Constraint Satisfaction Problems: Probabilistic Approach and Applications to Social Choice Theory

Total Page:16

File Type:pdf, Size:1020Kb

Constraint Satisfaction Problems: Probabilistic Approach and Applications to Social Choice Theory Constraint Satisfaction Problems: Probabilistic Approach and Applications to Social Choice Theory John Livieratos, Ph.D. December 4, 2020 Department of Mathematics, National and Kapodistrian University of Athens 2 Committee Members Josep D´ıaz, Computer Science Department, Universitat Polit`ecnica de Catalunya, Barcelona. Marcel Fernandez, Department of Network Engineering, Universitat Politecnica de Catalunya, Spain. Dimitris Fotakis, Division of Computer Science, School of Electrical and Computer Engineering, NTUA. Lefteris Kirousis (advisor), Department of Mathematics, NKUA. Phokion G. Kolaitis, Computer Science Department UC Santa Cruz and IBM Research - Almaden. Stavros Kolliopoulos, Department of Informatics and Telecommunications, NKUA. Dimitrios M. Thilikos, Department of Mathematics, NKUA. 3 Dedicated to Fani, Susana, John and Toula, who would have certainly appreciated all that and to Sara, for continuing to be around. 4 Abstract In this Ph.D thesis, we work in one of the most well studied class of problems in Computer Science, that of Constraint Satisfaction Problems (CSPs). In one of their usual formulations, CSPs consist of a set of variables that take values in a common domain set. Groups of variables are tied by constraints that restrict the possible combinations of values that the variables can have in a solution. In such a setting, there are many objectives that one might be interested in: checking if there is a solution, finding or approximating one, or considering how fast an algorithmic procedure can do all that. The framework of CSPs is broad enough to model a great number of in- teresting problems in computer science, like the satisfiability of propositional formulas and graph coloring problems. It is also a very developed field on its own accord, with a lot of interesting results that classify the computational complexity of classes of CSPs and delineate the bounds between tractability and NP-hardness. The machinery used to tackle such problems is broad, including polynomial-time algorithms that solve classes of CSPs, random- ized ones that find or approximate solutions given some conditions that the CSP in question must satisfy and algebraic manipulations that allow us to relate their computational complexity with structural properties of their sets of constraints. We begin with an overview of various approaches to CSPs: defining them in the language of Propositional, First or Second Order Logic and via homo- morphisms and we consider the subclass of multi-sorted CSPs, that is CSPs whose variables are divided in di↵erent sorts and take values in independent domains. Some of these variations are discussed to show the versatility of CSPs and provide some context to our work, while others are utilized to prove our results. The first part of our results concerns what is known as the probabilistic approach. Here, we devise randomized algorithms that (i) prove conditions 5 6 that guarantee the existence of solutions to a given instance of a CSP and (ii) in case a solution exists, find it efficiently. A solution in this setting is usually expressed as a point in a probability space such that no event, from a set of events that are deemed as “undesirable”, occurs. We work with the seminal Lov´aszLocal Lemma (LLL) and its variation, Shearer’s Lemma, which, given some bounds concerning the probabilities of undesirable events and the way these events depend on each other, provide conditions that imply all the events can be avoided with positive probability. A solution in this setting, is a point in a probability space such that none of the events occur. All our work is situated in the variable framework of Moser and Tardos, where the events are assumed to be defined upon independent random variables. Although this is a restriction of the general setting, it is a broad framework that easily translates to the language of CSPs and that is particularly handy for algorithmic purposes. Specifically, we define two new notions of dependency between the events, the variable-directed lopsidependency (VDL) and the directed dependency (d- dependency), which are specifically tailored to facilitate the algorithmic ma- nipulation of events that are negatively correlated. It is quite common in practice to depict dependencies between the events by a dependency graph, where the nodes correspond to the events and unconnected events are con- sidered independent. We thus discuss how the directed dependency graphs that our notions give rise to, relate with other such graphs in the bibliogra- phy. Furthermore, we show that the d-dependency condition gives rise to a sparser dependency graph than other known such conditions in the variable framework, thus allowing for stronger versions of the LLL to be proven. We then proceed to prove the simple version of the LLL of the VDL