberg series from the Lower interpreted as a tropical climate. The Carboniferous time. These areas are Carboniferous sediments were interpreted to have been a freshwater deposited in a relatively humid, stable, lake or river deposit. The Lake Mentz fluvial, lacustrine environment. The area may have been in contact with the lake had a large fauna and flora and sea and show evidence of some persisted into the lower Permian brackish (or estuarine) influence. The (Stamberg 2006). area around Lake Mentz may have The Kladno Formation been fluxing in bottom oxygen level (Kladno-Rakovník Basin) probably due to rapid shallowing (Westphalian D) and the belonging leading to mass fish mortality, which Nany Member is a part of the support the idea that the area may have western and central Bohemian basin. been an estuary (Gardiner 1969) The deposits of the Nany Member (Westphalian D-Early Stephanian B) United States: Montana; Bear Gulch are fluvial and represent the base of a Limestone braided river system. The Bear Gulch Limestone sediment is The Slany Formation interpreted to have been a shallow, (Stephanian B) and the belonging tropical marine bay with many fish and Member Konov is a part of the central few marine invertebrates, probably like and western part of the Massif bays today. The bay where 12 north of (Oplutil et al. 2005). the equator and the climatic conditions due to the latitude would have been, France: Massif Central deserts in the north and tropical La grande couche, Lake conditions in the south, characterized Commentery by a monsoonal climatic regime of Lake Commentery lies in the rainy and dry seasons. The bay shows Commentery Basin, within Massif evidence of a hypersaline bottom Central. The environment was fluvial, alternative top water due to dry and lacustrine and swampy with a tropical wet seasons. The Bear Gulch material climate (Rolfe et al. 1982). The lake is from the Namurian, Upper was a freshwater basin that covered an Mississippian (Lower Carboniferous) area of 10x3km in the Stephanian (Grogan et al. 2002). (Dietze 2000) United States: Illinois; Mazon Creek The Mazon Creek, sediments show a Bassin d´Autun, Bourbon mixture of sediments represents, l´Archambault, Montceau-les-Mines swampy lowlands and shallow marine The Blanzy-Montceau-les-Mines Basin bays, located a few degrees north of is located in the north-east part of the the equator (tropical). From the Massif Central (central France). The northeast flows at least one major river sediments is interpreted to have been a system. The river(s) built large deltas freshwater lake (maybe brackish) from through the low swamps and into the

17 shallow bays. The mud that the river(s) Joggins Formation was carried was deposited in these deltas probably a freshwater swampy forest and bays. The water shifted between or a brackish bay on a poorly drained marine, freshwater and brackish costal plain, with a surrounding environments, including a coal- tropical forest (a warm and humid forming swamp forest. Mazon creek environment) from the Westphalian B sediments was deposit in the (Falcon-Lang et al 2006). Westphalian (Baird et al. 1985). Parrsboro has been interpreted as a stagnant freshwater swamp in the United States: Pennsylvania; Westphalian A, based on relative age Cannelton Member dates from fossil fish assemblages. Cannelton is a member in the Kittanning Formation and has been Australia: Victoria; Mansfield interpreted as being deposit in a Basin/Group freshwater channel (about 3.5 miles Mansfield Basin is the northernmost wide and 600 feet deep). The structural sub-basin of the Mt. Howitt sediments was deposit in the province of east-central Victoria. The Westphalian D (Baird 1978). basin was deposited during the Late Devonian to Early Carboniferous and United States: Linton, Ohio Jeffersson; has been divided into two groups by a Upper Freeport Coal volcanic layer: the Marine Delatite The Upper Freeport Coal bed in Ohio Group (late Devonian) and the non- was deposit in a freshwater swamp. marine Mansfield Group (Early The origin of the Linton beds was a Carboniferous). The first part (oldest) fluvial lake that started to accumulate of Mansfield Group is a conglomerate peat and in the Westphalian it had that indicate a channel with fast become a swamp (Hook et al. 1988). moving water and periods of flooding in a costal environment, this part of the Canada; Nova Scotia basin seem to be under influence of the New Brunswick, Albert tides and may have marine influence. Formation The second part of Mansfield is a is considered to be a shallow, fresh sandstone with waves and turbulence water basin, in a rift valley or fault- marks, mud cracks and migrating bar block basin. The basin was located in a and dune forms. All this indicates a subtropical environment within 15 of recession in the tides influence (in- the equator and had high sulphur channel flow regime levels) and content and a stagnant bottom, which marine influence (O´Hallorian et al. probably became poisonous for deep- 1995). dwelling fish. The formation ranges in age from the Late Devonian until the Lower Carboniferous (Mississippian) (Greiner 1974).

18 4. Morphometrics analysis was performed using tpsRelw v.1.42 (Rohlf 2005). A morphometic analysis was Various numbers of landmarks conducted on the reconstructions of the where tested to give an ultimate Devonian and Carboniferous ray- representation of the body shape and at finned fish to investigate the the same time easy to find in all relationship between body shape and various body shapes. Landmark environment. Thirteen homologous representing the position of pelvic fin landmarks and one sliding landmark have not been used, mainly because were chosen on the reconstructions not all of the fishes have that fin. (Figure 8) and a relative warp analysis

Figure 8. canadensis, illustrating landmark positions. 1, the lower/posterior part of the Maximilla. 2, tip of the snout. 3, posterior part of the skull roof. 4, anterior insertion of dorsal fin. 5, posterior insertion of dorsal fin. 6, anterior (dorsal) part of caudal fin. 7, tip of caudal fin. 8, anterior (ventral) insertion of (hypochordal lobe) caudal fin. 9, posterior insertion of anal fin. 10, the ventral margin of head and body. 11, pectoral fin insertion. 12, anterior margin of the eye. 13, posterior margin of the eye. 14, a sliding landmark, on the back between landmark 3 & 4.

Some landmarks (numbers 5, 6, 8 and T. problematics and P. hibbardi not 9) on Tarrasius problematics and completely comparable to the other Paratarrasius hibbardi, which have taxa. The Relative Warp 1.2 and Warp eel-like bodies, where not easy to 1.1 were then looked on in more detail establish, so “fictional” landmarks (Appendix 2). were assigned. (Figure 9). This makes

Figure 9. Tarrasius problematics, illustrating landmark positions, one the two eel-shaped fishes. Here are landmark 5, 6, 8 and 9 invented. 1, the lower/posterior part of the Maximilla. 2, tip of the snout. 3, posterior part of the skull roof. 4, anterior insertion of dorsal fin. 5, fiction; posterior insertion of dorsal fin. 6, fiction; anterior (dorsal) part of caudal fin. 7, tip of caudal fin 8 & 9, anterior part of ventral back fin ( 8, fiction; anterior (ventral) insertion of (hypochordal lobe) caudal fin. 9, fiction; posterior insertion of anal fin) 10, the ventral margin of head and body. 11, pectoral fin insertion. 12, anterior margin of the eye. 13, posterior margin of the eye. 14, a sliding landmark on the back between landmark 3 & 4.

19

Figure 10. The morphometric analysis of the Devonian and Carboniferous fishes shown in Rew (Relativ Warp) 1.2 (to the left) and the diversity in a schematic picture (to the right) Red: The Devonian fishes, Black: The Mississippian fishes, Green: The Pennsylvanian fishes. (See Appendix 2 for location of the species in the plot and Appendix 1for name and description)

4.1 Relative Warp Analysis schematic picture of Figure 10, were the red cube symbolize the Devonian In figure 10 & 11 we can see the result taxa, the black line figure the main from the morphometric analysis, diversity of the Mississippian taxa and displaying the diversity and disparity the green circle the decreasing through the Devonian and Pennsylvanian diversity. Carboniferous. When looking at the When looking at the diversity morphological diversity in the context of the Actinopterygii from Devonian of different body-shape in saltwater, and Carboniferous (Figures 10, 11, 12 freshwater and brackish environments & 14), you can see an explosion of (Figure 11) we can not see any new taxa in the Mississippian and a clusters, which means that there seems decrease in taxa in the Pennsylvanian. not do be any relation between body This is especially visible in the shape and the environments salinity.

20

Figure 11. Salinity diversity, plotting of the fully marine (Blue), fully freshwater (Green) and the fresh/brackish/marine fishes (Turquoise), from Rew 1.2 (See Appendix 2 and Appendix 1 for name and description).

4.2 Disparity measures Mississippian and 0.013 for the Pennsylvanian. Based on the data (Warp Score) from The hypercube volume method the relative warps analysis two is a method that use more than three analyses where made to measure the dimensions to describe the disparity, cumulative variance and morphospace, in other words the hyper cube volume. morphological differences and thereby Cumulative variance or sum of also the disparity (Foote 1993). Here variance provides an estimate of the the data is based on the variance span amount of difference between on the different “time groups” character states among specimens in (Devonian, Mississippian and morphospace (Ciampaglio et al. 2001). Pennsylvanian) (Figure 13 (B)). A A good thing with this test is that is not possible weakness with this method is biased by sample size. Here the that it may be biased by sample size relative warps score matrix (Appendix (Foote 1993). The hypercube is 9.03E- 3) where used to calculate the sum for 38 for the Devonian, 2.81E-30 for the the different taxa and “time groups” Mississippian and, 8.09E-34 for the (Figure 13 (A)). The sum of variance is Pennsylvanian. 0.0057 for the Devonian, 0.049 for the

21 5. Discussion to different feeding- and living- strategies and there by getting different It seems to be a relationship between body shapes. the environment and the morphology. The hypotheses that the salinity For example the lifestyle (feeding- and would affect the body shape is living- strategies) appears to have the rejected. The observation of the largest influence on body shape. This salinity shows no affect on the body is supported by this study and can be shape, probably due to that their ability shown when looking at individual to live in different salinities, is more an localities, in which there are examples internal (physiological) adaptations, off different shape-groups found. This than external morphological. However, is especially visible in the big localities it is possible to observe a slight like the Bear gulch (M) and tendency that more deep-bodied forms Glencartholm (F (B/M)), where are more common in more saline examples from each shape-group can environment and more fusiform in be found. Among the recent fishes we fully fresh water environments. This can also see that the feeding- and can be due to the fact that the living- strategies have an effect on reconstructed deep-body fishes at that body shape (Costa et al. 2007; Ruben time were living in reefs and therefore et al. 2001) and there is no obvious in more saline environments, but this reason way it should not be the same in needs to be more closely investigated Devonian and Carboniferous. To avoid and tested to be conclusive. competition they would have adapted

25

20

15

10

5

0 AAuC G WFoMaBNSUKMzNoOCzF

Taxa(n) Mississippan Rec.(n) Pennsylvanian Rec.(n)

Figure 12. Bar graph showing the total number of taxa and known reconstructions from the various Carboniferous localities. The Mississippian localities are; A; South Africa, upper Witteberg series, Soetendals Vlei (5/4) and Lake Mentz (6/4), Au; Australia, Mansfield group(2/2), C; Canada, Nova Scotia, Mississippian (1/0) New Brunswick, Albert for (4/0) , G; Scotland, Glencartholm (25/20), W; Scotland, Wardie (10/3), Fo; Scotland, Foulden (4/3), Ma; Scotland, Manse Burn for. (6/4), B; , Bear gulch limestone (11/10) And the Pennsylvanian localities are; NS; Canada, Nova Scotia, Pennsylvania (2/0), UK; UK, Lancashire & Staffordshire (4/2), Mz; North America, Mazon Creek (4/0), No; UK, Northumberland (6/0), O; North America, Ohio, Linton (6/3), Cz; Czech Republic, Bohemian Massif (10/5), F; France (7/3) (data collected from table Appendix 1)

22 Marine fishes in the Devonian (100- generally larger, and why it seems like 1000 mm) were generally bigger than the marine fish disappear in the late freshwater fishes (40-700 mm), which Carboniferous (Pennsylvanian) need to is surprising when one considers that be tested to see if it is due to true the Carboniferous marine fish (44-180 evolutionary patterns or if it could all mm) were generally smaller than the be a consequence of a locality and Carboniferous freshwater (70-600 mm) preservation bias. We have not yet and Devonian marine fish. Small body identified any good actinopterygian size in marine environments is fossils within the marine beneficial especially when they Pennsylvanian sediment. Probably do probably not have the effective system to the low frequency of found localities to cope with the salinity that they have and that the preservation potential at today, and need to preserve oxygen these localities was to low to create and energy, which can be achieved by useful reconstructions. In figure 12 it having a small size and/or being less can be seen that not all localities has active. A small size can also be provide material good enough for beneficial in crowded places (both with reconstructions. Moreover, climatic animals or vegetation) but we need events, such as glaciations, occurring more information how the oceans may at the end of the Carboniferous, may have looked like in Devonian and have decreased the preservation Carboniferous to make an accurate potential and/or reduced the marine conclusion. However, the reasons why environments. the Devonian marine fishes were

Figur 13. A generalized graphic presentation of taxonomical diversity and morphological diversity (disparity) observed in the Devonian (Dev.) Mississippian (Miss.) and Pennsylvanian (Penn.). A; Disparity by the cumulative variance B; Disparity by hypercube volume C; Diversity by number taxa (all taxa N (species)) (see also Figure 12).

23 Both measures of the disparity taxa, but also in the morphological (variance and hypercube volume) and variability. The cause to the decreasing the taxonomical diversity show a initial number of actinopterygian taxa is an radiation in the late Devonian, after the unanswered question well worth still poorly understood early records in looking into. One reason for this could the early Devonian. The diversification be the climate changes, in the middle even is amplified in the Carboniferous Carboniferous. The glacier were with what appears to be a peak in the growing and the sea level dropped, end of the Mississippian (Figure 13). which probably reducing the habitats After the initial diversification (both by for the fishes and directly or/and number of taxa and morphology), indirectly caused the decrease in there appears to be a drastic decrease actroptergyian diversity. This can be in diversity in the end of the clearly seen in Figure 14 divided in the Carboniferous. This trend is seen different stages of the Devonian and conclusive in the Pennsylvanian with a Carboniferous. reduction, not in only the number of

40 30 20 10 0 Giv. Fra. Fam. Tou. Vi. Na. West. Step.

Devonian taxa(n) Carboniferous taxa(n) Reconstruktions(n)

Figure 14. Diagram showing the diversity of taxa and reconstructions available from the different stages of the Devonian and Carboniferous; Giv; Givetian, Fra; Frasnian, Fam; Famennian, Tou; Tournaisian Vi; Viséan, Na; Namurian West; Westphalian, Step; Stephanian (collected from Appendix 1).

24 5.1 Ecomorphology

Figure 15. The six shape groups from Devonian (in bold) and Carboniferous fishes in Rew (Relativ warp) 1.2, divided using Rew 1.1 (Appendix 2).Green: Paleo-Deep-body fish; Aesopichthys erinaceus, Adroichthys tuberculatus, Cheirodopsis geikei, Chirodus granulosus, Discoserra pectinodo , Frederichthys musadentatus, Guildayichthys carnegiei, Paramesolepis rhombus, Paramesolepis tuberculata , Platysomus superbus, Platysomus Parvulus, Proceramala montanensis, Protoeurynotus traquairi, Soetendalichths cromptoni. Pink: Paleo-Maneuvering rover; Aeduella blainvillei, Aesopichthys fulcratus, Aetheretmon valentiacum , Australichthys longidorsalis, elegantulus , Canobius ramsay , Elonichtys pulcherrimus, Elonichtys spaerosideriarum, Gonatodus punctatus, Holurus parki, Mesopoma crassum, Mesopoma pulchellum , Platysella lallyi , Sceletophorus biserialis, Sphaerolepis kounoviensis, Strepheoschema fouldenensis , Sundayichthys elegantulus, Wendyichthys lautreci, Willomorichthys striatulus. Blue: Paleo-Rover-fish; Cuneognathus gardineri, Limnomis deleneyi, Mimia toombsi, nitida, Stegotrachelus finlayi gigas, Bourbonella guilloti, Mesopoma politum, Microhapolepis serrata, Rhadinichthys fusiformis, Woodichthys bearsdeni. Orange: Paleo-Active lay-in-wait fish; Haplolepis ovoidea, Cryphiolepis striatus, Elonichtys serratus, Kalops diophrys, Kalops monophrys, Melanecta anneae, Mansfieldiscus sweeti, Novogonatodus kazantsevae, Phanerorthynchus armatus, Phanerosteon ovensi, Phanerosteon mirabile. Purpur: Paleo- Lay-in-wait fish; Howqualepis rostridens, Cycloptychius concentricus, Cyranorhis bergeraci, Haplolepis corrugata, Haplolepis tuberculata, Mentzichthys walchi , Mentzichthys jubbi, Mesopoma carricki, Mesopoma planti, Pyritocephalus sculptus , Pyritocephalus lineatus, Rhadinichthys canobiensis, Wendyichthys Dicksoni. Black: Two outsider groups; Cheirolepis sp. and eel-like; Paratarrasius hibbardi, Tarrasius problematicus.

