Residential Backflow Prevention

Total Page:16

File Type:pdf, Size:1020Kb

Residential Backflow Prevention Residential Backflow Prevention Most Frequently Asked Questions watts.com Residential Backflow Prevention The combined efforts of cross-connection control (first line of defense) and containment (second line of defense). Most Frequently Asked Questions Q I know that cross-connection control is Q If plumbing codes require backflow protec- important on industrial and commercial tion at the cross-connection, why is a facilities, but is it necessary on residential second line of defense needed? connections? Is there really a risk? ☛ Residential A There are several reasons: The first is that A Cross-connection control is important no plumbing codes, like other rules and regula- Series 8 Hose Vacuum Breaker matter what type of service is involved. should have been installed here. tions, are not always adequately enforced. Industrial cross-connection control programs Pesticides: Chlordane The second, and by far the most compelling have been used for years. Historically, water and Heptachlor reason, is that the day after the certificate of purveyors have recognized the potential risk occupancy is issued, plumbing becomes sub- of health hazard industrial connections in their ject to unauthorized changes. Economic fac- systems and have taken an active roll in pro- tors motivate homeowners to do-it-yourself tecting the public water supply (primary sys- Series 7 Dual Check Valve plumbing. The bottom line is the cost of a tem) from them. The potential risk from resi- backflow preventer should 6" Feed 6" Main competent plumber versus the savings when have been installed here. Water Supply was dential connections has been, for the most (Second Line of Defense) contaminated with pesticide the homeowner does it himself. Generally, the part, overlooked, even though some of the homeowner is not only ignorant of the plumb- most serious cases of backflow originated at ing code requirements, he is totally unaware of a residence. Chlordane was siphoned through the dangers of cross-connection and backflow. a hose at a residence in Roanoke, Virginia, Gate Valve Closed Finally, the installation of a Dual Check Valve contaminating the water supply of an entire backflow preventer at the service connection neighborhood. The cost to the water purveyor divorces the public water supply from the to replace water mains, valves, meters, service domestic water supply and establishes juris- lines, water heaters, ice makers, and other dictional authority and responsibility between plumbing was about $200,000. In addition, the public water supply and domestic water lawsuits totalling several million dollars were system. filed. Since these suits were settled out of Residential - (Second line of defense) Q What types of water system protection are court by the water purveyor and the extermi- Containment at the water meter required in a residence? nator, no records are available on the actual amount paid, but it was probably considerable. Dual Check Valve here A Plumbing codes are very specific here. They (Second line of defense) require backflow protection by cross-connec- Q What do you mean by “second line of To Sill Cock To tion control and many important safety devices defense?” ☛ as follows: A We call this program of containment at the Service 1. Air gaps built into sink, tub, and basin service connection with a Dual Check Valve faucets backflow preventer the “second line of defense” 2. Anti-siphon type ballcocks in water because it is intended as a backup to the closets (toilets) plumbing cross-connection control program Industrial - (Second line of defense) 3. Vacuum breakers on hose bibbs and which controls backflow at the cross-connec- sill cocks tion itself. It might be compared to the safety 4. Backflow preventers or vacuum breakers latch on an automobile door where both would on lawn sprinklers have to fail simultaneously before the door 5. Backflow preventers on supply lines to could open unintentionally. boilers or other equipment containing Q Is the second line of defense concept Boiler non-potable fluids and cross-connected limited to residential systems? ☛ to the potable water system A No, the principle must be applied to all sys- Because some local authorities modify existing tems, although the backup for health hazard national codes, certain areas require backflow facilities would require the use of an assembly protection on the following as well: that was designed for such installations, such 1. Residential swimming pools, hot tubs, as the Reduced Pressure Zone Assembly back- and spas flow preventer. The Dual Check Valve backflow 2. Residential solar heating systems preventer simply was not developed for use in Reduced Pressure Zone 3. Private wells and other auxiliary water Assembly health hazard industrial applications. You supplies wouldn’t put a residential deadbolt on the door Most homeowners do not know they alone to