condition. That is, we design an algorithm which, if the probabilities of the events are upper bounded by a common number p [0, 1), the VDL graph has maximum degree d and epd 1, efficiently finds2 a point in the probability space such that none of the events occur, thus showing at the same time that such a point must exist in the first place. We also prove the more general asymmetric version of the LLL for the d-dependency graph, where the probability of each event is bounded by a number relating to the probabilities of the events depending on it. We then prove the even stronger Shearer’s lemma for the underlying undirected graph of the d-dependency one, which bounds the probabilities of the events by polynomials defined over the independent sets of the graph. The proofs for these versions of the LLL and Shearer’s lemma employ a 7 direct probabilistic approach, in which we show that the probability that our algorithms last for at least n steps is inverse exponential to n, by express- ing it by a recurrence relation which we subsequently solve using advanced analytic tools, such as Bender and Richmond’s Lagrange Inversion Formula and Gelfand’s Formula for the spectral radius of matrices. In contrast, most extant work bounds only the expectation of the steps performed by such algorithms. We believe that this fact is interesting in each own accord. Nev- ertheless, we have applied our method in two interesting combinatorial prob- lems. First, we show that 2∆ 1colorssuffice to acyclicaly color the edges of a graph with maximum degree− ∆, that is, we want the resulting coloring to contain neither incident edges with the same color, nor bichromatic cy- cles. We thus match the best possible bound for Moser-like algorithms, as observed by Cai et al. [Acyclic edge colourings of graphs with large girth. Random Structures & Algorithms, 50(4):511–533, 2017]. We also show how to explicitly construct binary c-separating codes whose rate matches the op- timal known one. c-separating codes are M n matrices over some alphabet , where, in any two sets U and V of at most⇥ c rows, there is at least one columnQ such that the set of elements in U is disjoint with that in V . Al- though such codes are very useful for applications, explicit constructions are scarce. The second part of our results lies in Social Choice Theory and, specifi- cally, in Judgment Aggregation, where a group of agents collectively decides a set of issues and where, both the individual positions of each agent and the aggregated positions (the social outcome)needstoadheretosomere- strictions that reflect logical consistency requirements. The aim is to find aggregating procedures that preserve these requirements and do not degen- erate to dictatorships, that is aggregators that always output the positions of a specific agent. Firstly, we consider the case where these restrictions are expressed by a set of m-ary vectors X over some finite domain , where m is the number of issues to be decided. That is, m contains the allowedD combinations of votes over the issues and a vector not in X is deemed “irrational”. In this setting, we characterize possibility domains, that is sets X where non-dictatorial ag- gregation is possible, via the types of aggregators they admit. Furthermore, we provide an analogous characterization for a subclass of possibility do- mains we named uniform possibility domains, which are domains that admit aggregators that are not dictatorial even when restricted to any issue and any binary subset of allowed positions. We also show that uniform possi- 8 bility domains give rise to tractable multi-sorted CSPs, while any domain that is not uniform, gives rise to NP-complete multi-sorted CSPs, thus tying the possibility of non-dictatorial aggregation with a dichotomy result in the complexity of multi-sorted CSPs. We then proceed to consider Boolean such domains, that are given as the sets of models of propositional formulas, which, in the bibliography, are called integrity constraints. We provide syntactic characterizations for integrity constraints that give rise to (uniform) possibility domains and also to domains admitting a variety of non-dictatorial aggregators with specific properties that have appeared in the bibliography. We also show how to efficiently identify integrity constraints of these types and how to efficiently construct such constraints given a Boolean domain X of the corresponding type. Finally, we turn our attention to the problem of recognizing if a domain admits a (uniform) non-dictatorial aggregator. In case X is provided explic- itly, as a set of m-ary vectors, we design polynomial-time algorithms that solve this problem. In case X is Boolean and provided either via an integrity constraint, or, as in the original framework of Judgment Aggregation, as the set of consistent evaluations of a set of propositional formulas, called an agenda, we provide upper and lower complexity bounds in the polynomial hierarchy. We extend these results to include the cases where X admits non-dictatorial aggregators with desirable properties.