25 In the morphometric analysis, a Lund (1997) suggest that Cyranorhis division in the scatter plots of the bergeraci and Wendyichthys dicksoni relative warp 1.1 and warp 1.2 was plankton-eater but this has not (Appendix 2) were recognized (Figure supported there’s model, but it can be 15), which could be translated to six that they may group with the surface- different ecomorphological-shapes, oriented and thereby eats plankton. similar to the Moyle and Cech (2004) Paleo-active lay-in-wait fishs body shapes on modern fishes and are predators similar to the Paleo-lay- from this a proposal was constructed in-wait fishes. Their bodies are on how they may have lived and what fusiform, explosive but they probably they may have eaten. The groups have were living in more open environment, been decided to be called; Paleo-lay- with fewer hiding places causing them in-wait fish, Paleo-active lay-in-wait to be more mobile to catch their prey fish, Paleo-rover-fish, Paleo- (i.e., Elonichtys serratus, Kalops maneuvering rover, Paleo-deep-body diophrys (Figure 16) and fish and the outsiders, and these groups Phanerosteon ovensi). In the literature can bee seen even if taxa are take away for the fishes in this group there are no Paleo-lay-in-wait fishes are described diet except for Haplolepis. predators that surprise their prey and Haplolepis has the rest of the family are commonly found in habitats with a (Haplolepidea) with the surface- lot of hiding (within plants and rock) oriented fishes in the Paleo-Lay-in- and are mainly eating fish (i.e., wait fishes and they are not that Howqualepis rostridens (Figure 16), different from the rest which may Mentzichthys walchi, Rhadinichthys indicate that the two Lay-in-wait canobiensis and Wendyichthys groups maybe only one with an “in- dicksoni). In this group we also find group”, the surface-oriented fishes, Haplolepidea, which where a that are eating plankton, insects and freshwater fishes that include small fishes. Haplolepis sp. (Figure 16) and Paleo-rover-fishes hunts by Pyritocephalus sp. from the active pursuit and most likely lived in Westphalian (-Stephanian). The open water or streams. They were characters of Haplolepidea are the probably hunting small fish, strong hetercercal tail, the collapse and zooplankton and soft-body far back dorsal fin (Westoll 1944) and invertebrates. Many of the Devonian the slightly upward turned mouth. This and Carboniferous fishes have been suggests a life in the surface waters, previously described as predators on probably feeding on plankton and other fishes and invertebrates, which insects. They were living in swamps, correspond with this grouping (i.e., probably with low oxygen bottoms and Cuneognathus gardineri, Mimia would have been adapted to the low toombsi, Moythomasia nitida, oxygen levels and probably using the Acrolepis gigas, Mesopoma politum, air bladder like a lung (Westoll 1944). Woodichthys bearsdeni). An Both I and Westoll (1944) want them interesting observation is that to be there own group and the fact that according to the analysis most of the they did not group-out in the “relative Devonian fishes is located in this warp analysis” may be due to that they group, which indicate that early fishes only had started to be divided from the may have been predators. Paleo-Lay-in-wait group(s). Poplin and

26

Figure 16. Exampels of different “shape-group” members.A) Paleo -Lay-in-wait fish, Howqualepis rostridens, B) Paleo -Active lay-in-wait fish, Kalops diophrys and C) the surface-oriented fishes, Haplolepis corrugata.

Paleo-maneuvering rovers also Good examples on Paleo-deep-body actively hunt by pursuit but are fishes are Aesopichthys erinaceus and probably more maneuverable and live Proceramala montanensis (Figure 17), in more dense environments, like in which seem to be adapted for plants and reefs. They feed on small maneuvering in geometrically complex invertebrates, fishes and zooplankton. environments. The fins, position and Some even seems to be filter feeders size are adapted to stabilize and and possible bottom feeders (i.e., maneuver the fish gently. A. erinaceus Aeduella blainvillei, Elonichtys had a very strong and sharp bite and it spaerosideriarum, Gonatodus probably lived near shore in shallow punctatus, Holurus parki and water, where it hunted after small Mesopoma pulchellum). Initially, nektonic preys, shrimps, worms, larvae members of this group have been and browsing on attached organisms, described as predators on plankton and bryozoans, conulariids and algae filter feeders (Canobius sp). However, (Popline et al. 2000). An interesting Sceletophorus biserialis (among observation is that among the shape others) seems to have been eating fish groups established for the Devonian and this would suggest that it is a and Carboniferous actinopterygian it is “between” group. The group probably the deep bodied forms that have the later gave rise to many of the bottom largest morphospace and therefore also feeders and the different reef-fishes show the greatest morphological (like the deep-body one). diversity. Considering this group seem Paleo-deep-body fish are to be adapted to complex habitat adapted to maneuver in tight (probably also diverse habitats) is very environments, like coral reefs, plants surprising and need to be more closely or schools (of own species). They feed looked at. on small invertebrates of the reefs, Bottom fishes did not group-out bottom and/or water column and many in this analysis. However, there seem are considered benthic feeders, but to be some early bottom feeders some deep body fishes may also be grouped in the paleo-maneuvering open water planktivores (i.e. Chirodus rovers and deep-body fishes. They are granulosus, Discoserra pectinodo , not as strongly adapted as the modern Frederichthys musadentatu and bottom fishes (like flatfish) and Guildayichthys carnegiei). therefore do not provide any clear signals in this analysis.

27

Figure 17. Exampels of different “shape-group” members. A) Paleo-Rover-fish, Mimia toombsi, B) Paleo -Maneuvering rover, Canobius elegantulus, C) Paleo-Deep-body fish, Proceramala montanensis and the Outsiders D) Cheirolepis tralli and E) Paratarrasius hibbardi.

The outsiders include Cheirolepis sp. appears that the “basic actinopterygian and the eel-like; Paratarrasius shape” seems to be the “lay-in-wait- hibbardi (Figure 17), Tarrasius predator-shape” and “rover-predator- problematicus. Many scientists want shape”. This means that the early ray- to assign Cheirolepis sp. as a stem- finned fishes probably were group Actinopterygian, which this fusiformed, piscivores, rather then study supports, However, close to the deep-body, browsers and plankton- Pale-lay-in-wait fish group. eater, which seems to be a later Cheirolepis sp. would have preyed on evolutionary invention. However, the other fish, which is supported by various fishes' anatomy and Arratia and Cloutier (1996), Pearson morphology need to be more closely and Westoll (1979) and this study, by studied to give a more conclusive the fact that they group close to Pale- result. lay-in-wait fishes. Paratarrasius hibbardi and Acknowledgments I would like to say tanks to; Dr. Henning Blom Tarrasius problematicus are so fore supervision, Professor Per Ahlberg for all different from the other help. Matt Friedman fore pictures of Kentuckia Actinopterygians in that they do not and all help with the statistic, Dr. Brian Swartz have the same homological landmarks for sharing his unpublished reconstruction on than the others. These would probably Stegotrachelus finlayi. Dr. Michael Streng for help with translations. Martin Brazeau for lived like the recent Eels and Moray information on some localities in Canada. eels (Muraenidae) and be ambushers in Acknowledements also to my friends Barbro a rocky environment or pursuer in a Bornsäter-Mellbin (Magister-studerande i more plant dense environment. palontologi), Anna Winnersjö-Ahlgren It is interesting to see that when (Kandidat i biologi) and especially PhD- student Anna Jerve for reading and comparing the recent shape groups commenting my work. Finally, I will also say with the suggested shape groups for thanks to Patricia Hall (PhD-student) for all the the fossil form (Figures 10,11). It help, and to every one I may have forgotten.

28 References Cloutier, R. and G. Arratia. 2004. Early diversification of actinopterygians, Reasent Agassiz, L. 1835. Recherches sur les poisons Advances in the Orgin and Early Radiation of fossils, II. Imprimerie de petitpierre et prince, Vertebrates, pp. 217-270, Germany, ISBN 3- Neuchatel, 115p. 89937-052-X

Anderson, L. I., J. A. Dunlop, C. A. Horrocks, Costa, C. and S. Cataudella. 2007. Relationship H. M. Winkelmann, and R. M. C. Eagar, between shape and trofic ecology of selected 1997. Exceptionally preserved fossils from species of Sparids of the Caprolace costal Brickershaw, Lancashire UK (Upper lagoon (Central Tyrrhenian sea), Environ. Carboniferous, Westphalian A (Langsettian)), Biol. Fish 78; 115-123 Geological journal, 32; 197-210 Coates, M.I. 1993. New Actinoperygian fish from Arratia, G., and R. Cloutier. 1996. the Namurian Manse Burn Formation of Reassessment of the morphology of Bearsden, Scotland, P aleontology, Vol. Cheirolepis canadensis (Actinopterygii), p. 36(1);123-146 165-197. In Schultze H.-P. and R.Cloutier (eds.), Devonian Fishes and Planst of Coates, M. I. 1998. Actinopterygians from the Miguasha, Quebec, Canada. Verlag Dr F.Pfeil, Namurian of Bearsden, Scotland, with Munchen. comments on early actinopterygian neurocrania, Zoological Journal of the Linnean Baird, D. 1962. A Haplolepis fish fauna in the Society, 122;27-59 Early Pennsylvanian of Nova Scotia, Palaeontology, 5(1); 22-29 Coates, M. I. 1999. Endocranial preservation of Carboniferous actinoperygian from Lancashire, UK, and the interrelationships of Baird, D. 1978. Studies on Carboniferous Freshwater Fishes, American Museum primitive actinoperygians, Phil. Trans. R. Soc. Novitates, 2641, 1978 Lond. B 354;435-462

Baird, G. C., S. D. Sroka, C. W. Shabica, T. L. Daeschler, E. B. 2000. An early actinopterygian Beard, A. C. Scott and F. M. Broadhurst. fish from the Catskill Formation (Late 1985. Mazon Creek-Type Fossil Assemblages Devonian, Famennian) in Pennsylvania, in the U.S. Midcontinent Pennsylvanian: Their U.S.A. Proceedings of the Academy of Natural Recurrent Character and Palaeoenvironmental Sciences of Philadelphia, 150:181–192. Significance [and Discussion], Philosophical Transactions of the Royal Society of London. Dineley, D. L. and S. J. Metcalf. 1999. Fossil Series B, Biological Sciences, 311 (1148);87- Fishes of Great Britain, joint nature 99 conservation committee, UK, ISBN 1 86107 470 0 Boyd, M. J. 1984. The Upper Carboniferous Tetrapod Assemblage from Newsham, Dietze, K. 2000. A revision of Paramblypterid and Northumberland, Paleontology 27(2); 367-392 Amblypterid Actinopterygian from upper Carboniferous- lower Permian Lacustrine Chidiac, Y. 1996. Paleoenvironmental Deposits of central Europe, Palaeontology, interpretetiton of the escuminac formation Vol.43(5);927-966 based on geochemical evidence p47-52, In Schultze H.-P. and R.Cloutier (eds.), Devonian Dunkle, D. H. 1964. Preliminary description of a Fishes and Planst of Miguasha, Quebec, palaeoniscoid fish from the Upper Devonian of Canada. Verlag Dr F.Pfeil, Munchen Ohio. Scientific Publications of the Cleveland Museum of Natural History, 3:1–24. Ciampaglio, C. N., M. Kemp and D. W. McShea. 2001. Detacting changes in Falcon-Lang, H. J., M.J. Benton, S. J. Braddy morphospace occupation patterns in the fossil and S. J. Davies. 2006. Pennsylvanian tropical record: characterization and analysis of biome reconstructer from the Joggins measures of disparity, paleobiology, 27(4); Formation of Nova Scotia, Canada, Journal of 695-715 the Geological Soceity, Maj

29 Friedman, M. and H. Blom. 2006. A new Hurley, I. A., R. L. Mueller, K. A. Dunn, E. J. Actinopterygian from the famennian of east Schmidt, M. Frieman, R. K. Ho, V. E. Greenland and the interrelationships of Prince, Z. Yang, M. G. Thomas and M. I. Devonian Ray-finned fishes, J. Paleont., 80(6), Coatses. 2007. A new time-scale fore ray- pp. 1186–1204 finned fish evolution, Proceedings of the Royal Society B, 274; 489-498 Friedman, M. and M. I. Coates. 2006. A newly recognized fossil coelacanth highlights the Janvier, P. 1996. Early Vertebrates, Clarendon early morphological diversification of the press, Oxford, ISBN; 0-19-852646-6 clade, Proceedings of the Royal Society, Series B, 273; 245-250. Jessen, H. 1968. Moythomasia nitida Gross und M. cf. striata Gross, Devonische Foote, M. 1993. Discordance and concordance palaeonisciden aus dem oberen Plattenkalk der between morphological and taxonomic Bergisch-Gladbach-Paffrather Mulde diversity, Paleobiology, 19(2); 185-204 (Rheinisches Schiefergebirge). Palaeontographica Abteilung A, 128:87–114. Gardiner, B. G. 1963. Certain palaeoniscoid fishes and the evolution of the snout in Jubb, R.A. 1965. A New Palaenoniscid fish from Actinopterygians, Bulletin of the British the Witteberg Series(Lower Carboniferous) of museum (natural history) geology, London, South Africa, Ann. S. Afr. Mus. 48(15); 267- vol.8 No. 6 272

Gardiner, B. G. 1969. New palaeoniscoid fish Loweny, K. A. 1980. A Revision of the Family from the Witteberg series of South Africa, Haplolepidae(Actinopterygii, Zool. J. Linn. Soc., 48; 423-452 Paleonisciformes) from Linton, Ohio(Westphalian D, Pennsylvanian), Journal of Paleontology, 54(5);942-953 Gardiner, B. G. 1984. The relationships of the palaeoniscid fishes, a review based on new specimens of Mimia and Moythomasia from Long, J. A. 1988. New palaeoniscoid fishes from the Upper Devonian of Western Australia. the Late Devonian and Early Carboniferous of Bulletin of the British Museum (Natural Victoria. Memoirs of the Association of History): Geology, 37:173–428. Australasian Palaeontologists, 7:1–68.

Gardiner, B. G. 1985. Actinopterygian fish from Lund, R. and C. Poplin. 1997. The the Dinantian of Foulden, Berwickshire, Rhadinichthyids (Paleoniscoid Scotland, Transactions of the Royal Society of Actinopterygians) from the Bear Gulch Limestone of Montana(USA, Lower Edinburgh,Earth Sciences, 76;61-66 Carboniferous), Journal of Paleontology 17(3);466-486 Gradstein F. M., J. G. Ogg and A. G. Smith. 2005. A Geologic Time Scale 2004, Cambridge University Press, ISBN-10: Lund, R. and C. Poplin. 2002. Cladistic analysis of the relationships of the Tarrasiids (Lower 0521786738 Carboniferus Actinopterygians), Journal of Vertebrate Paleontology 22(3);480-486 Greiner, H. 1974. The of New Brunswick: a Paleozoie lacustrine model, International Journal of Earth Sciences, 63(3); Moyle, P. and J. Cech. 2004. Fishes: An Introduction to Ichthyology - fifth edition, 1102-1113 Prentice-Hall Inc. Upper Saddle River, ISBN 0-13-100847-1 Grogan E. D. and R.Lund. 2002. The geological and biological environment of the Bear Gulch Limestone (Mississippian of Montana, USA) Moy-Thomas, J.A. and M. B. Dyne. 1938. The and a model for its deposition, Geodiversitas Actinotryptergyan Fishes from the Lower Carboniferus of Glencartholm, Eskdale, 24 (2); 295-315. Dumfriesshire, Transactions of the Royal Society of Edinburgh, Earth Sciences, 59:437- Hook, R. W. and D. Baird. 1988. An Overview 480. of the Upper Carboniferous Fossil Deposit at Linton, Ohio1, OHIO J. SCI. 88 (1): 55-60

30 Moy-Thomas, J. A. and R. S. Miles. 1971. Racheboeuf, P. R., J. Vannier and L. I. Palaeozoic Fishes, Chapman and Hall LTD, Anderson. 2002. A New Three-Dimensionally London (SBN 412 10310 9) Preserved Xiphosuran Chelicerate from the Montceau-Les-Mines Lagerstätte Murry, A. M. 2000. The Palaeozoic, (Carboniferous, France), Palaeontology, 45(1); and Early Cenozoic fishes of Africa, Fish and 125-147 Fisheries, 1;111-145 Ricklefs, R. E. 1990. Ecology (3rd Edition). W.H. O'Hallorian, G. J. and R. A. F. Cas. 1995. Freeman & Co Ltd. New York, ISBN Evidence for syndepositional deformation 0716720779 from the Late Devonian of the Mansfield Basin, east-central Victoria, Australian Journal Rimmer, S. M., J. A. Thompson, S.A. of Earth Sciences 42, 581-596 Goodnight and T.L. Robl. 2004. Multiple controls on the preservation of organic matter Oplutil, S., K. Martínek and Z. Tasáryová. in Devonian–Mississippian marine black 2005. Facies and architectural analysis of shales: geochemical and petrographic fluvial deposits of the Nany Member and the evidence, Palaeogeography, Tnec Formation (Westphalian D – Palaeoclimatology, Palaeoecology 215; 125– Barruelian) in the Kladno-Rakovník and Pilsen 154 basins, Bulletin of Geosciences, 80(1); 45–66, Rohlf F. J., 2005. tpsRelw, Version: 1.42, Stone Pearson, D. M. and T.S. Westoll. 1979. The Brook, New York: Department of Ecology and Devonian actinopterygian Cheirolepis Agassiz. Evolution Transactions of the Royal Society of Edinburgh, Earth Sciences, 70:337–399. Rolfe, W. D. I., F. R. Schram, G. Pacaud, D. Scotty and S. Secretan. 1982. A Remarkable Poplin, C. and D. B. Dutheil. 2005. Las Stephanian Biota from Montceau-les-mines, Aeduellidae (Pisces, Actinopterygii) France, Journal of Paleontology, 56(2);426- Carbonifères et permiens: systématique et 428 étude phylogénétique préliminaire, Geodiversitas, 27(1);17-33 Ruber, L. and D. C. Adams. 2001. Evolutionary convergence of body shape and trophic Poplin, C. and R. Lund. 2000. Two new deep- morphology in cichlids from Lake Tanganyika, bodied Palaeoniscoid Actinopterygians from J. Evol. Biol. 14; 325-332 Bear Gulch (Montana, USA, Lower Carboniferous), Journal of Vertebrate Schaeffer, B. 1973. Interrelationships of Paleontology 20(3); 428-449 chondrosteans, Interrelationships of fishes, London; supplement to the zoological journal Poplin, C. and R. Lund. 2002. Two of the linnean society Vol.53, pp.207.-226 Carboniferous fine-eyed Palaeoniscoids (Pisces, Actinopterygii) from Bear Gulch Scotese, C. R., 1997. Paleogeographic Atlas, (USA), J. Paleont., 76(6);1014-1028 PALEOMAP Progress Report 90-0497, Department of Geology, University of Texas at Prichonnet, G., M. Di Vergillo and Y. Chidiac. Arlington, Arlington, Texas, 37 pp. Retrieved 1996. Stratigraphical, sedimentological and juni 2007 from US Geological survey, paleontological context of the Escuminac http://www2.nature.nps.gov/geology/usgsnps/p Formation: Paleoenvirmental hypotheses p23- ltec/sc390ma.html 34. In Schultze H.-P., Cloutier R.,(eds.), Devonian Fishes and Planst of Miguasha, Stanley, S. M. 1998. Earth system history, W. H. Quebec, Canada. Verlag Dr F.Pfeil, Munchen Freeman and Company, New York, ISBN 0- 7167-2882-6 Prokofiev, A. M. 2002. First finding of an articulated actinopterygian skeleton from the Upper Devonian of Siberia and a reappraisal of the family Moythomasiiidae Kazantseva, 1971 (). Paleontological Research, 6:321–327