the bank vault, would you? Reduced Pressure Zone are responsible for the safety of domestic Assembly Installed Here. (Second Line of Defense) water system. It is up to the water purveyor Water meter to inform him. Cold water supply from street main Q Is the water purveyor responsible for Q I understand the Dual Check Valve is lim- enforcing the plumbing code? ited by national standards to one-inch size. Double Check Valve A No, but the water purveyor is responsible for Suppose a residence had a service con- ☛ Assembly protecting the public water supply. That nection larger than one inch—what type of responsibility may include taking secondary device would be practical? Series 007 1 measures beyond the plumbing code require- A This would be an unusual situation, but a larg- Sizes ⁄2" – 3" ments, such as installing a backflow preven- er size Double Check Valve Assembly could be tion assembly at residential connections to installed in lieu of the Dual Check Valve. ensure that contaminated water does not enter Q Speaking of national standards, what the distribution system at one point, only to be standards does the dual check meet? served to another consumer down the line. ☛ Series 709 The Dual Check Valve meets the ANSI/ASSE A 1 Generally, the water purveyor’s responsibility Sizes 2 ⁄2" – 10" ends at the service-connection to the consum- Standard 1024. Generally speaking, most er’s water system. However, since the need for standards address the performance and con- this added protection is relatively new (past 15 struction requirements including the quality of years) many premises exist that must be retro- materials and workmanship and the quality of fit or brought up to today’s standard. the bronze, stainless steel, plastic and rubber Therefore, the water purveyor must require the parts, and the spring tension, tolerance and owner to provide proof of compliance with the tightness. current plumbing code and install a contain- Q Do standards ensure reliability? Dual Check Valve ment control device at each service or meter. A No, all water works equipment requires a Backflow Preventer The minimum standard of performance must maintenance program. The more sophisticated No. 7 3 be met before being tied into the system. assemblies, such as the Reduced Pressure Sizes ⁄4" – 1" Q If you are going to install a Dual Check Zone Assembly, the Double Check Valve Valve at the service connection, why not Assembly, and the Pressure Vacuum Breakers go ahead and install a more stringent all have something in common with the Dual device, such as the intermediate atmo- Check Valve. We know that after we test a spheric vent backflow preventer or the sophisticated assembly, a year will generally Reduced Pressure Zone Assembly? go by before we test it again. A If that idea had merit, the water industry During that time, we trust we are protected. would already have adopted it. The fact is, This trust is being hedged, however, with the the industry made repeated requests to back- knowledge that the assembly is manufactured Q Is spot-testing adequate? flow preventer manufacturers to produce a to national standards and will, in all probability, A Selective spot-testing is the mainstay method compact, economical product that could be prevent anyone from getting hurt. The story is of quality control used in every industry in the installed in the meter box as a second line of the same with the Dual Check Valve. The most world today, including the potable water supply defense for the community water system. The significant difference here is that we know the industry. Clearly, spot-testing is nothing new to Dual Check Valve is a direct result of those Dual Check Valve is not installed as a primary the water industry. It is used regularly to test requests. It is the only practical device for device, but as a backup, a sort of insurance meter accuracy, flow rates, and system pres- large-scale residential programs and it is policy against a residence not being or not sure. In fact, spot-testing is used to en-sure designed to be installed with the meter, includ- becoming in full compliance with the plumbing that the water is within the bacterio-logical ing in the meter box, for new or retrofit instal- code. and chemical limits established by EPA. The lations. One could equate the use of a Dual Q You mentioned testing. What are the major Safe Drinking Water Act re-quires that random Check Valve to the installation of a deadbolt on utilities doing about testing the Dual Check samples of water be sent to certified labs. the front door: it provides better protection Valve? Using this method to test Dual Checks Valves than a single lock in the handle, but it certainly A For the most part, they are using selective not only makes good economic sense, it can doesn’t provide the protection of a full-scale spot-testing; but a few are using 100 percent often provide additional valuable information electronic security system—nor does it cost annual testing.