Recommended publications
  • Modern Coding Theory: the Statistical Mechanics and Computer Science Point of View
    Modern Coding Theory: The Statistical Mechanics and Computer Science Point of View Andrea Montanari1 and R¨udiger Urbanke2 ∗ 1Stanford University, [email protected], 2EPFL, ruediger.urbanke@epfl.ch February 12, 2007 Abstract These are the notes for a set of lectures delivered by the two authors at the Les Houches Summer School on ‘Complex Systems’ in July 2006. They provide an introduction to the basic concepts in modern (probabilistic) coding theory, highlighting connections with statistical mechanics. We also stress common concepts with other disciplines dealing with similar problems that can be generically referred to as ‘large graphical models’. While most of the lectures are devoted to the classical channel coding problem over simple memoryless channels, we present a discussion of more complex channel models. We conclude with an overview of the main open challenges in the field. 1 Introduction and Outline The last few years have witnessed an impressive convergence of interests between disciplines which are a priori well separated: coding and information theory, statistical inference, statistical mechanics (in particular, mean field disordered systems), as well as theoretical computer science. The underlying reason for this convergence is the importance of probabilistic models and/or probabilistic techniques in each of these domains. This has long been obvious in information theory [53], statistical mechanics [10], and statistical inference [45]. In the last few years it has also become apparent in coding theory and theoretical computer science. In the first case, the invention of Turbo codes [7] and the re-invention arXiv:0704.2857v1 [cs.IT] 22 Apr 2007 of Low-Density Parity-Check (LDPC) codes [30, 28] has motivated the use of random constructions for coding information in robust/compact ways [50].
    [Show full text]
  • Modern Coding Theory: the Statistical Mechanics and Computer Science Point of View
    Modern Coding Theory: The Statistical Mechanics and Computer Science Point of View Andrea Montanari1 and R¨udiger Urbanke2 ∗ 1Stanford University, [email protected], 2EPFL, ruediger.urbanke@epfl.ch February 12, 2007 Abstract These are the notes for a set of lectures delivered by the two authors at the Les Houches Summer School on ‘Complex Systems’ in July 2006. They provide an introduction to the basic concepts in modern (probabilistic) coding theory, highlighting connections with statistical mechanics. We also stress common concepts with other disciplines dealing with similar problems that can be generically referred to as ‘large graphical models’. While most of the lectures are devoted to the classical channel coding problem over simple memoryless channels, we present a discussion of more complex channel models. We conclude with an overview of the main open challenges in the field. 1 Introduction and Outline The last few years have witnessed an impressive convergence of interests between disciplines which are a priori well separated: coding and information theory, statistical inference, statistical mechanics (in particular, mean field disordered systems), as well as theoretical computer science. The underlying reason for this convergence is the importance of probabilistic models and/or probabilistic techniques in each of these domains. This has long been obvious in information theory [53], statistical mechanics [10], and statistical inference [45]. In the last few years it has also become apparent in coding theory and theoretical computer science. In the first case, the invention of Turbo codes [7] and the re-invention of Low-Density Parity-Check (LDPC) codes [30, 28] has motivated the use of random constructions for coding information in robust/compact ways [50].