31 Stamberg, S. 2006. Carboniferous-Permian Thorez, J., R. Dreesen and M. Streel. 2006. actinopterygian fishes of the continental basins Famennian, Geologica Belgica, 9/1-2:27-45 of the Bohemian Massif, Czech Republic: an overview, From. Lucas, S. G., Cassing, G. & Webb, P. W. 1984. Body form, locomotion and Schnieder, J. W. (eds), Non-Marine Permian foraging in aquatic vertebrates, American Biostratigraphy and Biochronology. Zoology, 24;107-120 Geological Society, London, Special Publications, 265, 217-230.0305-8719/06/. White, E.I. 1927. The fish-fauna of the Cementstones of Foulden, Berwickshire, Stephenson, M. H., M. J. Leng, U. Michie and Transactions of the Royal Society of C. H. Vane. 2006. Palaeolimnology of Edinburgh,Earth Sciences, 55;255-289 Palaeozoic lakes, focussing on a single lake cycle in the Middle Devonian of the Orcadian Woodward, A. S. and E. I. White. 1926. The Basin, Scotland, Earth-Science Reviews, 75(1- fossil fishes of the Old Red Sandstone of the 4);177-197 Shetland Islands. Transactions of the Royal Society of Edinburgh, Earth Sciences, 54:567– Taverne, L. 1997. Osorioichthys marginis, 571. “Paleonisciform” from the Famennian of Belgum, and the phylogeny of the Devonian Øving, T. 1961. A note on fish fauna associated actinopterygians (Pisces), Bulletine Delínstitut with the phyllocarid Montecarlis lehmanni jux royal des naturelles de Belgique, Sciences de in the Devonian strata of Bergisch Gladbach, la terre, 67;57-78 Western Germany, Journal of Plaeontology, 35(5)

32 Appendix 1

List of Devonian taxa. Devonian ray-finned fishes, body length, diet, location, age and reference. Fore environmental descriptions see 3.3.1, and Appendix 4 for reconstructions. M= Marin F= Freshwater * Pearson et al 1979 ** Daeschler 2000 *** Gardiner 1963 **** Janvier 2002 1 has been inferred from this study (p) Length Taxa Diet M/F Location Age References (mm) Cheirolepis Canadensis Small Predator, Canada, Quebec, Devonian , Arratia et al. (Cheirolepididae) 50* canna-balism* M Escuminac Bay Famennian 1996 Mid Devonian Cheirolepis trailli Scotland, lake (Eifelian/ Pearson et al. (Cheirolepididae) 360 Small Predator F Orcadie Givetian) 1979 Fish, soft-body Cuneognathus invertebrates & Greenland, Fridman et gardineri 40-100 zooplankto1 F Obruschew Berg For. Late Famennian al. 2006 Howqualepis rostridens 300-700 Australia, Avon river (Rhabdolepididae) **** Fish 1 F group, Victoria, Frasnian Long 1988 North America, Limnomis deleneyi Soft-body inverti- Pennsylvania, Daeschler (Rhabdolepididae) 60 brates F catskill for., Red hill Late Famennian 2000 Fish, soft-body Australia, Gogo for., Mimia toombsi invertebrates & Canning Basin Gardiner (Moythomasiidae) 100** zooplankto1 M /Gneuda for. Frasnian 1984 Fish, soft-body Germany, Bergisch- Moythomasia nitida invertebrates & Gladbach - Paffrath Late Givetian- (Moythomasiidae)  zooplankto1 M Trough, Early Frasnian Jessen 1968 Swartz Brian Fish, soft-body 2007/ Stegotrachelus finlayi invertebrates & Woodward et (Stegotrachelidae) 160 zooplankto1 F Scotland, Shetland Givetian al. 1926 No complete reconstructions       Cheirolepis schultzei (Cheirolepididae)    North America Devonian  Kentuckia deani North America; (Osorioichthyidae)   M Ohio, Clevland shale Late Famennian  North America, Fridman et Kentuckia hlavini Ohio, Cleveland al. 2006/ (Osorioichthyidae) 104  M shale, Skinners Run Late Famennian Dunkle 1964 Krasnoyarichthys Siberia, Krasnoyarski Prokofiev jesseni 100  M Kran, Famennian 2002 toombsi (Dialipinidae)    Australia Devonian  Moythomasia durgaringa Australia, Gogo for. / (Moythomasiidae) 100**  M Gneuda for. Frasnian  Moythomasia performata (Moythomasiidae)    Australia Devonian  Lower upper Moythomasia Striata Germany, Devonian (Moythomasiidae)    Wildungen, (Famennian) Jessen 1968 Fridman et Osorioichthys al. 2006/ marginis Belgium , Taverne (Osorioichthyidae)  M Famenne for. Famennian 1997 North America, Ohio Tegeolepis clarki shale/ Fridman et (Tegeolepididae) 1000***  M Cleveland shale Early Famennian al. 2006

33

List of Carboniferous taxa. Carboniferous ray-finned fishes, body length, diet, family, location, age and reference. Fore environmental descriptions see 3.3.2, and Appendix 4 for the reconstructions. M= Marin F= Freshwater B=Brackish water 1No reconstructions 2Body fossils (picture) 3has been concluded from this study (p) * Westoll 1944 ** Dineley et al 1999 Lengt Taxa h Diet M/F Location Age Reference (mm) Adroichthys tuberculatus South Africa, upper Lower Moy-Thomas (Amphicentr- Small invertebrates Witteberg series, carboniferous, et al. 1971/ idae) 600 (plankton)3 F Soetendals Vlei Mississippian Gardiner 1969 Preditor/ Fish, soft- Czech Repobublic, Acrolepis gigas body invertebrates & Bohemian Massif, Stephanian B-C, (Acrolepididae) 1250 zooplankton3 F Slany For. Pennsylvanian Stamberg 2006 Acrolepis UK, hopkinsii1 Northumberland, Westphalian B, Newman et al. (Acrolepidae)   F Low Main Seam Pennsylvanian 2007 Acrolepis Lower hortonensis1 Canada, Carboniferus, (Acrolepididae)    Nova Scotia Mississppian  Dineley et al. Acrolepis Scotland, 1999/Moy- ortholepis1 F Glencartholm Viséan, Thomas et al. (Acrolepididae) 650  (B/M) volcanic beds Mississippian 1938 Poplin & France, Dutheil Aeduella Small fish, Montceau-les- 2005/Moy- blainvillei 50- invertebrates & Mines, Massif Stephanian, Thomas & (Aeduellidae) 200 plankton3 F central Pennsylvanian Miles 1971 Preditor, Small shrimps, worms, larvae Aesopichthys (nectonic) & erinaceus Browsed on bryo- North America, (Aesopichthyida zoans conulari-ids, Bear gulch Namurian E2b, Poplin & Lund e) 90 algae M limestone Mississppian 2000 South Africa, upper Aesopichthys Small fish, Witteberg series, Lower fulcratus invertebrates & Soetendals Vlei/ carboniferous, (Atherstoniidae) 105 plankton2 F Lake Mentz Mississippian Gardiner 1969 White1927/ Aetheretmon Scotland, Dineley et al. valentiacum Foulden 1999/Gardiner (Strepheoschemi Predator, Arthropods (Cemenstone Viséan, 1985/Schaeffer dae) 50-90 & soft-body animals F/B Group) Mississippian 1973 Amphicentrum crassum1 (Amphicentr- Predator, Hard- idae)  shelled prey  Scotland   Australichthys longidorsalis Small fish, South Africa, Lower (Australichthy- invertebrates & Upper Witteberg carboniferous, idae) 150 plankton3 F(B) Series, Lake Mentz Mississippian Gardiner 1969 Bourbonella Fish, soft-body France, Bourbon Autunien/Stephan guilloti 120- invertebrates & l´Archambault, ien, Poplin & (Aeduellidae) 160 zooplankton3 F Massif central Pennsylvanian Dutheil 2005 Moy-Thomas Canobius Scotland, et al. elegantulus Plankton/filter F Glencartholm Viséan, 1938/Dineley (Canobiidae) 140 feeder3 (B/M) volcanic beds Mississippian et al. 1999 Canobius Canada, Lower modulus1 Plankton/filter New Brunswick, Carboniferus, (Canobiidae) 70 feeder3 F Albert for. Mississppian 

Moy-Thomas Canobius Scotland, et al. 1938/ ramsayi Plankton/filter F Glencartholm Viséan, Dineley et al. (Canobiidae) 70 feeder3 (B/M) volcanic beds Mississippian 1999 Cheirodopsis 150 Small invertebrates F Scotland, Viséan, Moy-Thomas

34 geikei (plankton)3 (B/M) Glencartholm Mississippian et al. (Amphicentr- volcanic beds 1938/Dineley idae) et al. 1999 UK, North Staffordshire; Chirodus Fenton, granulosus Knowles (Amphicentrum) Small invertebrates Shale/Longton, Westphalian A/B, Moy-Thomas (Chirodontidae)  (plankton)3 F Deep Mine Seam Carboniferous et al. 1971 Chirodus Fish, soft-body UK, striatus1 invertebrates, insects Northumberland, Westphalian B, Newman et al. (Chirodontidae)  & zooplankton3 F Low Main Seam Pennsylvanian 2007 Coccocephalus wildi1 Upper (Osorioichthy- UK, carboniferus, idae)   B Lancashire, Pennsylvanian Coates 1999 Cosmoptychius striatus1 Scotland, (Cosmoptych- Edingburgh, Viséan, idae) 280**  F/B Wardie / Foulden Mississippian Gradiner 1985 Scotland, Cryphiolepis Edinburgh ( & striatus nearby ), Wardie, Viséan, Moy-Thomas (Cryphiolepidae)   B/F Oil shale group Mississippian et al. 1971 Cycloptychius Moy-Thomas concentricus Scotland, et al. (Rhadinichthy- F Glencartholm Viséan, 1938/Dineley idae) 130 Fish 3 (B/M) volcanic beds Mississippian et al .1999 Cyranichthys bergeraci (Rhadinichthy- idae)    North America  Cyranorhis Bergerac North America, (Rhadinichthy- Bear gulch Namurian, Poplin & Lund idae)  Plankton M limestone Mississippian 1997 Discoserra pectinodon2 North America, (Guildayichthy- Small invertebrates Bear gulch Namurian, idae)  (plankton)3 M limestone Mississippian Lund 2000 South Africa, Dwykia upper Wittberg Lower analensis1 series, Soetendals Carboniferus, (Dwykiidae)   F Vlei Mississppian Gardiner 1969 Elonichthys Canada, Lower browni1 New Brunswick, Carboniferus, (Elonichthyidae)   F Albert for. Mississppian  Canada, Lower Elonichthys ellsi1 New Brunswick, Carboniferus, (Elonichthyidae)   F Albert for. Mississppian  Elonichthys krejcii1 Czech Repobublic, (Acrolepis) Bohemian Massif, Stephanian B, (Elonichthyidae) 150 Small predator F Slany For. Pennsylvanian Stamberg 2006 Scotland, Elonichthys Glencartholm robisoni1 F volcanic beds / Viséan, (Elonichthyidae)   (B/M) Wardie Mississippian  North America, Elonichtys Ohio, Linton, peltigerus1 Upper Freeport Westphalian , (Elonichthyidae)   F Coal Pennsylvanian Baird 1978 Moy-Thomas Elonichtys Small fish, Scotland, et al. pulcherrimus invertebrates & F Glencartholm Viséan, 1938/Dineley (Elonichthyidae) 150 plankton3 (B/M) volcanic beds Mississippian et al. 1999 Moy-Thomasr Elonichtys Fish, soft-body Scotland, et al. 1938/ serratus 12 0 invertebrates, insects F Glencartholm Viséan, Dineley et al. (Elonichthyidae) & zooplankton3 (B/M) volcanic beds Mississippian 1999

35 Elonichtys spaerosideriaru m Small predator/ Small Czech Repobublic, (Acrolepis) fish, invertebrates & Bohemian Massif, Stephanian B, (Elonichthyidae) 150 plankton3 F Slany For. Pennsylvanian Stamberg 2006 Elonichtys striatulutus Scotland, Viséan, (Elonichthyidae)   B Wardie Mississippian  Frederichthys musadentatus M(F) Scotland, (Palaeonisci- Small invertebrates (sesona Manse Burn Basal numurian, morpha) 57 (plankton)3 l) for.,Bearsden Mississippian Coates 1993 Gonatodus Small fish, punctatus 140- invertebrates & Scotland, Viséan, Dineley et al. (Elonichthyidae) 200 plankton3 B Wardie Mississippian 1999 Guildayichthys carnegiei2 North America, (Guildayichthy- Small invertebrates Bear gulch Namurian, idae)  (plankton)3 M limestone Mississippian Lund 2000 Haplolepis aff. UK, Angelica1 Northumberland, (Parahaplolepis) Newsham, Westphalian B, (Haplolepidae)  Zooplankton, larva* F Low Main coal Pennsylvanian Baird 1962 Haplolepis aff. North America, Ovoidea1 Cannelton, (Haplolepidae) 25 Zooplankton, larva* F Pennsylvanian Pennsylvanian Westoll 1944 Haplolepis angelica 1 UK, (Parahaplolepis) Staffordshire,Longt Westphalian C , Baird 1962/ (Haplolepidae)  Zooplankton, larva* F on, Ash coal Pennsylvanian Westoll 1944 Haplolepis attheyi1 UK, (Paleodopsis Northumberland, newshami) Newsham, Westphalian B, (Haplolepidae)  Zooplankton, larva* F Low Main coal Pennsylvanian Westoll 1944 Haplolepis Canadensis1 Canada, Nova (H.aff. angelica, Scotia, Parrsboro Parahaplolepis) For. Westphalian A, Lowney 1980 (Haplolepidae)  Zooplankton, larva* F Riversdale group Pennsylvanian /Baird 1962 Haplolepis cf. Canada, Nova Corrugata1 Scotia, Joggins, Westphalian B, (Haplolepidae)   F Forty Brine seam Pennsylvanian Baird 1978 Haplolepis cf. North America, ovoidea1 Mazon creek, (Haplolepidae) 30 Zooplankton, larva* F Illinois Pennsylvanian Westoll 1944 Haplolepis cf.tuberculata1 North America, (Parahapolepis) Mazon creek, (Haplolepidae)  Zooplankton, larva* F Illinois Pennsylvanian Westoll 1944 Haplolepis North America, corrugate Ohio, Linton, (Macolepis) Preditor;larva/inverte Upper Freeport Westphalian , Lowney 1980/ (Haplolepidae) 31-73 bret F Coal Pennsylvanian Westoll 1944 North America, Haplolepis Ohio, Linton, ovoidea Upper Freeport Westphalian , Lowney 1980/ (Haplolepidae) 20-45 Zooplankton, larva* F Coal Pennsylvanian Westoll 1944 Haplolepis North America, tuberculata Ohio, Linton, (Parahaplolepis) Upper Freeport Westphalian D, Lowney 1980/ (Haplolepidae) 45-75 Zooplankton, larva* F Coal Pennsylvanian Westoll 1944 Moy-Thomas Small fish, Scotland, et al. 1938/ Holurus parki invertebrates & F Glencartholm Viséan, Dineley et al. (Holuridae) 130 plankton1 (B/M) volcanic beds Mississippian 1999 Kalops diophrys (Indeterm- Fish, soft-body North America, Namurian E2b/ inate/Tegeolepid invertebrates, insects Bear gulch upper Poplin & Lund idae) 50-96 & zooplankton3 M limestone Mississppian 2002 Kalops 44- Fish, soft-body North America, Namurian E2b/ Poplin & Lund monophrys 116 invertebrates, insects M Bear gulch upper 2002

36 (Indeterm- & zooplankton3 limestone Mississppian inate/Tegeolepid idae) Mansfieldiscus sweeti Fish, soft-body Australia, Lower (Rhabdolepid- invertebrates, insects Mansfield carboniferous, idae)  & zooplankton3 F Basin/group Mississippian Long 1988 Melanecta anneae Fish, soft-body M(F) Scotland, Basal (Rhabdolepid- invertebrates, insects (sesona Manse Burn for., numurianE1, idae) 50 & zooplankton3 l) Bearsden Mississippian Coates 1998 Mentzichthys South Africa, jubbi Upper Witteberg Lower (Australichthy- Series, Carboniferus, idae) 400 Fish 3 F(B) Lake Mentz Mississppian Gardiner 1969 Mentzichthys South Africa, maraisi1 Upper Witteberg Lower (Rhadinichthy- Series, Carboniferus, Murry 2000/ idae) 180  F(B) Lake Mentz Mississppian Gardiner 1969 Mentzichthys South Africa, theroni1 Upper Witteberg Lower (Rhadinichthy- Series, Carboniferus, Murry 2000/ idae) 120  F Lake Mentz Mississppian Gardiner 1969 Mentzichthys South Africa, walchi Upper Witteberg Lower (Rhadinichthy- Series, Carboniferus, Jubb 1965/ idae) 180 Fish 3 F(B) Lake Mentz Mississppian Murry 2000 Mesopoma carricki M(F) Scotland, (Stegotrachel- (sesona Manse Burn for., Basal Namurian; Coates 1993/ idae) 70 Fish 3 l) Bearsden Mississippian Coates 1999 Mesopoma Moy-Thomas crassum Small fish, Scotland, et al. 1938/ (Stegotrachel- invertebrates & F Glencartholm Viséan, Dineley et al. idae) 110 plankton3 (B/M) volcanic beds Mississippian 1999 Mesopoma macrocephalun1 Scotland, (Stegotrachel- F Glencartholm Viséan, idae)   (B/M) volcanic beds Mississippian Mesopoma plancheni1 M(F) Scotland, (Stegotrachel- (sesona Manse Burn for., Basal Namurian, Coates 1999/ idae) 55  l) Bearsden Mississippian Coates 1993 Mesopoma planti Upper (Stegotrachel- UK, carboniferus, idae) 70 Fish 3 B Lancashire Pennsylvanian Coates 1999 Mesopoma Dineley et al. politum Fish, soft-body Scotland, 1999/ Moy- (Stegotrachel- invertebrates & F Glencartholm Viséan, Thomas et al. idae) 80 zooplankton3 (B/M) volcanic beds Mississippian 1938 Mesopoma pulchellum Small fish, Scotland, Moy-Thomas (Stegotrachel- invertebrates & F Glencartholm Viséan, et al. 1938/ idae) 80 plankton3 (B/M) volcanic beds Mississippian Cotes 1993 Mesopoma smithsoni1 M(F) Scotland, (Stegotrachel- (sesona Manse Burn for., Basal Namurian, idae) 80  l) Bearsden Mississippian Coates 1993 Microhapolepis serrata North America, (Haplolepis Fish, soft-body Ohio, Linton, aff.ovoidea) invertebrates & Upper Freeport Westphalian D, (Haplolepidae) 15-21 zooplankton3 F Coal Pennsylvanian Lowney 1980 Scotland, Nematoptychius Wardie shales- greenocki1 upper limestone Viséan, (Pygopteridae) 480  B series Mississippian Gardiner 1963 Novogonatodus Fish, soft-body Lower kazantsevae invertebrates, insects Australia, carboniferous, (Elonichthyidae)  & zooplankton3 F Mansfield group Mississippian Long 1988 Paramblypterus France, comblei1 Autun Basin, StephanienC, (Amblypteridae)   F Faisceau de Molloy Pennsylvanian Dietze 2000