Recommended publications
  • Cross-Connection Control Manual and Design Criteria for Cross-Connection Control Plans, Ordinances, and Policies
    CROSS-CONNECTION CONTROL MANUAL AND DESIGN CRITERIA FOR CROSS-CONNECTION CONTROL PLANS, ORDINANCES, AND POLICIES DIVISION OF WATER SUPPLY TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION 2008 1. TABLE OF CONTENTS Tennessee Department of Environment and Conservation Guidelines…………..…………….……................. p.1 Definition of Terms............................................................................................................................................p.3 CHAPTER I. Introduction to Backflow Prevention…………………………………………………………..…....…....…..p.6 1.1 Introduction 1.2 Objective 1.3 Causes of Backflow 1.3.1 Backsiphonage 1.3.2 Backpressure II. Responsibility and Authority for Cross-Connection Control…………………………………………….....p.9 2.1 Responsibility 2.1.1 The Water Purveyor 2.1.2 The Customer 2.1.3 Plumbing Inspection Agencies 2.1.4 Installers and Maintenance Personnel 2.1.5 Tennessee Department of Environment and Conservation 2.1.6 Legal Consideration 2.2 Authority 2.2.1 General Discussion 2.2.2 Local Authority 2.2.3 State Wide Authority 2.2.4 Federal Authority III. Developing and Implementing a Cross-Connection Control Program………………………………..….p.14 3.1 Introduction 3.2 Outline of Considerations in Preparing a Plan 3.3 Discussions of Local Cross-Connection Control Plan 3.4 Implementation of the Cross-Connection Control Plan 3.5 Establishing Priorities for Investigation IV. Recommended Practices……………………………………………………………………………………...p.19 4.1 Basic Consideration 4.2 Premises Isolation 4.3 Situations Requiring Maximum Protection 4.4 Establishments
    [Show full text]
  • Design and Selection of Check Valves
    VM‐DSCV/WP White Paper Design and Selection of Check Valves Table of Contents Introduction. .. 2 Lift Check Valves. 3 Swing Check Valves . 4 Dashpot‐Assisted Check Valves . .. 6 Check Valve Selection Criteria. 7 Initial Costs. 7 Maintenance Costs. 8 Headloss . 10 Energy Costs. 11 Total Valve Costs . 12 Non Slam Characteristics. 13 Fluid Compatibility. 15 Selection Methodology. 15 Conclusion. 16 References. 17 Val‐Matic Valve & Mfg. Corp. • www.valmatic.com • [email protected] • PH: 630‐941‐7600 Copyright © 2018 Val‐Matic Valve & Mfg. Corp. Design and Selection of Check Valves INTRODUCTION An essential element in the design of water and wastewater pumping systems is the proper selection of the pump discharge check valve, whose purpose is to automatically open to allow forward flow and automatically return to the closed position to prevent reverse flow when the pump is not in operation. Another function that is often overlooked is the valve’s ability to minimize energy consumption. Patton estimated that water and wastewater plants in the United States consume 75 billion kW∙h of energy annually and nearly 80% of that energy is consumed for high service pumping costs to overcome the static head and friction losses. But just as important, the valve should protect the pumping system and piping from pressure surges caused by sudden closure. Every pump station designer has witnessed check valve slam, which is caused by the sudden stoppage of reverse flow through a closing check valve. To prevent slam, an automatic check valve must either close very quickly or close slowly by using oil dashpot devices.
    [Show full text]
  • Forged Steel Valves
    Edward Forged Steel Valves Experience In Motion Table of Contents Figure Number Index 5 Univalve® Stop-Check Valves Class 4500 55 Edward Valves Availability Chart 6 Univalve® Piston Check Valves Class 4500 56 Edward Description of Figure Number System 8 Hydraulic Stop Valves 57 Hydraulic Check Valves 58 Introduction Features and Descriptions of Edward PressurCombo Valves 59 PressurCombo Class 1690 60 High Performance for Critical Service 10 PressurCombo Class 2680 61 A History of Firsts 13 PressurCombo Class 4500 62 Miscellaneous Technical Data 14 Strainers Class 800 and Series 1500 63 Special Application Valves 15 Features and Descriptions of Features and Description of Edward Hermavalve® Hermetically-Sealed Valves 64 Edward Univalve® Globe Valves 16 Part Specification List For Edward Hermavalve® 66 Part Specification List for Edward Univalve® 17 Hermavalve® Hermetically-Sealed Valves 67 Edward Forged Steel Valves Feature Body-Guided Disks 18 Here’s How the Unique Stem-Disk Assembly is Made... 19 Features and Description of Accessories/Actuators Edward Bolted Bonnet Globe Valves 20 Accessories – Forged Steel 68 Part Specification List for Actuators – Forged Steel 69 Edward Bolted Bonnet Globe Valves 21 Required Information for Motor Actuators 70 Forged Steel Valves Reference Blow-Off Valves Class 300 22 Material Chemical Analysis (ASTM) for Edward Valves 72 Blow-Off Valves Class 400 & 600 24 ASME B16.34 – 2009 Pressure/Temperature Ratings 73 Blow-Off Valves Class 1500 & 2500 26 Continuous Blowdown Valves Class 1925 27 Technical Information
    [Show full text]
  • Ball Butterfly Check Gate Globe Plug Valves Differences Applications Suitability
    ADELAIDE • BRISBANE • PERTH VALVE TYPES There are a large variety of valves and valve configurations to suit all services and conditions; different uses (on/off, control), different fluids (liquid, gas etc; combustible, toxic, corrosive etc) different materials and different pressure and temperature conditions. Valves are for starting or stopping flow, regulating or throttling flow, preventing back flow or relieving and regulating pressure in fluid or gaseous handling applications. Common valve types include: Ball, Butterfly,Check, Diaphragm, Gate, Globe, Knife Gate, Parallel Slide, Pinch, Piston, Plug, Sluice, etc. The following types of valves are used in a variety of applications, these descriptions may provide a basic guideline in the selection of valves. BALL VALVES BUTTERFLY VALVES Because of their excellent operating The butterfly valve derives its name from the characteristics, ball valves are used for the wing-like action of the disc which operates at broadest spectrum of isolation applications and right angles to the flow. It’s main advantage is a are available in a wide range of sizes and seating surface which is not critical. It is materials and are available in full flow and full designed for flow isolation. The disc impinges through conduit. Advantages - quick acting, against a resilient liner to provide bubble straight through flow in either direction, low tightness with low operating torque. Compact pressure drop, bubble tight shut off & operating and with a simple construction, butterfly valves torque, easily actuated. Disadvantages - facilitate easy pipe arrangement. Due to disc, temperature limitations on seating material, long they have slightly reduced flow characteristics. “relative” face to face dimension.