    [Show full text]
  • The Packing Problem in Statistics, Coding Theory and Finite Projective Spaces: Update 2001
    The packing problem in statistics, coding theory and finite projective spaces: update 2001 J.W.P. Hirschfeld School of Mathematical Sciences University of Sussex Brighton BN1 9QH United Kingdom http://www.maths.sussex.ac.uk/Staff/JWPH [email protected] L. Storme Department of Pure Mathematics Krijgslaan 281 Ghent University B-9000 Gent Belgium http://cage.rug.ac.be/ ls ∼ [email protected] Abstract This article updates the authors’ 1998 survey [133] on the same theme that was written for the Bose Memorial Conference (Colorado, June 7-11, 1995). That article contained the principal results on the packing problem, up to 1995. Since then, considerable progress has been made on different kinds of subconfigurations. 1 Introduction 1.1 The packing problem The packing problem in statistics, coding theory and finite projective spaces regards the deter- mination of the maximal or minimal sizes of given subconfigurations of finite projective spaces. This problem is not only interesting from a geometrical point of view; it also arises when coding-theoretical problems and problems from the design of experiments are translated into equivalent geometrical problems. The geometrical interest in the packing problem and the links with problems investigated in other research fields have given this problem a central place in Galois geometries, that is, the study of finite projective spaces. In 1983, a historical survey on the packing problem was written by the first author [126] for the 9th British Combinatorial Conference. A new survey article stating the principal results up to 1995 was written by the authors for the Bose Memorial Conference [133].
    [Show full text]
  • Arxiv:1111.6055V1 [Math.CO] 25 Nov 2011 2 Definitions
    Adinkras for Mathematicians Yan X Zhang Massachusetts Institute of Technology November 28, 2011 Abstract Adinkras are graphical tools created for the study of representations in supersym- metry. Besides having inherent interest for physicists, adinkras offer many easy-to-state and accessible mathematical problems of algebraic, combinatorial, and computational nature. We use a more mathematically natural language to survey these topics, suggest new definitions, and present original results. 1 Introduction In a series of papers starting with [8], different subsets of the “DFGHILM collaboration” (Doran, Faux, Gates, Hübsch, Iga, Landweber, Miller) have built and extended the ma- chinery of adinkras. Following the spirit of Feyman diagrams, adinkras are combinatorial objects that encode information about the representation theory of supersymmetry alge- bras. Adinkras have many intricate links with other fields such as graph theory, Clifford theory, and coding theory. Each of these connections provide many problems that can be compactly communicated to a (non-specialist) mathematician. This paper is a humble attempt to bridge the language gap and generate communication. We redevelop the foundations in a self-contained manner in Sections 2 and 4, using different definitions and constructions that we consider to be more mathematically natural for our purposes. Using our new setup, we prove some original results and make new interpretations in Sections 5 and 6. We wish that these purely combinatorial discussions will equip the readers with a mental model that allows them to appreciate (or to solve!) the original representation-theoretic problems in the physics literature. We return to these problems in Section 7 and reconsider some of the foundational questions of the theory.
    [Show full text]
  • The Use of Coding Theory in Computational Complexity 1 Introduction
    The Use of Co ding Theory in Computational Complexity Joan Feigenbaum ATT Bell Lab oratories Murray Hill NJ USA jfresearchattcom Abstract The interplay of co ding theory and computational complexity theory is a rich source of results and problems This article surveys three of the ma jor themes in this area the use of co des to improve algorithmic eciency the theory of program testing and correcting which is a complexity theoretic analogue of error detection and correction the use of co des to obtain characterizations of traditional complexity classes such as NP and PSPACE these new characterizations are in turn used to show that certain combinatorial optimization problems are as hard to approximate closely as they are to solve exactly Intro duction Complexity theory is the study of ecient computation Faced with a computational problem that can b e mo delled formally a complexity theorist seeks rst to nd a solution that is provably ecient and if such a solution is not found to prove that none exists Co ding theory which provides techniques for robust representation of information is valuable b oth in designing ecient solutions and in proving that ecient solutions do not exist This article surveys the use of co des in complexity theory The improved upp er b ounds obtained with co ding techniques include b ounds on the numb er of random bits used by probabilistic algo rithms and the communication complexity of cryptographic proto cols In these constructions co des are used to design small sample spaces that approximate the b ehavior
    [Show full text]
  • Algorithmic Coding Theory ¡
    ALGORITHMIC CODING THEORY Atri Rudra State University of New York at Buffalo 1 Introduction Error-correcting codes (or just codes) are clever ways of representing data so that one can recover the original information even if parts of it are corrupted. The basic idea is to judiciously introduce redundancy so that the original information can be recovered when parts of the (redundant) data have been corrupted. Perhaps the most natural and common application of error correcting codes is for communication. For example, when packets are transmitted over the Internet, some of the packets get corrupted or dropped. To deal with this, multiple layers of the TCP/IP stack use a form of error correction called CRC Checksum [Pe- terson and Davis, 1996]. Codes are used when transmitting data over the telephone line or via cell phones. They are also used in deep space communication and in satellite broadcast. Codes also have applications in areas not directly related to communication. For example, codes are used heavily in data storage. CDs and DVDs can work even in the presence of scratches precisely because they use codes. Codes are used in Redundant Array of Inexpensive Disks (RAID) [Chen et al., 1994] and error correcting memory [Chen and Hsiao, 1984]. Codes are also deployed in other applications such as paper bar codes, for example, the bar ¡ To appear as a book chapter in the CRC Handbook on Algorithms and Complexity Theory edited by M. Atallah and M. Blanton. Please send your comments to [email protected] 1 code used by UPS called MaxiCode [Chandler et al., 1989].