37 Paramblypterus France, decorus1 66- la grande couche, Mid stephanian, (Amblypteridae) 245  F lake Commentery Pennsylvanian Dietze 2000

Paramblypterus France, StephanienD/Aut gaudryi1 Autun Basin, la unian, (Amblypteridae)   F grande d´Igornay Pennsylvanian Dietze 2000 Paramesolepis rhombus Scotland, (Platysomi- Small invertebrates F Glencartholm Viséan, Moy-Thomas formis) 130 (plankton)3 (B/M) volcanic beds Mississippian & Dyne 1938 Paramesolepis tuberculata Scotland, (Platysomi- Small invertebrates F Glencartholm Viséan, Moy-Thomas formis) 130 (plankton)3 (B/M) volcanic beds Mississippian et al. 1938 Paratarrasius North America, Namurian E2b/ hibbardi bear gulch upper Lund & Poplin (Tarrasiidae) 130 Predator M limestone Mississppian 2002 Fish, soft-body Upper Phanerorthynch invertebrates, insects carboniferus, Moy-Thomas us armatus  & zooplankton3   Pennsylvanian et al. 1971 White 1927/ Moy-Thomas et al.1971/ Dineley et al. 1999/ Phanerosteon Fish, soft-body Scotland, Moy-Thomas mirabile invertebrates, insects F Glencartholm Viséan, et al. 1938/ (Carbovelidae) 120 & zooplankton3 (B/M) volcanic beds Mississippian Gardiner 1985 Phanerosteon Scotland, ovensi Fish, soft-body Berwickshire, (Carboveles) invertebrates, insects Foulden, Viséan, White 1927/ (Carbovelidae) 75 & zooplankton3 F/B Cemenstone Group Mississippian Gardiner 1985 Small fish, France, Stephanien/Autun Platysella lallyi invertebrates & Massif central, ien, Poplin & (Aeduellidae) 150 plankton3 F Bassin d´Autun Pennsylvanian Dutheil 2005 Platysomus Parvulus Plankton/filter Moy-Thomas (Platysomidae) 180 feeder3 M/ F**   et al. 1971 Moy-Thomas Platysomus Scotland, et al. 1938/ superbus Plankton/filter F Glencartholm Viséan, Dineley et al. (Platysomidae) 200 feeder3 (B/M) volcanic beds Mississippian 1999 Proceramala montanensis North America, Namurian E2b/ (Aesopichthy- Small invertebrates Bear gulch upper Poplin & Lund idae) 100 (plankton)3 M limestone Mississppian 2000 Progyrolepis Czech Repobublic, speciosus1 500- Bohemian Massif, Stephanian B, (Pygopteridae) 600 Large predator F Slany For. Pennsylvanian Stamberg 2006 Protoeurynotus Moy-Thomas traquairi Scotland, et al. 1938/ (Platysomi- Small invertebrates F Glencartholm Viséan, Dineley et al. formis) 150 (plankton)3 (B/M) volcanic beds Mississippian 1999 Pyritocephalus North America, compus1 F Mazon creek, (Haplolepidae)   (M/B) Illinois Pennsylvanian Westoll 1944 Pyritocephalus gracilis1 North America, (Rhadinichthys) F Mazon creek, (Haplolepidae) 25-43  (M/B) Illinois Pennsylvanian Westoll 1944 Moy-Thomas North America, et al. Pyritocephalus Ohio, Linton, Westphalian , 1971/Loweny lineatus 50-7 0 Fish and/or insects & Upper Freeport Mid 1980/ (Haplolepidae) zoo-plankton3 F Coal Pennsylvanian Westoll 1944 UK, Pyritocephalus Northumberland, rudis1 Newsham, Westphalian B, (Haplolepidae)   F Low Main coal Pennsylvanian Westoll 1944 Czech Repobublic, Pyritocephalus Bohemian Massif, Westphalian D- Westoll 1944/ sculptus Kladno Stephanian, Stamberg 2006 (Haplolepidae) 40-70 Plankton F For./Nrany Pennsylvanian

38 Radinichthys ferox1 (Rhadinichthy- Scotland, Viséan, idae) 300 **  B Wardie Mississippian  Rhadinichthys Canada, New alberti1 Brunswick, Albert (Rhadinichthy- for./ Nova Scotia , idae)   F Horton Bluff For. Mississippian  Rhadinichthys brevis1 (Rhadinichthy- Scotland, Viséan, idae) 100 **  B Wardie Mississippian  Rhadinichthys Moy-Thomas canobiensis Scotland, et al. 1938/ (Rhadinichthy- Fish (insects & zoo- F Glencartholm Viséan, Dineley et al. idae) 120 plankton)3 (B/M) volcanic beds Mississippian 1999 Rhadinichthys carinatus (Rhadinichthy- Scotland, Viséan, idae)   B Wardie Mississippian  Rhadinichthys Moy-Thomas fusiformis Fish, soft-body Scotland, et al. (Rhadinichthy- invertebrates & F Glencartholm Viséan, 1938/Dineley idae) 150 zooplankton3 (B/M) volcanic beds Mississippian et al. 1999 Rhadinichthys hancocki1 UK, (Rhadinichthy- Northumberland, Westphalian B, Newman et al. idae)   F Low Main Seam Pennsylvanian 2007 Rhadinichthys macconochii1 Scotland, (Rhadinichthy- F Glencartholm Viséan, Moy-Thomas idae) 120  (B/M) volcanic beds Mississippian et al. 1938 Rhadinichthys ornatissimus1 (Rhadinichthy- Scotland, Viséan, idae)   B Wardie Mississippian  Rhadinichthys tuberculatus1 Scotland, (Rhadinichthy- F Glencartholm Viséan, Moy-Thomas idae) 210  (B/M) volcanic beds Mississippian et al. 1938 Sceletophorus biserialis Small predator/ Small Czech Repobublic, (Sceletophor- fish, invertebrates & Bohemian Massif, Westphalian D, idae) 140 plankton3 F Nrany Pennsylvanian Stamberg 2006 Sceletophorus verrucosus1 (Amblypterus) Czech Repobublic, (Sceletophor- Bohemian Massif, Westphalian D, idae) 140 Small predator F Nrany Pennsylvanian Stamberg 2006 Setlikia bohemica1 Czech Repobublic, (Igornichthy- 80- Small Bohemian Massif, Stephanian B, idae) 100 arthropods/insects F Slany For. Pennsylvanian Stamberg 2006 South Africa, Soetendalichths upper Wittberg Lower cromptoni Small invertebrates series, Soetendals carboniferous, (Platysomidae) 210 (plankton)1 F Vlei Mississippian Gardiner 1969 Czech Repobublic, Sphaerolepis Bohemian Massif, kounoviensis krkonse Piedmont Stephanian, (Trissolepididae) 150 Invertebrates F Basin Pennsylvanian Stamberg 2006 France, Tchéque/ Spinarichthys Czech Repobublic, Poplin & disperses1 Small Slany For. & Line Stephanien B-C, Dutheil 2005/ (Aeduellidae) 80-10 arthropods/insects F For. Pennsylvanian Stamberg 2006 Scotland, Strepheoschema Berwickshire, White 1927/ fouldenensis Small fish, Foulden Dineley et al. (Strepheoschem- invertebrates & (Cemenstone Viséan, 1999/ Gardiner idae) 180 plankton3 F/B Group) Mississippian 1985 Styracopterus 100  F Scotland, Viséan, White 1927/

39 fulcratus1 (B/M) Foulden/Glencarth Mississippian Gardiner 1985 (Fouldenia & F/B olm volcanic beds ottadinica) (Styracopteridae) Sundayichthys Small fish, South Africa, Lower elegantulus invertebrates & Upper Wittberg Carbonifeous, (Canobiidae) 100 plankton3 F(B) Series, Lake Mentz Mississippian Gardiner 1969 Tarrasius Scotland, problematicus F Glencartholm Viséan, Lund & Poplin (Tarrasiidae) 100 Predator (B/M) volcanic beds Mississippian 2002 Wardichthys Scotland, cyclosoma1 East Lothian, Viséan, Dineley et al (Platysomidae) 80  B Wardie Mississippian 1999 Wendyichthys dicksoni North America, (Rhadinichthy- 90- Bear gulch Namurian, Lund & Poplin idae) 100 Plankton M limestone Mississippian 1997 Wendyichthys lautreci North America, (Rhadinichthy- Bear gulch Namurian, Lund & Poplin idae)  Plankton M limestone Mississippian 1997 Willomorichthys South Africa, upper striatulus Small fish, Wittberg series, Lower (Willomorichthy invertebrates & Soetendals Vlei/ carboniferous, idae) 250 plankton3 F Lake Mentz Mississippian Gardiner 1969 Woodichthys bearsdeni Fish, soft-body M(F) Scotland, Basal (Stegotrachel- invertebrates & (sesona Manse Burn for., NamurianE1, idae) 110 zooplankton3 l) Bearsden Mississippian Coates 1998 Zaborichthys Czech Repobublic, fragmentalis1 Bohemian Massif, Stephanian B, (Pygopteridae)  Large predator F Slany For. Pennsylvanian Stamberg 2006 Newman, A., S. McLean and D. Hudson. 2007, Hancock Museum, http://www.ncl.ac.uk/hancock/publications/vertebrate/cata4.htm

40 Appendix 2

Relativ Warp 1.2 with numbers, 1-8 Devonian taxa, 9-72 Carboniferous taxa; 1, Cheirolepis Canadensis 2, Cuneognathus gardineri 3, Howqualepis rostridens 4, Limnomis deleneyi 5, Mimia toombsi 6, Moythomasia nitida 7, Stegotrachelus finlayi 8, Cheirolepis trailli 9, Acrolepis gigas 10, Adroichthys tuberculatus 11, Aeduella blainvillei 12, Aesopichthys erinaceus 13, Aesopichthys fulcratus 14, Aetheretmon valentiacum 15, Australichthys longidorsalis 16, Bourbonella guilloti 17, Canobius elegantulus 18, Canobius ramsayi 19, Cheirodopsis geikei 20, Chirodus granulosus 21, Cryphiolepis striatus 22, Cycloptychius concentricus 23, Cyranohis bergeraci 24, Discoserra pectinodon 25, Elonichtys pulcherrimus 26, Elonichtys serratus 27, Elonichtys spaerosideriarum 28, Frederichthys musadentatus 29, Gonatodus punctatus 30, Guildayichthys carnegiei 31, Haplolepis corrugate 32, Haplolepis ovioidea 33, Haplolepis tuberculata 34, Paratarrasius hibbardi 35, Holurus parki 36, Kalops diophrys 37, Kalops monophrys 38, Melanecta anneae sp.nov 39, Mentzichthys walchi 40, Mentzichthys jubbi 41, Mesopoma carricki 42, Mesopoma crassum 43, Mesopoma planti 44, Mesopoma politum 45, Microhapolepis serrata 46, Mesopoma pulchellum 47, Mansfieldiscus sweeti 48, Novogonatodus kazantsevae 49, Paramesolepis rhombus 50, Paramesolepis tuberculata 51, Phanerorthynchus armatus 52, Phanerosteon ovensi (Carboveles) 53, Phanerosteon mirabile 54, Platysella lallyi 55, Platysomus superbus 56, PlatysomuspParvulus 57, Tarrasius problematicus 58, Proceramala montanensis 59, Protoeurynotus traquairi 60, Pyritocephalus Sculptus 61, Pyritocephalus lineatus 62, Rhadinichthys canobiensis 63, Rhadinichthys fusiformis 64, Sceletophorus biserialis 65, Soetendalichths cromptoni 66, Sphaerolepis kounoviensis 67, Strepheoschema fouldenensis 68, Sundayichthys elegantulus 69, Wendyichthys lautreci 70, Wendyichthys dicksoni 71, Willomorichthys striatulus 72, Woodichthys bearsdeni

41

Relativ Warp 1.1 with numbers, 1-8 Devonian taxa, 9-72 Carboniferous taxa. 1, Cheirolepis Canadensis 2, Cuneognathus gardineri 3, Howqualepis rostridens 4, Limnomis deleneyi 5, Mimia toombsi 6, Moythomasia nitida 7, Stegotrachelus finlayi 8, Cheirolepis trailli 9, Acrolepis gigas 10, Adroichthys tuberculatus 11, Aeduella blainvillei 12, Aesopichthys erinaceus 13, Aesopichthys fulcratus 14, Aetheretmon valentiacum 15, Australichthys longidorsalis 16, Bourbonella guilloti 17, Canobius elegantulus 18, Canobius ramsayi 19, Cheirodopsis geikei 20, Chirodus granulosus 21, Cryphiolepis striatus 22, Cycloptychius concentricus 23, Cyranohis bergeraci 24, Discoserra pectinodon 25, Elonichtys pulcherrimus 26, Elonichtys serratus 27, Elonichtys spaerosideriarum 28, Frederichthys musadentatus 29, Gonatodus punctatus 30, Guildayichthys carnegiei 31, Haplolepis corrugate 32, Haplolepis ovioidea 33, Haplolepis tuberculata 34, Paratarrasius hibbardi 35, Holurus parki 36, Kalops diophrys 37, Kalops monophrys 38, Melanecta anneae sp.nov 39, Mentzichthys walchi 40, Mentzichthys jubbi 41, Mesopoma carricki 42, Mesopoma crassum 43, Mesopoma planti 44, Mesopoma politum 45, Microhapolepis serrata 46, Mesopoma pulchellum 47, Mansfieldiscus sweeti 48, Novogonatodus kazantsevae 49, Paramesolepis rhombus 50, Paramesolepis tuberculata 51, Phanerorthynchus armatus 52, Phanerosteon ovensi (Carboveles) 53, Phanerosteon mirabile 54, Platysella lallyi 55, Platysomus superbus 56, PlatysomuspParvulus 57, Tarrasius problematicus 58, Proceramala montanensis 59, Protoeurynotus traquairi 60, Pyritocephalus Sculptus 61, Pyritocephalus lineatus 62, Rhadinichthys canobiensis 63, Rhadinichthys fusiformis 64, Sceletophorus biserialis 65, Soetendalichths cromptoni 66, Sphaerolepis kounoviensis 67, Strepheoschema fouldenensis 68, Sundayichthys elegantulus 69, Wendyichthys lautreci 70, Wendyichthys dicksoni 71, Willomorichthys striatulus 72, Woodichthys bearsdeni

42 Appendix 3

Relative warp scores matrix The relative warp scores matrix consist of 24 warps fore every taxa and were used to do the Cumulative Variance and Hypercube volume tests. 1-8 Devonian taxa, 9-72 Carboniferous taxa.

