Amber : Enabling Precise Full-System Simulation with Detailed Modeling
Amber*: Enabling Precise Full-System Simulation with Detailed Modeling of All SSD Resources Donghyun Gouk1, Miryeong Kwon1, Jie Zhang1, Sungjoon Koh1, Wonil Choi1,2, Nam Sung Kim3, Mahmut Kandemir2 and Myoungsoo Jung1 Yonsei University, 1Computer Architecture and Memory Systems Lab, 2Pennsylvania State University, 3University of Illinois Urbana-Champaign, http://camelab.org Abstract—SSDs become a major storage component in modern While most of the time simulation-based studies are nec- memory hierarchies, and SSD research demands exploring future essary to explore a full design space by taking into account simulation-based studies by integrating SSD subsystems into a different SSD technologies, it is non-trivial to put SSD-based full-system environment. However, several challenges exist to model SSDs under a full-system simulations; SSDs are composed subsystems into a full-system simulation environment. First, upon their own complete system and architecture, which employ even though SSDs are considered as storage or memory all necessary hardware, such as CPUs, DRAM and interconnect subsystems, in contrast to conventional memory technologies, network. Employing the hardware components, SSDs also require they are in practice incarnated on top of a complete, in- to have multiple device controllers, internal caches and software dependent, and complex system that has its own computer modules that respect a wide spectrum of storage interfaces and protocols. These SSD hardware and software are all necessary architecture and system organization. Second, SSDs consist to incarnate storage subsystems under full-system environment, of not only a storage backend (by having multiple flash pack- which can operate in parallel with the host system.
[Show full text]