    [Show full text]
  • An Introduction to Algorithmic Coding Theory
    An Introduction to Algorithmic Coding Theory M. Amin Shokrollahi Bell Laboratories 1 Part 1: Codes 1-1 A puzzle What do the following problems have in common? 2 Problem 1: Information Transmission G W D A S U N C L R V MESSAGE J K E MASSAGE ?? F T X M I H Z B Y 3 Problem 2: Football Pool Problem Bayern M¨unchen : 1. FC Kaiserslautern 0 Homburg : Hannover 96 1 1860 M¨unchen : FC Karlsruhe 2 1. FC K¨oln : Hertha BSC 0 Wolfsburg : Stuttgart 0 Bremen : Unterhaching 2 Frankfurt : Rostock 0 Bielefeld : Duisburg 1 Feiburg : Schalke 04 2 4 Problem 3: In-Memory Database Systems Database Corrupted! User memory malloc malloc malloc malloc Code memory 5 Problem 4: Bulk Data Distribution 6 What do they have in common? They all can be solved using (algorithmic) coding theory 7 Basic Idea of Coding Adding redundancy to be able to correct! MESSAGE MESSAGE MESSAGE MASSAGE Objectives: • Add as little redundancy as possible; • correct as many errors as possible. 8 Codes A code of block-length n over the alphabet GF (q) is a set of vectors in GF (q)n. If the set forms a vector space over GF (q), then the code is called linear. [n, k]q-code 9 Encoding Problem ? ? ? source ? ? ? Codewords Efficiency! 10 Linear Codes: Generator Matrix Generator matrix source codeword k n k x n O(n2) 11 Linear Codes: Parity Check Matrix 0 Parity check matrix codeword O(n2) after O(n3) preprocessing. 12 The Decoding Problem: Maximum Likelihood Decoding abcd 7→ abcd | abcd | abcd Received: a x c d | a b z d | abcd.
    [Show full text]
  • Voting Rules As Error-Correcting Codes ∗ Ariel D
    Artificial Intelligence 231 (2016) 1–16 Contents lists available at ScienceDirect Artificial Intelligence www.elsevier.com/locate/artint ✩ Voting rules as error-correcting codes ∗ Ariel D. Procaccia, Nisarg Shah , Yair Zick Computer Science Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA a r t i c l e i n f o a b s t r a c t Article history: We present the first model of optimal voting under adversarial noise. From this viewpoint, Received 21 January 2015 voting rules are seen as error-correcting codes: their goal is to correct errors in the input Received in revised form 13 October 2015 rankings and recover a ranking that is close to the ground truth. We derive worst-case Accepted 20 October 2015 bounds on the relation between the average accuracy of the input votes, and the accuracy Available online 27 October 2015 of the output ranking. Empirical results from real data show that our approach produces Keywords: significantly more accurate rankings than alternative approaches. © Social choice 2015 Elsevier B.V. All rights reserved. Voting Ground truth Adversarial noise Error-correcting codes 1. Introduction Social choice theory develops and analyzes methods for aggregating the opinions of individuals into a collective decision. The prevalent approach is motivated by situations in which opinions are subjective, such as political elections, and focuses on the design of voting rules that satisfy normative properties [1]. An alternative approach, which was proposed by the marquis de Condorcet in the 18th Century, had confounded schol- ars for centuries (due to Condorcet’s ambiguous writing) until it was finally elucidated by Young [34].