1, Cheirolepis Canadensis 1.47702314949216E-001 7.76970232559585E-002 -9.14800559580341E-002 - 3.80910108397424E-002 -3.26504374350668E-002 6.90927706054322E-003 3.08187867254436E-002 2.37787503237896E-002 4.86081562239253E-003 1.55025867678666E-002 1.69002214010146E-003 -4.03950589443996E-003 3.73615384426422E-003 1.67415828714445E-003 -8.50977768291891E-003 -1.09402023640898E-002 8.77376371328731E-003 -1.08534226907252E-003 1.41135978001820E-003 - 6.22606715787736E-003 2.17873885602268E-003 1.49114347638818E-003 4.36934058471305E-004 - 7.35089381941104E-004

2, Cuneognathus gardineri 3.73204936686494E-002 -2.76327607113955E-002 8.77807885780545E-002 - 5.40004367376416E-003 -5.28714750497824E-002 -9.71402717272909E-003 1.45841207989998E-002 -9.11861719174432E-003 -2.20381698948271E-003 - 9.41354274101812E-003 -2.06796627205119E-003 2.20855995885462E-003 -8.01305246311813E-004 - 5.19742534524821E-003 -2.13415657424514E-002 -4.53132382442520E-003 - 5.93841229072881E-003 -4.22527133055125E-003 -2.92613481362250E-003 7.16919103427323E-003 2.39724887102157E-003 -5.85477471442104E-003 -1.40841452663159E-003 - 8.42034394302481E-004

3, Howqualepis rostridens 9.65179677427757E-002 3.71335082423025E-003 5.51052456775173E-003 - 1.24033973229542E-002 1.80553468233953E-003 3.22295726848346E-002 7.99452000031080E-003 -6.26328105182195E-003 1.07660284764424E-002 2.00505833839931E-002 -5.22632002101923E-003 -5.15859261055317E-003 -1.26382590968658E-003 1.41908455226897E-002 -1.66880506212428E-003 -1.44568717808659E-002 4.03778722745566E-003 -1.49435863073566E-003 3.82755690551396E-004 - 3.52584871293953E-003 1.91155294721814E-003 -2.76940617181465E-003 1.03269174350640E-003 - 7.19573076229272E-004

4, Limnomis deleneyi 3.61029490994080E-002 -3.17622569448343E-002 4.98228712819656E-002 3.88496610574259E-002 -1.67939044570819E-002 1.57369718188892E-002 1.02954192520669E-002 -2.91462305950585E-002 -2.10426610756044E-002 - 5.96908092318027E-003 -6.25649753763694E-003 5.41730453320168E-003 -6.19247215005423E-003 - 1.13338778068643E-002 -7.17287082755412E-003 2.83856591205793E-003 - 6.96504300970560E-003 -5.83838777481440E-003 3.75160758797067E-003 2.08572388054364E-003 2.24388367568777E-003 -8.12088844800053E-003 2.03251809427732E-003 1.26708001734628E-003

5, Mimia toombsi 4.41756089364850E-002 -1.26621861450188E-002 -1.90577059718379E-002 1.09906647836816E-003 -2.02635686982447E-002 3.24517994026876E-002 - 4.71054955556473E-002 -1.99377745205523E-002 4.69694018602533E-004 7.11475855799215E-003

43 -4.53459964068412E-003 3.09512187727671E-002 1.08601643512105E-002 8.88294759449782E-003 4.10603320978028E-003 -2.56092355665571E-003 - 6.30413533693775E-003 -2.58323560030068E-003 -2.88227727056627E-003 6.04079894098288E-003 -3.69066188277844E-003 -2.63854545559644E-003 5.20069879730440E-004 - 6.62326461471438E-004

6, Moythomasia nitida 3.95528977207354E-002 3.51244514592175E-002 5.54973075575694E-002 - 3.33073647770004E-002 -4.78654325285496E-002 3.96093455926506E-002 - 4.26080671775446E-002 2.42765030996746E-003 -3.53312184939029E-002 2.55387484741782E-003 4.74863934306992E-003 -4.57444023074974E-003 2.10834359560401E-002 7.70530392317998E-003 8.99335237273102E-004 2.67651374166309E-003 4.81464308390757E-003 -1.07170429031569E-002 -3.54275225970469E-003 1.58205711268809E-003 9.19762463235646E-003 1.24900761340024E-003 3.61261477048946E-004 - 1.15569983950639E-003

7, Stegotrachelus finlayi 2.44359705104772E-002 -5.81431630302180E-003 -9.45348189001080E-003 - 2.12153698520744E-003 2.31263761850448E-002 -1.81065294744563E-003 - 4.78495635047496E-002 2.25891560736931E-002 -8.01382733892071E-003 1.58353330044102E-002 -1.34667901648258E-003 1.18178128663031E-003 1.41851905311568E-002 1.99235038170168E-003 -2.42927864366797E-003 -6.67359769673751E-003 - 7.16537517140485E-003 -2.28072491567167E-003 -6.64078853198686E-003 3.52678240776863E-003 1.72335964969291E-005 2.03547628529542E-003 -1.29849192013087E-003 - 1.13107122901251E-003

8, Cheirolepis trailli 1.45338870114994E-001 2.13352409385973E-002 -8.24562313168980E-002 2.05012545540034E-003 -9.90395461451624E-003 -1.41988618580833E-002 9.90258042273085E-003 3.20004483628456E-002 2.38030030607199E-002 6.24080705698195E-005 -1.61904833960516E-002 -4.64459639600295E-003 -1.19202066543767E-002 -7.74701351211312E-003 5.24866796947421E-004 -1.50803687443620E-002 8.82071738044107E-003 -1.29416386129296E-002 -1.06326993766716E-002 - 7.46593141342191E-003 -3.61721850920371E-003 -6.83715764107979E-005 -7.66097401695437E-004 1.55763396181046E-003

9, Acrolepis gigas 3.75321513582969E-002 -3.25410096369482E-003 3.33269722555113E-002 8.80269255034214E-002 3.74395876740220E-002 3.13088229385228E-002 - 2.02690841023083E-002 5.29542127485999E-003 6.90363271506393E-003 - 1.43407488048645E-002 2.98563946605686E-003 1.75853223568120E-003 -1.60308593668838E-002 2.41761394866338E-003 6.59510653008885E-004 -7.12003474998404E-003 - 4.06087991246735E-003 -7.30807130535494E-003 3.15332992563393E-003 - 2.91377199296080E-003 -3.50698972137588E-003 1.26334843166111E-003 6.90908496260037E-004 7.49812263812129E-004

10, Adroichthys tuberculatus -6.54500384235986E-002 9.49383276991587E-002 -1.06218040979493E-001 8.16646552435092E-003 6.03907723215345E-003 -1.93557365648242E-002 - 3.58470499814553E-002 -5.14480844728781E-002 2.40221536216809E-002 1.98050987281761E-002

44 2.97127933448176E-003 -1.35247844900395E-002 3.44962876911575E-003 - 2.38734044158427E-002 -2.99057442140640E-002 -4.38901277782132E-003 - 5.79684813281884E-003 7.85121748537564E-003 -1.41344846087876E-002 1.06714005257982E-003 -4.66873906780084E-003 7.39288549866942E-003 -2.47291724597647E-004 - 1.11346162662696E-003

11, Aeduella blainvillei -3.68169069188596E-003 1.70760483996509E-002 8.99448221737512E-002 - 1.76655461448359E-003 2.18158921496117E-002 -2.36945160939335E-003 2.44957698048276E-002 -2.95161357318790E-002 9.42514472332840E-003 - 1.62967534384465E-002 1.80220855103712E-002 1.79660701937372E-003 9.06783259744474E-005 - 1.21224755881515E-002 9.57319899635337E-003 -1.80379081557929E-003 - 3.03844741473166E-003 3.47153431670014E-003 4.05003813233826E-003 - 8.33643450119597E-003 4.09138543777318E-003 1.20994524584963E-003 -2.88704831296894E-004 - 1.44078144755154E-003

12, Aesopichthys erinaceus -1.00402491189095E-001 -5.54686545637862E-002 1.14913266033541E-003 2.35720401436099E-002 -2.61076394408646E-002 -1.32598227153254E-002 2.71518086367345E-003 -4.20782182992029E-002 -6.84946724878476E-003 - 9.88176675070227E-003 -8.89800464816835E-003 -4.01517768449828E-003 3.11514242311364E-002 - 9.66987069840425E-003 9.63031104139729E-003 -1.15586471397516E-002 1.76755590199163E-002 1.76343724647860E-003 1.51649889758568E-003 - 6.10198524338540E-003 -1.21326629089848E-003 -7.98324176161172E-005 -1.44027432114524E-003 2.68009061204188E-003

13, Aesopichthys fulcratus -3.29796056425237E-002 -1.54005900596916E-002 -2.32902636606533E-002 2.86338512793244E-002 1.95588608595200E-002 -3.14745543869980E-002 - 2.10877082853165E-003 -3.25752290126935E-003 8.13980955789657E-003 2.61093577805846E-002 1.77397051132053E-002 4.76952694039384E-003 4.11318008435435E-004 3.91586689520084E-003 -1.24458827140164E-002 2.57468095296816E-003 - 5.68091417421279E-003 3.72703082230670E-003 2.06243691584890E-003 1.29244961985037E-002 4.04353060338379E-004 -6.01412289653427E-003 -3.51113298170234E-004 8.58364699980819E-004

14, Aetheretmon valentiacum -9.48244991811522E-003 -3.39472664437710E-003 1.38313468428690E-002 - 1.70131588752602E-003 2.04884987409656E-002 -1.09579338062452E-003 6.99265264010233E-003 -2.08230403501986E-003 -9.18630369703011E-003 3.34040493538257E-002 -8.65654888698793E-003 9.52218113312467E-003 -8.88194317168711E-004 - 9.87453787500465E-003 -7.97926359587603E-003 1.08478700895144E-002 - 1.17702428151444E-003 -8.66064917125951E-003 -1.55480360304624E-004 - 2.14991765435687E-003 1.74239961079664E-003 -3.35198691461314E-003 -2.20832734015312E-003 1.52142591102713E-003

15, Australichthys longidorsalis -2.77071657748101E-002 -1.10855210489450E-001 9.64194643016371E-003 6.78899618653410E-002 2.80613512737592E-002 -5.29952383779959E-002 1.60528691716365E-002 9.38733810447034E-003 -3.42771127282180E-003 - 1.05275735830463E-002

45 -2.34033257247578E-002 -8.66769422427980E-003 1.45883779254606E-002 6.97693452189810E-003 -1.94281154926756E-003 5.34221727626268E-003 - 6.29272230990109E-003 -3.95354352475744E-003 -5.60860694559179E-004 2.19024964014610E-003 -4.75503330019800E-003 7.25092688249706E-003 -6.30225676948545E-004 2.04070232561228E-003

16, Bourbonella guilloti 2.73061571301787E-002 1.34179269486633E-002 2.76888794703271E-002 - 2.03940634868942E-003 5.26788099455046E-002 3.17975875163503E-002 1.23700946455683E-002 -4.49730764443111E-002 -9.82700538620923E-003 - 5.66049616326451E-003 3.74700511650742E-003 -7.57326379596720E-003 -1.01046343934740E-002 - 9.27387931878983E-003 1.40706440853017E-002 6.53989441456676E-003 - 5.63440438769541E-003 -5.94920527667513E-003 -9.29993842064377E-003 - 3.96621652847950E-003 4.34669190231814E-003 -2.33601478149075E-003 -3.94045594561132E-003 8.09484766374995E-005

17, Canobius elegantulus -2.70082304590353E-002 -2.18682633402879E-002 3.07774988690733E-002 - 5.66842770787800E-002 2.48524660041859E-002 5.33150756681810E-003 - 1.98514551663967E-002 3.45492115958367E-003 3.13490156775314E-002 - 1.30594316917690E-002 3.80999691962973E-003 6.33374392002980E-003 5.17481080518776E-003 4.90498898597992E-003 1.74892568078121E-002 -4.36535551428046E-003 2.58233609671302E-003 2.80601788009313E-003 -8.39954239888295E-004 - 3.17348047282560E-003 2.61991624334150E-003 -3.74976813148338E-004 -2.32495035052685E-003 5.32322725128246E-004

18, Canobius ramsayi -3.39844586234901E-002 -2.96237315714167E-002 3.38767569555730E-002 - 5.19095928868736E-002 1.99173673109304E-002 -1.28204541563435E-002 - 1.70125410085500E-002 9.50492508684912E-003 3.70158259762147E-002 1.92993485239962E-003 9.17510743858241E-003 6.50822823817436E-003 -2.66695041043967E-003 2.16648124010143E-003 1.44001390449232E-002 2.62175059051405E-003 1.54197961208864E-003 -3.55194796733367E-003 -3.50166283520967E-003 1.58956346648943E-003 4.70794630029036E-003 4.42781979916689E-004 -4.22741069795987E-003 1.02471839989964E-004

19, Cheirodopsis geikei -1.73153210648037E-001 6.74018695933019E-003 2.02058462156416E-002 - 3.84186899597471E-002 -8.94844012269879E-003 -4.78995298587017E-003 1.07100627133845E-002 2.23035638878055E-002 -1.11224935931440E-002 - 1.25425806911582E-003 -4.56468513569313E-003 8.92533168656426E-003 -2.49921325142524E-002 - 6.66298705086372E-003 -3.57606705791003E-003 -6.86344748977806E-003 - 4.50619491287639E-003 1.42579081515720E-002 1.32105580509340E-003 - 3.60387624116991E-003 9.00384604953682E-004 -2.25135400210658E-003 2.38833054693525E-003 4.10610855763894E-003

20, Chirodus granulosus -1.84792149626105E-001 1.08165190499378E-001 -5.79298994911114E-002 1.93408409700114E-002 -7.06688918092855E-003 2.24809400108198E-002 4.44309219060038E-002 -6.94201574482850E-003 -1.69154569787197E-002 2.59025018189675E-002

46 -1.06133311508939E-002 9.64157948787444E-003 -7.15663954536802E-003 3.03569702414926E-002 1.91088646094928E-002 3.44943336782827E-003 - 1.46225714296709E-002 6.12856384175423E-003 -1.17708624020636E-002 - 3.43866914639045E-003 -2.99773592917469E-003 -1.52659097527454E-003 -3.82070287849058E-004 3.03214551433694E-004

21, Cryphiolepis striatus 5.44431545312039E-002 6.81495338978560E-003 3.54204250393082E-002 3.07402289610678E-002 4.48872783542401E-003 -9.31742084190105E-003 - 5.01561492575839E-003 1.76940449940972E-002 1.22433779295884E-002 8.68551695381435E-003 5.86987529278156E-004 -2.04254754081264E-002 -8.29540940727484E-003 1.00119869291897E-002 -1.65307638365158E-003 -1.43001204791618E-002 - 3.00100803518609E-003 -6.36301356769213E-003 -2.93589834951294E-003 - 8.32941520854551E-003 3.73398213129240E-003 -5.52382383956140E-004 1.04233565043398E-003 - 6.23731850364784E-004

22, Cycloptychius concentricus 1.16641493457409E-001 3.43954751314955E-004 -3.89934950657916E-002 - 1.41726136815297E-002 -1.14654236482935E-002 -2.21742260714387E-002 4.92232223782127E-003 -2.66603730010335E-003 -1.69367504314957E-002 - 1.86673237129768E-003 -1.26678044418548E-002 1.03440913742243E-002 2.89646161497480E-003 - 2.65424290522240E-003 1.04439631866751E-002 8.81016672699868E-003 - 6.59988353344943E-003 -6.35955765552087E-003 -1.67945618839543E-003 1.54151684340036E-003 6.90665820941335E-004 -1.46481016972069E-003 1.24033987885013E-003 3.03147913220445E-004

23, Cyranohis bergeraci 1.07686580291381E-001 2.88531698021793E-002 -3.70092893225979E-002 4.37348411645453E-002 -2.54967031496735E-002 3.10206389645138E-002 - 1.67115286024010E-002 -4.87425310509838E-003 -1.04154342654463E-002 - 2.12830288605589E-002 -2.02275182845043E-003 -1.64583041128748E-002 6.23596736009868E-003 7.94493904882231E-003 7.50404849149382E-003 1.04805976362866E-002 4.64451394528203E-003 -9.23264453246986E-003 7.65642776400396E-003 - 3.49910963290011E-003 -7.30038027786227E-003 5.54637429513937E-003 3.90660269063974E-004 6.09426771793095E-005

24, Discoserra pectinodon -2.21416000006169E-001 4.28302729727890E-002 -8.20479199935974E-002 2.75276287300762E-002 -1.06740593306255E-002 3.80817579767151E-003 - 8.44855775341346E-003 2.95986737482430E-002 -3.06624422458327E-002 - 3.39552454550301E-002 3.01325310270562E-002 7.60057828916713E-003 -7.47953654991754E-003 4.58748919896252E-003 -8.78256368156505E-003 2.44990964569089E-004 - 7.42053411595497E-003 3.35387090528948E-003 -5.49490780982945E-003 - 1.78957094789384E-003 -2.71010444116189E-003 3.19765925866711E-003 -2.66734479343674E-003 6.00496365981684E-004

25, Elonichtys pulcherrimus -3.37795939167167E-002 -2.58276302680663E-002 5.84171849213756E-002 1.61865626082063E-003 -5.38818309564808E-003 -2.63335412709222E-002 - 3.13013972036058E-002 3.97329938604974E-003 6.66174415623596E-003 1.43892815134483E-002

47 -3.00524589070101E-003 1.07071134848355E-002 1.33186329357096E-002 - 2.39530141487943E-003 8.21982991664539E-003 -2.78672715957166E-004 5.41448515434126E-003 -1.62533121178953E-003 -1.36630623567095E-003 - 1.89519910279807E-004 -4.77870839805406E-003 8.31537742231225E-004 7.74642423600024E-004 - 6.53592906470112E-004

26, Elonichtys serratus 5.37968593489650E-002 -3.13647526086039E-002 1.47131425124158E-002 1.04477654540835E-002 2.38398381538308E-002 -8.93362319831704E-003 - 7.42665779822503E-003 3.78174035694631E-003 8.81378720616499E-003 8.58526152986178E-004 -9.20583405831974E-003 -4.66759062558675E-003 3.93629940984716E-003 6.28793099188076E-004 1.70098183482170E-002 1.01084856648067E-003 - 8.39528207136526E-004 1.54714317626932E-002 1.03273820332210E-003 2.31906530799063E-003 -2.46216674934329E-003 -3.87151113331453E-003 -1.19422117544923E-003 -1.48452273475938E-003

27, Elonichtys spaerosideriarum -2.03655226134128E-002 2.23498286079283E-002 6.15024028772474E-002 2.46526347943667E-002 -8.95277069634627E-003 3.10747936317020E-002 - 3.16882136595238E-002 1.19099843277656E-003 -4.03983545952303E-003 2.14394002715665E-002 -2.00778830206405E-002 2.22078503614722E-002 -2.02491648183750E-002 - 5.18901867448761E-003 -1.16824936218684E-002 5.03371189741213E-003 9.64013978854536E-003 -3.35049968963822E-003 1.22023207718563E-002 4.15993145860599E-003 5.41271064641101E-003 8.15531149165273E-003 -2.65232675145890E-003 1.65059952081595E-003

28, Frederichthys musadentatus -9.27073198846913E-002 4.02971532590262E-002 6.51951633234159E-002 7.65405067079577E-003 -4.38559534874596E-002 -1.76182612752266E-002 - 3.48711526378892E-002 1.56979809995488E-002 -2.10814173616795E-002 3.08652582465087E-002 2.86251092064606E-002 1.19731642999628E-003 -1.53050229568397E-003 - 2.39350421633278E-004 -8.17884746427754E-003 6.39705397833080E-003 7.15677070028007E-003 -9.59243400301218E-004 1.73765770342785E-003 - 1.00921288691309E-002 -2.49773851645378E-004 -1.40455211529894E-003 -4.48770446873779E-004 -4.29008277889749E-005

29, Gonatodus punctatus -1.31863679277726E-002 7.52341337898236E-003 1.15503282335636E-002 2.98029334110992E-002 1.44924745862456E-003 -3.28317546533832E-002 - 2.70450888162548E-003 -1.20577218840999E-002 -1.17617103087585E-002 2.04064576575421E-002 3.23231427989490E-003 7.38110855456786E-004 -7.35161092239738E-003 1.07805832882750E-002 1.63612463992147E-003 -6.89680435412281E-003 1.15059288145221E-003 5.35992916377910E-003 8.68849264114691E-003 - 7.18102102090098E-003 2.08880820891358E-003 -9.53549075420517E-004 -8.16236832078237E-004 1.49632061990849E-003

30, Guildayichthys carnegiei -1.91158797533109E-001 -2.35533452634672E-003 -4.40089555757315E-002 3.13455591974698E-002 1.53185438785560E-003 -3.32159425117532E-003 - 1.60337692619522E-002 -7.11257156527966E-003 -2.98881758361042E-002 - 2.75679098793447E-002

48 2.59927512852035E-002 1.66847096137795E-002 -5.63691319868869E-004 - 1.18571701217503E-002 5.80808039376272E-003 -7.11199229251459E-003 1.40046572117627E-002 7.72078664011686E-003 -1.07824257194954E-002 - 1.73769059611464E-003 1.62673916587435E-003 9.93078599310066E-004 2.90410459023702E-003 - 1.32622197371122E-003

31, Haplolepis corrugate 1.03197961781642E-001 4.65012345921705E-002 -4.59692655480830E-002 - 4.21479376995433E-002 3.34560444177135E-002 -9.73363444902786E-003 4.04959397932760E-003 -2.33107731512303E-003 -2.20385950847039E-002 - 1.24042227897113E-002 5.95517157951769E-003 -9.96161716491597E-003 -1.62305736424607E-002 1.25212333754327E-003 -5.54533272383963E-003 1.60260695707288E-003 3.54193172499094E-003 -1.10289166798233E-003 -1.28449936830327E-003 - 1.28959842945756E-003 -2.95551932812751E-003 4.51508635771452E-004 -1.77544453783537E-003 9.60204114837674E-004

32, Haplolepis ovioidea 6.91373197561835E-002 2.22514718828014E-002 3.60663624994100E-002 - 3.33390576301765E-002 1.41101116446559E-002 -5.49471354560308E-002 1.18700349823722E-002 -1.99938366131939E-002 -6.36151726636127E-003 - 2.54344546402227E-002 1.00303306541481E-002 7.55860691444177E-003 -7.65766599971822E-003 3.12594947429975E-003 -1.03978359861531E-002 3.19527409613668E-003 - 6.95329262627995E-003 -4.80707957674152E-003 2.89201292648488E-003 - 4.70093864094372E-003 -3.78116519848804E-003 -4.23950324467610E-003 -5.24825338774709E-004 -1.98452063328429E-004

33, Haplolepis tuberculata 9.23020724700052E-002 4.57875141193467E-002 -3.06118830757220E-002 - 5.98203217384886E-002 2.73798267375493E-002 -1.41804830953517E-002 1.21112270034864E-002 -1.65588263182281E-002 -1.02205891095366E-002 - 2.02315040101571E-002 1.02912702019914E-002 4.36251473756803E-003 -6.97541472577175E-004 1.17905092231456E-002 -7.46896889813691E-003 -1.70549699998815E-004 - 1.03658642422482E-002 -4.07122251840232E-003 5.48899197428389E-003 8.66437302008345E-004 -6.28824029664111E-004 -2.94241474928578E-004 2.32832928864847E-004 - 1.34160430633058E-003

34, Paratarrasius hibbardi -3.82492008105075E-002 -3.25454467659553E-001 -8.62328870474682E-002 -2.86823085694536E-002 3.43763147658558E-002 2.68980071193947E-002 1.47166884674030E-002 7.95853593722073E-003 -1.34482920230687E-002 - 4.46521738263848E-004 -1.82254411843089E-002 6.86978329182478E-003 1.82722171149498E-003 - 1.37083192893552E-003 -1.86723332426791E-002 3.83789142851795E-003 7.48427307271382E-003 3.47007162385582E-003 -3.43410644493394E-003 - 8.52403746423493E-003 6.28448013249387E-003 2.12911002951682E-003 7.35343460306877E-004 - 6.33661555504167E-004

35, Holurus parki 4.98841358258526E-003 -5.84990508767790E-002 -3.50020154375456E-002 - 3.50034911993719E-002 -1.56667486542072E-002 -4.40360248228754E-002 - 3.04223695515770E-002 7.74889431393738E-003 -1.24385897132943E-002 - 5.12259543905365E-003

49 -1.50839304166728E-002 -2.59474923713621E-002 5.33086093214612E-003 4.63967784800373E-003 4.48360007360754E-004 5.58449480501163E-003 - 1.58016464193652E-004 -1.41434400136706E-003 2.89117278340254E-003 5.94374068717993E-003 1.61261456694624E-004 1.01866336441121E-003 -2.60677168577694E-003 1.62879519156041E-003

36, Kalops diophrys 7.56622220361610E-002 -1.99112476411198E-002 -6.08088658085016E-002 3.16656840471782E-002 2.83360376561102E-003 -2.65830631697965E-003 2.86794263270857E-002 -1.07952140052672E-003 -4.52642668037601E-003 - 6.77124568010780E-003 -3.34569367600967E-003 7.08919801489473E-004 5.23893942652677E-003 - 1.42837236630000E-002 6.89978750851689E-003 -6.33776674724022E-004 - 3.25578445821084E-003 7.84187363468807E-003 5.31298720248616E-003 4.36600892348093E-003 1.39330131600533E-003 -2.57862394981450E-003 -1.85768145142351E-003 6.43569878600630E-004

37, Kalops monophrys 6.93556418694088E-002 -3.35217869634258E-002 -6.98650262751256E-002 - 7.36722998905509E-003 1.19265755251909E-002 1.23872954956864E-002 1.18971042095757E-002 -6.24494324873737E-003 -1.58946822680511E-002 9.04595536457638E-003 -9.49052687057960E-003 6.01571028249550E-003 -4.60463855122724E-003 - 1.38232243548480E-002 1.25552878706212E-002 4.79231750465598E-004 - 3.45199696136097E-003 7.31381294926229E-003 -5.71583878800560E-005 6.01616246343967E-003 -3.32970808048434E-003 -1.54759083507586E-004 -1.16674868015064E-003 1.24213580380354E-003

38, Melanecta anneae 6.86679894552939E-002 -2.01782611244633E-002 8.67829895719327E-002 2.79197098425920E-002 -8.69337870465016E-002 1.88570465186768E-002 1.78986547851415E-002 1.05066540724570E-002 -2.12934393272689E-002 - 9.15513078916491E-004 1.58067640514484E-003 -9.58047427403454E-003 -8.69436315602399E-003 - 1.86161239420627E-002 1.17479222129642E-002 -8.22346258328053E-003 - 1.11932989612768E-002 7.36767489950981E-003 1.39449479501469E-003 3.33127954040233E-003 -9.34779974208328E-004 5.14381681203995E-003 4.52122216567664E-004 - 1.16547925797598E-003

39, Mentzichthys walchi 9.80539457889568E-002 2.57901369924425E-003 1.00067473326066E-002 7.78927904792288E-003 -1.28171009839554E-002 1.55857114316774E-002 3.45277108820975E-002 -8.06432092976121E-003 -9.89346233856497E-003 5.29667045513025E-003 -4.69868666528032E-003 -1.12115417146950E-002 4.78600280013346E-003 7.85298358782870E-003 -5.84509059442629E-004 5.19284249727298E-003 - 6.31346700342824E-003 9.65295701908683E-003 6.72162964125289E-003 - 3.82449901840065E-003 -3.26621790699359E-003 4.28855776525974E-003 -1.97085325835315E-004 - 1.98357028435309E-003

40, Mentzichthys jubbi 8.93015432199666E-002 1.48540580922724E-002 -4.48562090975862E-002 1.56817561040303E-002 2.53566023413233E-003 -2.91695141656557E-002 2.62257248055659E-002 1.40153376137098E-003 -5.02730352208712E-003 - 3.08642034352851E-003

50 -1.07734095860281E-002 -2.34181108465109E-003 1.34114649814317E-002 - 2.17926228409651E-003 8.68681856467550E-004 4.61425843045135E-003 - 1.08041561574396E-002 -4.35624215190156E-003 -8.66366733200851E-005 1.32251669909144E-003 5.74955924360485E-003 2.88075334449310E-003 3.40797295492374E-003 - 9.74044631331868E-004

41, Mesopoma carricki 8.81664153114271E-002 3.86948982206707E-002 -4.76609300377201E-002 2.25505271532729E-002 -2.91978525989342E-003 2.85329170434459E-002 1.31870353600703E-002 1.19331608175456E-002 2.47620921082321E-002 2.44775385859324E-003 1.54344279404274E-002 2.39026467295833E-002 1.44912516459549E-004 3.98872542293818E-005 -1.87537134531509E-005 5.34933830690081E-003 6.27111886744924E-003 4.99666960026567E-003 5.25674056562768E-003 2.97960747069373E-003 9.20987664991155E-004 6.30944845941790E-003 -5.81794645332282E-004 - 1.03605097603233E-003

42, Mesopoma crassum -2.43904384907355E-002 2.21334467079096E-002 2.16459646516828E-003 – 2.17689385901334E-002 -5.43888205522293E-004 -2.68705844562575E-002 - 2.85580709327501E-002 -2.44948357524877E-003 6.23671230184937E-003 2.52429973193803E-002 -4.13460446108256E-003 -6.89054934927423E-003 -1.77855736822415E-002 -5.87662869191960E-003 1.09127638532612E-002 -2.15703801273213E-003 1.26557996397677E-003 1.63281251953917E-003 5.54625055817515E-004 1.38025909093444E-003 3.00381507249889E-003 4.82744422541802E-003 -4.59184092189823E-004 1.95185606824016E-004

43, Mesopoma planti 9.23156764599270E-002 3.10920207993184E-002 -5.28118005280474E-002 2.49314274481329E-002 -1.20957413607651E-003 3.08406286415602E-002 - 2.92588036328547E-003 7.69401541048776E-003 1.85713726259159E-002 - 1.17161621280167E-003 7.70716750087200E-003 1.33101293591902E-002 -3.81912146004729E-003 6.86085554513034E-003 -1.94799577619822E-003 3.57071259039853E-003 6.34758537420324E-003 9.31051976941802E-003 5.87409560224397E-003 3.65355491216345E-003 1.06203719213051E-003 -1.19545240317967E-003 -7.14299576067999E-004 - 5.16506467929171E-004

44, Mesopoma politum 4.54384130700111E-002 7.53123501861095E-003 -2.03728442650553E-002 1.20399565346141E-002 2.87278806126875E-003 4.42742029818712E-003 - 1.06471969421639E-002 1.26208420165980E-002 2.56526990823659E-002 - 1.01775641512881E-002 -8.08474654125604E-003 3.03749735432302E-003 -6.89561330328964E-003 - 7.73183362526223E-003 1.14402442325048E-002 1.38988643722193E-002 9.68651567976337E-003 1.46045358620238E-003 -2.48831278480692E-003 1.14681556013772E-003 3.81931325651437E-003 -4.99231348761776E-003 2.18521075295922E-003 1.44207597933957E-003

45, Microhapolepis serrata 3.75076822428453E-002 9.88341663136026E-003 5.20618048989704E-002 - 3.47506702776543E-002 7.04000479034574E-004 -1.56536347063254E-002 - 2.72546091951968E-002 -3.63353284905304E-002 2.51823319932678E-002 - 2.53942590623794E-002

51 3.71191354311874E-003 3.27714598668111E-002 -2.90676657381044E-003 1.56547719741789E-002 -1.09367280217505E-002 4.23616171241242E-003 3.38716443492556E-003 -6.98121893904640E-003 -4.26032210847477E-003 - 3.56429207795303E-003 -5.61136359802146E-003 3.77254468414882E-003 1.46451677488584E-003 3.87693688538013E-004

46, Mesopoma pulchellum 4.66780900477383E-003 1.38146004058096E-002 1.88921822306158E-002 - 1.59405396999925E-002 -6.13419790168188E-003 -1.95509561013597E-002 - 3.43018657957606E-003 -1.22295583018703E-002 1.23753211131954E-002 8.29502397100563E-003 8.86089604893629E-003 -2.14179131570333E-002 -9.50714288042164E-003 - 6.09635902602077E-004 3.81362028488102E-003 4.31506089008274E-003 8.36030453038249E-003 3.75552547228290E-003 1.35774686438637E-002 - 1.60440249250243E-003 -4.22580498523873E-003 -3.23279311356599E-003 3.40245880176912E-003 - 7.86210951651891E-004

47, Mansfieldiscus sweeti 6.96518158721748E-002 3.57872180290760E-002 3.47206203175387E-002 5.84504393566797E-002 -6.97349589932964E-002 -2.81856716048109E-003 1.06250384041180E-002 -1.96557616565861E-002 1.12426396626675E-002 - 7.36140561653715E-003 -6.36064611776492E-003 -1.17372374819336E-002 -9.51806355298458E-003 1.48244346055999E-002 -1.29886337725548E-002 5.00725930214411E-005 3.88754443337693E-003 -7.42658147295882E-004 -2.78711112256723E-003 - 1.98519179202890E-003 2.80634942105300E-003 -1.91376563685776E-003 -6.18203292159117E-004 1.27817178168986E-003

48, Novogonatodus kazantsevae 6.05266745127855E-002 4.09683952281375E-002 -8.36403837857583E-002 4.75879673093480E-002 -3.62730257181706E-003 1.32959280097940E-002 2.29807520422504E-002 -1.02188815781218E-002 2.15367470959883E-002 - 1.23868755327950E-003 8.97268944645789E-003 -3.55712936502743E-003 1.09467238607205E-002 1.58059311402473E-002 -9.68777295102432E-003 -3.83650710188894E-003 - 1.29097646008423E-004 -1.99747499847034E-003 -6.94387215387227E-003 4.38365806520363E-003 8.99594313317564E-003 -5.31163661327734E-003 1.72989386418814E-003 1.02713331323823E-003

49, Paramesolepis rhombus -2.16244716574167E-001 5.92080441308961E-002 3.17351443069272E-002 - 6.71593048028822E-002 1.89745378428620E-002 1.49619866934308E-002 5.35142389545384E-002 -1.36733259735802E-002 4.28374538438224E-003 1.00684103141037E-002 -4.52375692377414E-003 4.44723048123535E-003 -9.01977325372842E-003 2.63106182734101E-003 6.75980620678222E-003 -8.94198729705750E-003 - 7.35942788981898E-004 -1.39521338768089E-002 4.26294413724648E-003 1.18014656437430E-002 -4.67113276222273E-004 1.33197900539724E-002 3.78685306544206E-003 9.40544379309648E-004

50, Paramesolepis tuberculata -1.23740686992482E-001 2.36843458544941E-002 3.51032502379112E-002 - 1.86720374273116E-002 -7.29173021091097E-002 -1.62370906741305E-002 1.52477268198021E-002 2.27328743003938E-002 1.27295385352804E-002 - 3.43748762276745E-003

52 1.14163578649824E-002 -4.58585543834307E-003 9.70841492370400E-003 1.56450993167925E-002 1.67093331806549E-003 3.09900722587542E-002 - 4.08815202118760E-003 3.04793293188332E-004 -6.25936136164450E-003 - 2.51498656845742E-003 2.50553402187387E-003 2.39131603457094E-003 -2.58787243618697E-004 1.20316293842572E-003

51, Phanerorthynchus armatus 5.46086686261915E-002 2.18427804917820E-002 -1.16013690251358E-002 - 3.54933200605941E-002 -2.85730995266527E-002 3.92116334547729E-003 - 5.79439352406361E-002 -3.10743417566177E-002 -2.05165012963998E-003 - 1.90167904805048E-002 -2.85500964187351E-002 1.32060645311046E-003 -9.91269386320787E-003 2.14557798808359E-002 4.28861143976695E-003 -1.26910760799779E-002 - 3.60829780954031E-003 2.26137521355201E-002 3.94797824610718E-003 1.34908698837627E-005 -4.73314584651811E-004 -5.12150889893930E-004 2.98835278750370E-004 - 9.17092189303602E-005

52, Phanerosteon ovensi (Carboveles) 7.27521768027983E-002 2.40972330923944E-002 -1.45807777151191E-002 - 3.88360745316206E-002 -7.03535124502143E-003 2.50554474478680E-003 2.05982525972190E-004 2.28776620903316E-002 -2.41893738477018E-002 1.33308462982464E-002 2.00443270148414E-002 -7.92483987342611E-003 -1.51583902228615E-002 - 1.38621088498607E-002 8.23778879342751E-003 -8.80948637649283E-003 - 2.68177465678569E-003 -5.26915526004676E-003 -5.91845327776878E-003 4.24667653504356E-004 -1.45414703187108E-003 -3.98742665817879E-003 -3.30036109556410E-004 -2.36847100847260E-004

53, Phanerosteon mirabile 5.87607112557963E-002 -5.98085040412308E-003 5.75231160130953E-002 - 1.48137402722891E-002 3.30710695367935E-003 2.50349115171788E-003 1.72330105873039E-002 2.73510097071617E-002 -1.01779341592294E-002 1.65017742401170E-002 5.27987628471576E-004 3.11359205858051E-002 1.14653527553664E-002 - 9.64647718925939E-003 -1.12488233320372E-002 -6.41843566250119E-003 1.27953496528752E-003 -2.67701681171015E-003 5.63928703974883E-003 6.61650231727910E-004 -1.23613806616252E-002 -4.80869446091495E-003 -7.05259607077819E-004 -7.44727912087889E-004

54, Platysella lallyi -4.07561955095808E-002 5.75347506048294E-002 -3.42496406310748E-002 4.04682565167140E-002 8.97209658834772E-002 3.24731319134097E-002 - 3.47533729323076E-002 -5.24524983067248E-003 -1.71038263463047E-002 4.14489567169273E-003 2.16535906787313E-002 -2.41079897817050E-002 4.19562331580351E-003 - 6.28520185255632E-003 1.57576091011747E-003 1.45032289107318E-002 9.92977468115567E-003 -2.90703466555508E-003 9.31576383970693E-003 7.38105883424705E-004 -1.16554429438183E-003 -2.06523934427810E-003 2.23080524898710E-003 5.04051745521686E-004