    [Show full text]
  • Adinkras for Mathematicians
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 366, Number 6, June 2014, Pages 3325–3355 S 0002-9947(2014)06031-5 Article electronically published on February 6, 2014 ADINKRAS FOR MATHEMATICIANS YAN X. ZHANG Abstract. Adinkras are graphical tools created to study representations of supersymmetry algebras. Besides having inherent interest for physicists, the study of adinkras has already shown non-trivial connections with coding the- ory and Clifford algebras. Furthermore, adinkras offer many easy-to-state and accessible mathematical problems of algebraic, combinatorial, and computa- tional nature. We survey these topics for a mathematical audience, make new connections to other areas (homological algebra and poset theory), and solve some of these said problems, including the enumeration of all hyper- cube adinkras up through dimension 5 and the enumeration of odd dashings of adinkras for any dimension. 1. Introduction In a series of papers starting with [11], different subsets of the “DFGHILM collaboration” (Doran, Faux, Gates, H¨ubsch, Iga, Landweber, Miller) have built and extended the machinery of adinkras. Following the ubiquitous spirit of visual diagrams in physics, adinkras are combinatorial objects that encode information about the representation theory of supersymmetry algebras. Adinkras have many intricate links with other fields such as graph theory, Clifford theory, and coding theory. Each of these connections provide many problems that can be compactly communicated to a (non-specialist) mathematician. This paper is a humble attempt to bridge the language gap and generate communication. In short, adinkras are chromotopologies (a class of edge-colored bipartite graphs) with two additional structures, a dashing condition on the edges and a ranking condition on the vertices.
    [Show full text]
  • Group Algebra and Coding Theory
    Group algebras and Coding Theory Marinˆes Guerreiro ∗† September 7, 2015 Abstract Group algebras have been used in the context of Coding Theory since the beginning of the latter, but not in its full power. The work of Ferraz and Polcino Milies entitled Idempotents in group algebras and minimal abelian codes (Finite Fields and their Applications, 13, (2007) 382-393) gave origin to many thesis and papers linking these two subjects. In these works, the techniques of group algebras are mainly brought into play for the computing of the idempotents that generate the minimal codes and the minimum weight of such codes. In this paper I summarize the main results of the work done by doctorate students and research partners of Polcino Milies and Ferraz. Keywords: idempotents, group algebra, coding theory. Dedicated to Prof. C´esar Polcino Milies on the occasion of his seventieth birthday. arXiv:1412.8042v2 [math.RA] 4 Sep 2015 1 Introduction The origins of Information Theory and Error Correcting Codes Theory are in the papers by Shannon [64] and Hamming [35], where they settled the theoretical foundations for such theories. ∗M. Guerreiro is with Departamento de Matem´atica, Universidade Federal de Vi¸cosa, CEP 36570-000 - Vi¸cosa-MG (Brasil), supported by CAPES, PROCAD 915/2010 and FAPEMIG, APQ CEX 00438-08 and PCE-00151-12(Brazil). E-mail: [email protected]. †This work was presented at Groups, Rings and Group Rings 2014 on the occasion of the 70th Birthday of C´esar Polcino Milies, Ubatuba-SP (Brasil) 21-26 July, 2014. 1 For a non empty finite set A, called alphabet, a code C of length n is n simply a proper subset of A and an n-tuple (a0, a1,...,an−1) ∈ C is called a word of the code C.