55, Platysomus superbus -3.17240995644048E-001 1.14167671973883E-001 -2.53719809911582E-002 - 2.02145904491023E-002 -6.30845629329267E-003 3.77041743568133E-003 2.06983910424748E-002 -4.24775406162389E-003 -2.32230439971179E-003 - 4.63651534599509E-003

53 -2.62900778983202E-002 -1.42577217080702E-002 5.99935888553955E-003 8.97568943930306E-003 4.74249778781523E-004 -6.55191371598219E-003 2.21677354010415E-002 -1.00133447949578E-002 3.44474807215050E-003 6.68295654674559E-003 -5.78436622005539E-003 -9.42713523278379E-003 -4.50901170378618E-004 -1.13751877298189E-003

56, Platysomus Parvulus -2.20050343472336E-001 1.60198540053555E-001 -1.68188618332405E-002 - 3.26282493698329E-002 -1.12547115693263E-002 4.04761520344757E-002 - 2.41805647492499E-002 2.67992578583402E-002 3.34504376882323E-002 - 2.16168922798203E-002 -3.07172748801758E-002 -1.22306608927648E-002 1.85463820945609E-002 - 2.96422417623601E-002 -1.04966751555120E-002 3.24857192445496E-003 - 2.25041055189579E-002 6.39979535695203E-004 1.03556627797945E-002 - 8.27724823259393E-003 2.21419088272146E-003 -2.28206665337409E-003 -9.43711930841587E-005 - 2.69169815915004E-004

57, Tarrasius problematicus -9.85134303640507E-002 -3.08737389569396E-001 -9.14001445552779E-002 -6.40058774477784E-002 -5.59302091925193E-002 4.65674834926287E-002 - 1.62713253786848E-002 -1.26940207428404E-002 2.34949767406776E-002 5.28334003890706E-003 2.88851905481276E-002 -1.69828947533931E-002 -8.79696344668138E-003 2.90462029588505E-003 2.14322887598189E-003 -4.46199261441063E-004 - 1.23760351340204E-002 -8.88007792306683E-003 7.12327554400656E-003 6.50426668657701E-004 -5.66489979603250E-003 -2.35951955047141E-003 1.28333281347189E-003 7.00814274613305E-004

58, Proceramala montanensis -1.39088667912350E-001 -3.24774884191015E-002 -9.91623517625531E-003 7.92230399830222E-003 -2.40891267274882E-002 -8.79742481096674E-003 4.06158575026045E-002 -1.67218156188845E-002 1.41802852743311E-002 5.30914428729947E-004 2.35894292347899E-002 5.74723436458652E-003 2.20360464995530E-002 - 7.12789258306517E-003 1.03008666467003E-002 -1.26889267240396E-002 2.86784080884154E-003 -4.09835012583213E-003 1.25591941440985E-003 2.57207183316243E-003 3.23731255330303E-003 2.72967121321042E-004 -2.06369268117578E-003 - 5.27209634075206E-004

59, Protoeurynotus traquairi -5.89810783977254E-002 8.44640637479364E-003 2.95542038229712E-002 - 1.20130287244198E-002 7.77415302248148E-002 3.80853554401885E-003 - 1.02668459039941E-002 4.94062596114820E-002 -5.56733279134332E-003 - 7.22510180907275E-003 3.95527470995604E-003 8.69219714654193E-003 1.78677468915880E-002 1.82126621424347E-002 -7.82221361372427E-003 -9.22606721020150E-003 - 9.02958475780636E-003 5.84304168712317E-003 5.32841220226513E-003 6.42476006182878E-004 4.65992855534726E-003 -2.34681419622349E-003 1.66779977202000E-003 7.77200387004488E-004

60, Pyritocephalus Sculptus 1.15350806209872E-001 4.85741231939012E-002 -4.47339587483932E-002 - 7.13681373593384E-002 9.11782209709711E-003 -1.52291430365328E-002 1.07725053770286E-002 -5.93496707007647E-003 -2.07385506390489E-002 - 8.20200193680651E-003

54 -6.69543728898907E-003 5.77715922902695E-003 3.38445536597639E-003 - 1.79258359254896E-003 -8.72324220468229E-004 7.61784283175233E-003 8.39444087917666E-003 -1.18046634157632E-004 1.73390377212442E-003 - 4.40970074226833E-005 1.38350429055129E-003 9.52923299856633E-004 1.73263935242489E-003 8.66184023171167E-004

61, Pyritocephalus lineatus 1.15574937768477E-001 6.64708187711616E-002 -2.68587489010895E-002 - 7.15990263456784E-002 1.16741123367067E-002 -8.59824902960035E-003 1.81348254486243E-002 -6.50038432126306E-003 -1.40887096941906E-002 - 6.58412092035105E-003 5.91713095923063E-004 -6.62779549143978E-004 -4.55189488435629E-003 - 7.15296296276599E-003 -2.71936964316596E-003 5.72140891081597E-003 4.86291240033432E-003 1.54329741580329E-004 3.37218011151340E-003 1.75690895353452E-003 4.54663148786235E-003 9.56564742340846E-004 -1.53768208721997E-003 - 1.72907661558366E-003

62, Rhadinichthys canobiensis 1.06926604965415E-001 2.08379923298323E-002 -3.15302490098279E-002 4.56711746480856E-002 -2.41536589099422E-002 -3.59166147024626E-003 2.93384578245900E-002 2.58702015716704E-002 2.66609824666604E-002 - 1.09746240846964E-002 6.41879202456637E-003 2.66830840459268E-002 4.38750565125302E-003 - 1.30276386391670E-002 6.37068692255898E-003 5.43329410288927E-003 4.00957966522535E-003 -6.16213131132627E-004 1.99340000613138E-003 - 3.57472466721514E-003 -3.74022523329837E-003 3.82202747215347E-004 4.74654174852649E-004 7.84615182079519E-004

63, Rhadinichthys fusiformis 3.02763095990759E-002 -3.98756417280097E-003 -4.50794725305478E-003 - 1.44405178125952E-002 -1.55911150444886E-002 -4.13371752673147E-002 - 2.40311407664809E-002 2.20981701562176E-002 1.49930044017435E-002 1.33831990945569E-002 3.18840579495964E-004 -6.88324198826857E-003 -3.88455803732434E-003 - 7.64159902887746E-003 1.21967157147266E-002 1.26203799105274E-002 1.14297275569600E-003 4.86958338166582E-003 -9.50628523769882E-003 2.98581418614589E-003 -2.40967420183339E-003 -2.56651804606314E-003 3.79769736840961E-003 - 1.71563547264125E-003

64, Sceletophorus biserialis 1.34420602761240E-003 -4.14523868762946E-002 1.46327648847074E-001 - 1.00134494336293E-002 1.65849926181904E-002 3.05963067935785E-002 1.83780069324402E-002 6.87420231579607E-003 1.54556324787421E-002 - 2.36471608802676E-002 -3.57497642157661E-003 -1.28841235567694E-002 -1.00294514470262E-002 -9.61107112246667E-003 -1.15991119241372E-002 4.15157410360556E-003 1.03001204195572E-002 1.06381518010429E-002 -1.53009939911913E-002 9.95604330191692E-003 1.09097539310777E-004 -1.21478424639581E-003 1.76875279554860E-003 6.61540058224136E-004

65, Soetendalichths cromptoni -2.21003474243934E-001 -9.57708657825391E-002 -4.15176178126357E-002 6.22719366782937E-002 -2.59296306039149E-003 -3.01058651844269E-002 4.31648231309943E-003 1.00089808966542E-002 -1.41731260895585E-003 - 9.19659915643413E-003

55 -2.92851280447401E-002 1.10305512430898E-002 -2.97051796160001E-002 2.53605942733950E-003 -9.31036136020133E-004 6.27917490135382E-003 4.81325736087649E-003 -6.72822968033990E-003 4.09255779263406E-003 - 4.92009101428937E-004 3.46721664373717E-003 -1.53817235764036E-003 -1.22178155368694E-003 - 6.05067342351272E-003

66, Sphaerolepis kounoviensis 1.01162116263850E-002 -2.88379619655995E-002 1.03405820845782E-001 - 5.81652116545316E-004 4.70197909533694E-002 1.01009786497184E-002 1.75823275706688E-002 2.02799744777740E-002 1.37279126052486E-002 - 8.98214630098170E-003 4.74825766142124E-003 -1.90169201698906E-002 -3.93135450503431E-003 8.19146831761679E-003 -1.06399003983452E-003 -3.08019964414814E-003 - 4.91651587224400E-003 -6.41741905211643E-003 -3.78185916628580E-003 - 4.88676116778833E-004 -6.29033069648970E-003 5.84234731702388E-004 -1.54741689250311E-003 - 1.09442287677044E-003

67, Strepheoschema fouldenensis 1.13589899840232E-002 6.69698558384025E-003 3.53253528296287E-002 8.74742549281181E-003 2.94963643953924E-002 5.18797920358101E-002 2.40929339079535E-002 -8.62457314610876E-003 3.12348830966240E-003 2.49392477569555E-002 -6.69728896249291E-003 -1.38044417692916E-002 2.47550801494019E-003 6.84941179949583E-003 -7.77454368825872E-003 1.27722820328460E-002 4.33609111536213E-003 7.75053384823755E-003 -1.02191550878607E-002 - 3.01378077262651E-003 -5.50629273295415E-003 1.72038109751528E-003 -7.70653175906893E-004 - 3.42435731445227E-004

68, Sundayichthys elegantulus 5.75096649446188E-004 -2.53560916024527E-002 2.17970345749496E-002 2.77779981759568E-002 1.48471424528871E-002 -4.07349129394129E-002 4.84960458015837E-003 1.16296201738879E-002 6.73184679663114E-003 - 4.95095737039684E-004 1.72335576908537E-002 -1.62032296127200E-002 -9.72899950218509E-004 4.78463036289272E-003 -4.20303315683301E-003 -9.61912619112112E-003 3.91409272283611E-003 5.89474581868104E-003 6.28145144820890E-003 3.01295394576280E-003 4.88236227202143E-003 6.27675882406604E-003 6.96881943812273E-004 - 1.08762332269721E-004

69, Wendyichthys lautreci -4.85403821399446E-004 -7.46127101161313E-002 8.30420830594139E-002 - 2.66740980432755E-002 1.33423171612343E-002 -2.12322227371752E-003 2.76507346036880E-002 1.43026533978400E-003 -1.47352881613637E-002 1.60379217987087E-002 -6.85332670093472E-003 8.31334059730678E-004 2.45743778266751E-002 4.66964622677257E-005 -6.16202016268109E-003 4.36899708074015E-004 4.56087704855677E-003 1.31689290072973E-002 -9.49479871945548E-004 - 5.28708513174227E-003 -2.29660866457086E-003 1.34797640431968E-003 4.08207547578672E-004 - 7.87209446618438E-004

70, Wendyichthys dicksoni 1.00303261664030E-001 1.22012875175973E-003 -3.20102694550177E-003 2.44747079459717E-002 -1.66737098246214E-002 1.47968688995507E-002 - 1.64539496942635E-002 3.09521653428895E-002 -1.55281940485964E-002 - 2.41315745710697E-002

56 2.38899490105334E-003 -1.47529508985744E-002 5.97743619250631E-003 3.44903209276940E-003 6.67790666359933E-004 -8.05079157526307E-003 4.11413348220620E-003 -5.25840400344394E-004 -1.73892189631620E-003 1.12476590416021E-002 -1.45092540455004E-003 1.15709420567268E-003 -2.24508119756652E-003 5.83244939534836E-005

71, Willomorichthys striatulus -2.99366162049210E-002 1.27420772529003E-004 1.50342791834756E-003 5.39574384740668E-002 1.86458271391172E-002 -1.76402926202367E-002 - 5.79640238220382E-004 -2.66395902159164E-002 1.41919030663452E-002 1.63274547527823E-002 1.22800332351083E-002 -8.67067348859910E-004 4.64765620648514E-003 - 9.01066670851697E-004 3.20486010842478E-003 -1.12845526905023E-003 - 1.09542610075587E-002 -2.02694642869796E-003 6.39748807982623E-003 1.76529600714615E-003 2.39893081836214E-003 -1.69762262264710E-003 1.66953820592771E-004 - 3.68472143613545E-005

72, Woodichthys bearsdeni 4.44932948433608E-002 -2.01436202387986E-002 3.42002821918796E-002 3.02881779515157E-002 2.52509566079743E-002 -4.51739452378324E-003 - 3.31128619040526E-002 -2.86178566486607E-003 -1.52886003304236E-002 3.18735684814222E-003 -1.79330541697223E-002 8.86295720887736E-003 3.69682440129310E-003 - 7.39492466640634E-003 1.27490607918397E-002 -6.96467076523607E-003 - 8.61975685948437E-003 -1.24092894143001E-002 -9.31249244336979E-003 - 3.59232106729056E-003 1.83496165295796E-003 1.10936992732022E-003 3.28186781456296E-003 2.25747931915144E-004

57 Relative warp scores The relative warp scores that are available in the program (tpsRelw).

RW Percentage of Cumulative total variance variance 1 44.03% 44.03% 2 21.30% 65.33% 3 11.94% 77.28% 4 5.51% 82.79% 5 4.06% 86.85% 6 2.54% 89.39% 7 2.50% 91.89% 8 1.65% 93.54% 9 1.24% 94.78% 10 1.02% 95.81% 11 0.83% 96.63% 12 0.73% 97.36% 13 0.56% 97.92% 14 0.49% 98.40% 15 0.40% 98.81% 16 0.29% 99.10% 17 0.26% 99.36% 18 0.22% 99.58% 19 0.16% 99.74% 20 0.10% 99.85% 21 0.07% 99.91% 22 0.06% 99.98% 23 0.01% 99.99% 24 0.01% 100.00%

Landmarks The x and y coordinates on the landmarks on the Devonian (1-8) and Carboniferous (9-72) fishes. There are fourteen landmarks, were the last one (number 14) is a sliding landmark. See also figure 8 and 9.

1, Cheirolepis Canadensis (417, 445)(52, 631)(424, 725)(1549, 608)(1738, 584)(1804, 584)(2372, 733)(1811, 480)(1646, 428)(521, 336)(519, 384)(116, 617)(177, 598)(881, 715)

2, Cuneognathus gardineri (561, 424)(87, 582)(566, 813)(1193, 804)(1587, 756)(1919, 775)(2801, 995)(1955, 481)(1757, 471)(778, 301)(792, 396)(174, 603)(295, 603)(853, 849)

3, Howqualepis rostridens (318, 282)(52, 379)(290, 490)(969, 535)(1153, 532)(1410,492)(1915, 626)(1351, 336)(1191, 313)(396, 216)(406, 249)(106, 384)(139, 377)(589, 525)

4, Limnomis deleneyi (703, 481)(111, 611)(599, 924)(1486, 979)(2011, 887)(2490, 839)(3478, 1170)(2575, 464)(2240, 474)(771, 361)(896, 472)(233, 655)(349, 651)(1030, 999)

58 5, Mimia toombsi (2297, 1354)(607, 1994)(2221, 2644)(5342, 3153)(7075, 2904)(8354, 2763)(10520, 3055)(8278, 1636)(6685, 1354)(2665, 1094)(2990, 1333)(1040, 1972)(1387, 1972)(3933, 3131)

6, Moythomasia nitida (766, 341)(110, 567)(803, 928)(1729, 981)(2075, 868)(2574, 780)(3484, 966)(2498, 448)(2103, 432)(863, 219)(1061, 357)(201, 551)(345, 551)(1223, 979)

7, Stegotrachelus finlayi (271, 250)(19, 369)(256, 483)(786, 583)(1028, 525)(1256, 469)(1649, 453)(1222, 317)(1092, 296)(330, 195)(382, 240)(66, 364)(126, 367)(530, 594)

8, Cheirolepis trailli (683, 552)(143, 879)(556, 1005)(2377, 752)(2784, 740)(3125, 756)(3968, 843)(3156, 596)(2825, 505)(870, 368)(877, 444)(239, 854)(327, 843)(1265, 961)

9, Acrolepis gigas (343, 356)(41, 427)(298, 632)(950, 725)(1155, 695)(1666, 615)(2165, 787)(1713, 420)(1483, 358)(347, 240)(465,300)(120, 480)(186, 480)(618, 706)

10, Adroichthys tuberculatus (300, 317)(81, 458)(296, 701)(1076, 829)(1376, 636)(1503, 602)(1768, 758)(1477, 396)(1342, 315)(457, 225)(454, 330)(161, 503)(238, 497)(656, 1009)

11, Aeduella blainvillei (319, 245)(96, 356)(334, 562)(834, 618)(999, 556)(1245, 498)(1858, 695)(1295, 311)(1181, 314)(453, 188)(491, 259)(158, 380)(300, 381)(571, 624)

12, Aesopichthys erinaceus (434, 155)(45, 417)(394, 799)(898, 992)(1714, 735)(1952, 688)(2596, 1027)(1945, 436)(1740, 395)(632, 146)(648, 329)(167, 419)(271, 436)(618, 916)

13, Aesopichthys fulcratus (488, 579)(90, 808)(490, 1029)(1424, 1258)(2054, 992)(2349, 918)(3117, 1008)(2320, 515)(2226, 515)(672, 409)(674, 478)(167, 812)(332, 793)(935, 1251)

14, Aetheretmon valentiacum (288, 304)(70, 400)(269, 532)(738, 548)(968, 418)(1098, 365)(1562, 373)(1091, 203)(994, 217)(313, 223)(334, 242)(102, 408)(165, 403)(490, 582)

15, Australichthys longidorsalis (435, 455)(70, 687)(399, 882)(1080, 1108)(1951, 783)(2372, 699)(3274, 841)(2413, 494)(2313, 487)(661, 368)(657, 430)(109, 666)(257, 662)(722, 1030)

16, Bourbonella guilloti (261, 298)(33, 358)(232, 582)(941, 627)(1124, 528)(1411, 467)(2017, 602)(1386, 243)(1224, 274)(308, 241)(417, 300)(88, 391)(212, 403)(530, 665)