    [Show full text]
  • Topology Types of Adinkras and the Corresponding Representations of N-Extended Supersymmetry Arxiv:0806.0050V1 [Hep-Th] 31
    nvriyo ahntnMteaisDprmn|eprieUiest aua cecsDvso|adCleeMteaisDepartment Mathematics College Division|Bard Sciences Natural University Department|Pepperdine Mathematics Washington of University x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x o pt 2supercharges. 32 to up for x x x x x x hre,a ela h aia oe,crepnigt iia supermultiplets, minimal to corresponding codes, maximal the as well as charges, x x x x x x xii h nmrto fteeeuvlnecassfralcssu o2 super- 26 to up cases all for classes equivalence these of enumeration the exhibit x x x x x x fAika n hrfr uemlilt.Uigrslsfo oigter we theory coding from results Using supermultiplets. therefore and Adinkras of x x x x x x h lsicto fsc oe rvdsamasfrdsrbn qiaec classes equivalence describing for means a provides codes such of classification the x x x x orsodpeieyt obyee iaylna ro-orcigcds othat so codes, error-correcting linear binary even doubly to precisely correspond x x x x x x Z 2 eepanhwteeqoin groups quotient these how explain . We ) utetgop r ugop f( of subgroups are groups quotient arXiv:0806.0050v1 [hep-th]31May2008 x x N x x x x dmninlcbs hr the where cubes, -dimensional N of quotients and diagrams Adinkra between x x x x x x hoei oooia nains npriua,w eosrt relationship a demonstrate we particular, In invariants. topological theoretic x x x x x x etne olln uesmer,wihrle ngraph- on relies which supersymmetry, worldline -extended N of supermultiplets x x x x epeetfrhrpors oadacmlt lsicto ceefrdescribing for scheme classification complete a toward progress further present
    [Show full text]
  • Curriculum Vitae
    Crystal Hoyt March 30, 2014 Curriculum Vitae Research Interests Algebraic and combinatorial representation theory Education · University of California, Berkeley, USA Ph.D., Mathematics, May 2007. Dissertation: \Kac-Moody superalgebras of finite growth". Advisor: Vera Serganova. · Texas A & M University, College Station, USA B.S., Mathematics, May 2001, summa cum laude. Employment · Technion - Israel Institute of Technology Aly Kaufman Postdoctoral Fellow October 2011 - February 2014 Hosts: Shlomi Gelaki, Tobias Hartnick Adjunct Lecturer: Spring 2014 · Bar-Ilan University, Israel Postdoctoral Researcher October 2010 - September 2011 Host: Jonathan Beck · The Weizmann Institute of Science, Israel Postdoctoral Fellow July 2007 - August 2009, December 2009 - June 2010 Hosts: Maria Gorelik, Anthony Joseph Adjunct Lecturer: Spring 2011; Winter 2013 · Nara Women's University, Japan JSPS Postdoctoral fellow Japanese Society for the Promotion of Science September 2009 - November 2009 Host: Tomoyuki Arakawa Visiting Positions · University of Michigan, Ann Arbor, 7.7 - 20.7.2013; 20.1 - 31.1.2014 · RIMS: Research Institute for Mathematical Sciences, Kyoto University, Japan, 27.6 - 12.7.2011 · Nara Women's University, Japan, 8.11 - 22.11.2008 1 Crystal Hoyt March 30, 2014 Curriculum Vitae Refereed Journals · C. Hoyt, Good gradings of basic Lie superalgebras, Israel Journal of Math- ematics, 192 no. 1 (2012), 251-280. · C. Hoyt, Regular Kac-Moody superalgebras and integrable highest weight modules, Journal of Algebra, 324 no. 12 (2010), 3308-3354. · C. Hoyt and S. Reif, Simplicity of vacuum modules over affine Lie super- algebras, Journal of Algebra, 321 no. 10 (2009), 2861-2874. · C. Hoyt and V. Serganova, Classification of finite-growth general Kac- Moody superalgebras, Communications in Algebra, 35 no.
    [Show full text]