17, Canobius elegantulus (347, 170)(142, 297)(409, 523)(912, 587)(1218, 506)(1438, 463)(1966, 480)(1354, 282)(1220, 268)(526, 120)(542, 165)(218, 330)(366, 330)(665, 579)

18, Canobius ramsayi (294, 268)(97, 426)(364, 609)(883, 628)(1206, 508)(1411, 453)(1958, 398)(1308, 254)(1202, 262)(472, 172)(479, 204)(144, 441)(314, 426)(647, 645)

19, Cheirodopsis geikei (257, 220)(37, 213)(230, 519)(440, 643)(785, 505)(850, 495)(1191, 620)(834, 370)(818, 351)(337, 133)(355, 193)(123, 339)(205, 343)(320, 594)

59 20, Chirodus granulosus (308, 561)(33, 604)(351, 978)(842, 1307)(1269, 787)(1329, 767)(1725, 1079)(1347, 615)(1245, 590)(339, 397)(417, 430)(189, 754)(263, 744)(722, 1250)

21, Cryphiolepis striatus (351, 288)(107, 436)(345, 523)(930, 514)(1085, 461)(1393, 362)(1869, 442)(1360, 233)(1265, 233)(437, 180)(470, 219)(160, 432)(207, 420)(662, 542)

22, Cycloptychius concentricus (212, 150)(34, 221)(176, 263)(606, 265)(744, 237)(816, 233)(1105, 268)(846, 153)(744, 156)(269, 132)(287, 143)(58, 206)(118, 201)(405, 276)

23, Cyranohis bergeraci (553, 324)(73, 510)(528, 719)(1616, 692)(1910, 650)(2399, 574)(2935, 882)(2404, 420)(2043, 329)(599, 280)(767, 311)(143, 469)(257, 462)(1055, 736)

24, Discoserra pectinodon (99, 115)(42, 127)(136, 221)(204, 261)(333, 162)(345, 155)(409, 179)(339, 118)(331, 104)(107, 74)(147, 101)(81, 160)(108, 160)(171, 248)

25, Elonichtys pulcherrimus (379, 201)(79, 373)(343, 540)(788, 656)(1105, 555)(1356, 511)(1887, 580)(1365, 321)(1220, 290)(511, 145)(517, 195)(136, 353)(243, 349)(549, 617)

26, Elonichtys serratus (334, 189)(44, 329)(285, 435)(883, 524)(1132, 479)(1416, 442)(1915, 524)(1392, 288)(1264, 281)(428, 167)(430, 195)(114, 307)(225, 307)(544, 500)

27, Elonichtys spaerosideriarum (283, 218)(98, 258)(262, 385)(521, 398)(630, 341)(792, 291)(1057, 332)(796, 190)(675, 168)(287, 152)(297, 174)(129, 296)(174, 293)(372, 404)

28, Frederichthys musadentatus (458, 384)(83, 549)(455, 782)(862, 879)(1157, 700)(1381, 608)(1884, 721)(1370, 393)(1285, 363)(526, 224)(600, 305)(170, 538)(269, 533)(655, 845)

29, Gonatodus punctatus (233, 302)(45, 394)(212, 485)(587, 549)(761, 445)(895, 377)(1214, 456)(900, 267)(842, 262)(300, 239)(306, 276)(98, 393)(145, 390)(395, 525)

30, Guildayichthys carnegiei (83, 84)(17, 101)(82, 202)(155, 253)(306, 187)(333, 182)(417, 217)(338, 130)(318, 117)(100, 53)(126, 102)(48, 129)(79, 132)(119, 231)

31, Haplolepis corrugate (296, 213)(51, 245)(271, 427)(1066, 437)(1192, 404)(1334, 386)(1805, 433)(1321, 251)(1250, 222)(404, 162)(452, 207)(110, 276)(212, 281)(636, 473)

32, Haplolepis ovioidea (266, 188)(42, 259)(277, 414)(909, 447)(1050, 417)(1196, 395)(1777, 480)(1271, 228)(1189, 215)(490, 139)(489, 178)(107, 266)(230, 269)(588, 466)

33, Haplolepis tuberculata (239, 178)(38, 213)(280, 390)(1023, 452)(1173, 425)(1275, 405)(1798, 486)(1297, 251)(1196,232)(426, 152)(452, 178)(98, 253)(212, 253)(651, 470)

34, Paratarrasius hibbardi (305, 205)(56, 177)(233, 377)(401, 461)(1990, 295)(2003, 295)(2589, 42)(1561, 133)(1552, 131)(312, 115)(372, 257)(95,200)(155, 227)(316, 424)

60 35, Holurus parki (240, 166)(45, 272)(239, 380)(616, 392)(914, 292) (023, 266)(1309, 254)(938, 179)(900, 181)(359, 146)(367, 169)(78, 267)(155, 264)(438, 412)

36, Kalops diophrys (460, 184)(57, 365)(397, 512)(1343, 569)(1824, 479)(2031, 460)(2666, 669)(2086, 266)(1899, 262)(514, 145)(565, 215)(139, 359)(271, 360)(836, 583)

37, Kalops monophrys (508, 317)(73, 472)(397, 638)(1395, 679)(1921, 551)(2088, 535)(2739, 607)(2034, 320)(1833, 310)(512, 291)(596, 345)(163, 491)(297, 486)(912, 706)

38, Melanecta anneae (512, 380)(66, 525)(432, 641)(858, 634)(1097, 621)(1372, 610)(1909, 858)(1388, 473)(1236, 454)(505, 310)(600, 380)(138, 530)(233, 522)(662, 633)

39, Mentzichthys walchi (504, 304)(75, 452)(476, 577)(1363, 613)(1653, 555)(1958, 492)(2725, 774)(1955, 332)(1779, 304)(586, 237)(625, 261)(148, 429)(259, 417)(858, 623)

40, Mentzichthys jubbi (518, 379)(108, 593)(488, 720)(1676, 783)(2069, 642)(2288, 601)(3105, 818)(2417, 408)(2202, 427)(706, 304)(722, 350)(152, 575)(306, 544)(1203, 844)

41, Mesopoma carricki (414, 353)(122, 489)(439, 605)(1239, 612)(1473, 584)(1688, 553)(2174, 691)(1739, 379)(1502, 309)(460, 237)(489, 277)(165, 487)(300, 470)(805, 632)

42, Mesopoma crassum (253, 181)(69, 271)(220, 389)(606, 430)(761, 344)(884, 300)(1164, 331)(845, 193)(785, 186)(322, 130)(328, 156)(107, 291)(184, 282)(420, 443)

43, Mesopoma planti (488,404)(89, 559)(507, 713)(1534, 709)(1829, 674)(2171, 624)(2717, 775)(2171, 400)(1871, 329)(551, 274)(584, 322)(182, 558)(315, 543)(999, 747)

44, Mesopoma politum (168,126)(3, 198)(155, 301)(539, 302)(684, 263)(835, 258)(1085, 304)(833, 164)(723, 153)(220, 78)(228, 97)(37, 201)(116, 192)(319, 318)

45, Microhapolepis serrata (306,192)(100, 256)(341, 443)(895, 512)(1073, 496)(1296, 492)(1818, 577)(1344, 300)(1135, 217)(555, 132)(536, 181)(161, 271)(287, 275)(607, 511)

46, Mesopoma pulchellum (382, 191)(101, 336)(363, 537)(972, 566)(1217, 484)(1445, 423)(1940, 556)(1381, 244)(1316, 231)(531, 141)(531, 163)(164, 345)(287,322)(649, 583)

47, Mansfieldiscus sweeti (423, 361)(78, 494)(408, 613)(1009, 610)(1177, 529)(1507, 515)(1953, 803)(1548, 364)(1350, 323)(558, 236)(558, 295)(148, 477)(206, 471)(705, 631)

48, Novogonatodus kazantsevae (316, 371)(122, 488)(369, 592)(1100, 664)(1366, 543)(1562, 538)(1906, 742)(1581, 373)(1413, 360)(417, 263)(436, 324)(170, 486)(220, 474)(731, 682)

49, Paramesolepis rhombus (267, 182)(129, 201)(283, 619)(569, 813)(955, 541)(987, 527)(1469, 754)(976, 358)(955, 346)(393, 121)(417, 158)(153, 388)(279, 379)(416, 739)

61 50, Paramesolepis tuberculata (349, 333)(110, 457)(445, 663)(697, 721)(1034, 488)(1139, 484)(1536, 620)(1110, 356)(1044, 346)(477, 206)(507, 228)(169, 468)(308, 451)(565, 699)

51, Phanerorthynchus armatus (428, 237)(87, 340)(432, 501)(1079, 527)(1277, 457)(1543, 396)(1910, 465)(1459, 267)(1227, 221)(609, 204)(597, 261)(234, 377)(311, 372)(749, 564)

52, Phanerosteon ovensi (Carboveles) (485, 283)(121, 425)(432, 580)(1200, 564)(1432, 514)(1591, 486)(2156, 510)(1538, 298)(1462, 298) (506, 201)(628, 258)(195, 440)(300, 432)(797, 593)

53, Phanerosteon mirabile (441, 208)(124, 356)(445, 469)(995, 474)(1221, 432)(1390, 401)(2082, 398)(1462, 211)(1314,178)(494, 134)(515, 161)(190, 351)(254, 342)(710, 474)

54, Platysella lallyi (301, 355)(105,440)(341, 736)(1045, 802)(1227, 633)(1561, 479)(1950, 530)(1493, 268)(1400, 266)(269, 301)(409, 338)(156, 479)(258, 462)(693, 860)

55, Platysomus superbus (224, 252)(89, 296)(258, 750)(441, 917)(833, 540)(866, 544)(1111, 730)(852, 418)(831, 400)(340, 196)(340, 236)(174, 465)(225, 458)(346, 859)

56, Platysomus Parvulus (367,260)(93, 364)(538, 952)(968, 1034)(1280, 682)(1440, 624)(1826, 839)(1446, 498)(1255, 453)(486, 165)(546, 182)(269, 596)(380, 575)(657, 1192)

57, Tarrasius problematicus (312, 188)(39, 347)(372, 552)(407, 565)(2123, 418)(2136, 415)(2495, 286)(1433, 154)(1427, 154)(395, 136)(601, 176)(110, 368)(243, 354)(387, 560)

58, Proceramala montanensis (321, 443)(45, 750)(476, 1106)(971, 1278)(1820, 846)(1908, 801)(2672, 1058)(1867, 4889(1768, 504)(512, 320)(589, 464)(146, 804)(325, 787)(709,1211)

59, Protoeurynotus traquairi (255, 230)(50, 247)(302, 570)(714, 834)(1014, 733)(1269, 700)(1834, 803)(1297, 537)(1240, 520)(380, 160)(410, 212)(125, 351)(212, 360)(473, 718)

60, Pyritocephalus Sculptus (448, 203)(104, 295)(434, 507)(1464, 495)(1655, 443)(1740, 443)(2422, 498)(1771, 276)(1608, 252)(634, 167)(637, 219)(165, 307)(318, 295)(910, 542)

61, Pyritocephalus lineatus (325, 158)(64, 222)(316, 399)(1115, 378)(1210, 359)(1299, 352)(1844, 422)(1318, 210)(1212, 201)(460, 121)(467, 158)(106, 246)(236, 243)(655, 436)

62, Rhadinichthys canobiensis (318, 322)(38, 508)(323, 553)(1000, 489)(1219, 461)(1391, 454)(1875, 576)(1521, 324)(1306, 282)(373, 225)(394, 256)(85, 468)(198, 447)(641, 524)

63, Rhadinichthys fusiformis (373, 244)(42, 419)(307, 536)(938, 600)(1217, 525)(1424, 520)(1884, 558)(1394, 352)(1295, 338)(505, 171)(507, 199)(94, 383)(241, 364)(628, 613)

64, Sceletophorus biserialis (162, 171)(16, 210)(180, 341)(382, 327)(487, 298)(697, 310)(1070, 360)(665, 195)(613, 189)(217, 113)(229, 158)(44, 239)(118, 232)(258, 349)

62 65, Soetendalichths cromptoni (364, 429)(78, 464)(324, 898)(542, 1099)(1426, 664)(1563, 633)(1947, 753)(1518, 448)(1452, 426)(460, 257)(472, 329)(205, 631)(314, 633)(449, 1017)

66, Sphaerolepis kounoviensis (166, 217)(57, 272)(196, 369)(453, 379)(554, 339)(746, 303)(1107, 325)(714, 211)(686, 211)(223, 170)(252, 179)(81, 290)(137, 284)(320, 382)

67, Strepheoschema fouldenensis (271, 299)(59, 361)(271, 510)(740, 563)(922, 453)(1170, 419)(1642, 541)(1107, 278)(1006, 257)(272, 212)(306, 236)(97,369)(153, 363)(496, 580)

68, Sundayichthys elegantulus (522, 428)(108, 669)(516, 922)(1405, 1095)(1923, 960)(2356, 847)(3210, 1052)(2329, 569)(2298, 553)(778, 292)(779, 419)(170, 678)(370, 664)(939, 1035)

69, Wendyichthys lautreci (468, 305)(51, 498)(472, 707)(1052, 828)(1590, 697)(1879, 629)(2925, 754)(1828, 383)(1729, 383)(614, 224)(604, 319)(127, 461)(253, 455)(768, 782)

70, Wendyichthys dicksoni (522, 245)(27, 448)(532, 635)(1458, 623)(1769, 590)(2249, 567)(2898, 686)(2222, 370)(1992, 321)(590, 175)(727, 271)(109, 446)(228, 448)(995, 634)

71, Willomorichthys striatulus (446, 557)(47, 808)(401, 1063)(1356, 1340)(1904, 1132)(2338, 1003)(3118, 1328)(2397, 635)(2183, 639)(626, 444)(676, 514)(131, 812)(294, 804)(839, 1316)

72, Woodichthys bearsdeni (354, 370)(58, 489)(268, 614)(868, 708)(1088, 650)(1400, 584)(1917, 639)(1447, 416)(1233, 414)(402, 320)(478, 379)(112, 492)(175, 489)(549, 698)

63 Appendix 4

Reconstruction of Devonian and Carboniferous fishes.

Devonian: Stegotrachelus finlayi (Swartz Brian 2007, not publish)

Cheirolepis Canadensis (Arratia et al 1996) Cheirolepis trailli (Pearson et al 1979)

Carboniferous:

Cuneognathus gardineri (Fridman et al 2006)

Acrolepis gigas (Stamberg 2006)

Howqualepis rostridens (Long 1988)

Adroichthys tuberculatus (Gardiner 1969)

Limnomis deleneyi (Daeschler 2000)

Aeduella blainvillei (Poplin & Dutheil 2005)

Mimia toombsi (Gardiner 1984)

Aesopichthys erinaceus (Poplin & Lund 2000)

Moythomasia nitida (Jessen 1968)

64

Aesopichthys fulcratus (Gardiner 1969)

Cheirodopsis geikei (Moy-Thomas et al 1938)

Aetheretmon valentiacum (White1927)

Chirodus granulosus (Moy-Thomas et al 1971)

Australichthys longidorsalis (Gardiner 1969)

Cryphiolepis striatus (Moy-Thomas et al 1971)

Bourbonella guilloti (Poplin & Dutheil 2005)

Cycloptychius concentricus (Moy-Thomas et al 1938)

Canobius elegantulus (Moy-Thomas et al 1938)

Cyranohis bergeraci (Poplin & Lund 1997)

Canobius ramsayi (Moy-Thomas et al 1938)

65 Discoserra pectinodon (Lund 2000)

Haplolepis currugata (Lowney 1980)

Elonichtys pulcherrimus (Moy-Thomas et al 1938)

Haplolepis ovioidea (Lowney 1980)

Elonichtys serratus (Moy-Thomas et al 1938)

Haplolepis tuberculata (Lowney 1980)

Elonichtys spaerosideriarum (Stamberg 2006) Paratarrasius hibbardi (Lund & Poplin 2002)

Frederichthys musadentatus (Coates 1993) Holurus parki(Moy-Thomas et al 1938)

Kalops diophrys (Lund & Poplin 2002)

Gonatodus punctatus (Dineley et al 1999)

Kalops monophrys (Lund & Poplin 2002)

Guildayichthys carnegiei (Lund 2000)

Melanecta anneae sp.nov (Coates 1998)

66

Mentzichthys walchi (Jubb 1965)

Mansfieldiscus sweeti (Long 1988)

Mentzichthys jubbi (Gardiner 1969)

Novogonatodus kazantsevae (Long 1988)

Mesopoma carricki (Coates 1993)

Paramesolepis tuberculata (Moy-Thomas et al 1938) Mesopoma crassum (Dineley et al 1999)

Mesopoma planti (Coates 1999)

Paramesolepis rhombus (Moy-Thomas et al 1938)

Mesopoma politum (Dineley et al 1999)

Phanerorthynchus armatus (Moy-Thomas et al 1971)

Microhapolepis serrata (Lowney 1980)

Phanerosteon ovensi(Carboveles) (White 1927)

Mesopoma pulchellum (Moy-Thomas et al 1938)

67

Phanerosteon mirabile (White 1927)

Protoeurynotus traquairi (Moy-Thomas et al 1938)

Platysella lallyi (Poplin & Dutheil 2005) Pyritocephalus lineatus (Moy-Thomas et al 1971)

Pyritocephalus sculptus (Westoll 1944)

Platysomus superbus (Moy-Thomas et al

1938) Rhadinichthys canobiensis (Dineley et al 1999)

Platysomus Parvulus (Moy-Thomas et al Rhadinichthys fusiformis (Dineley et al 1999) 1971)

Sceletophorus biserialis (Stamberg 2006) Tarrasius problematicus (Lund & Poplin 2002)

Soetendalichths cromptoni (Gardiner 1969) Proceramala montanensis (Lund & Poplin 2002)

68

Sphaerolepis kounoviensis (Stamberg 2006)

Strepheoschema fouldenensis (White 1927)

Sundayichthys elegantulus (Gardiner 1969)

Wendyichthys lautreci (Lund & Poplin 1997)

Wendyichthys dicksoni (Lund & Poplin 1997)

Willomorichthys striatulus (Gardiner 1969)

Woodichthys bearsdeni sp.nov (Coates 1998)

69