    [Show full text]
  • Chemical Injection Quills
    Distributed by: Chemical Injection Quills Chemical Injection Quills & Corporation Stops Injection quills are designed to ensure a uniform and rapid dispersal of injection chemicals into the center stream of a process pipeline. This With or without check valves. prevents corrosive liquids from clinging to the side of the pipe. Standard lengths of 2 3/4” for 4” pipes. Injection quills are available in a variety of materials and pressure ranges as Custom lengths to 36” (SP). shown in the chart below. Pressure and temperature are dependent on the material of construction and vary from 150 to 3000 psi and 100 °F (37 °C) Materials: PVC, Stainless Steel, C-20, and 500 °F (260 °C). Kynar. Chemical Injection Quills - with Built-in High Pressure Check Valve (QC) Installation Position Chemical Injection Quills - No Check Valves (QB) For lines smaller than 4” diameter, trim quill so chemical is released near center of line. Use as is for lines over 4” diameter or order special length that will disperse the chemical near the center of the pipe. Install with “Telltale” V-notch facing upstream so flow strikes angled face at end of quill for most rapid dispersal of injected chemical. QC-316-100-50FNPT For maintenance ease, installation of an isolation valve, rated above line Standard 2 3/4” Quills are designed for 4” pipes. operating pressure, immediately behind the quill is recommended. QC-316-100 Order Directly online at www.ChemWorld.com Distributed by: Corporation Stops Lever operated stop eliminates the need for a wrench. Protection chain prevents withdrawal before Corporation Stop is closed.
    [Show full text]
  • Backflow Prevention Assembly Installation Standards
    Revised Oct. 06 BACKFLOW PREVENTION ASSEMBLY INSTALLATION STANDARDS All backflow prevention assembly installation shall be in accordance with the following Standards unless otherwise directed or approved by the San Antonio Water System (SAWS). These instructions are general guidelines and are subject to change without notice. Any Inquiries or requests should be directed to the San Antonio Water System’s Backflow Prevention Section, at (210) 233-2421. I. GENERAL INSTRUCTIONS 1. Assemblies will be installed in an accessible location to facilitate maintenance, testing and repair, and should be located no more than five feet above the floor or grade level. The backflow preventer must be installed between the meter and the owner’s first tap or tee (total containment) unless otherwise approved. Internal containment will be approved for car washes, schools, retail laundries, and multiple lease spaces by individual review. In no instances will the assembly be allowed in the same vault with the San Antonio Water System’s water meter. Containment assemblies on fire lines must be located within 100’ (pipe length) of the property line. 2. Vault lids will be constructed in such a manner as to permit easy accessibility at all times by an individual. Vaults deeper than five feet shall be provided with a ladder permanently attached to a side wall. It is the contractor’s and owner’s obligation and responsibility to ensure OSHA regulations are adhered to in the construction of all vaults. Additionally, confined space regulations are to be consulted and followed in the testing and maintenance of the backflow prevention assemblies. 3. Before installing the assembly, pipelines should be thoroughly flushed to remove foreign material.
    [Show full text]
  • Methods and Devices for the Prevention of Backflow and Back
    Chapter Four Air Gap (2) The air gap may be easily Methods and Devices defeated in the event that the Air gaps are non-mechanical “2D” requirement was purposely backflow preventers that are or inadvertently compromised. for the Prevention of very effective devices to be used Excessive splash may be encoun- where either backsiphonage or tered in the event that higher Backflow and backpressure conditions may than anticipated pressures or exist. Their use is as old as flows occur. The splash may be a Back-Siphonage piping and plumbing itself, but cosmetic or true potential only relatively recently have hazard—the simple solution standards been issued that being to reduce the “2D” wide choice of devices standardize their design. In dimension by thrusting the Aexists that can be used to general, the air gap must be supply pipe into the receiving prevent backsiphonage and twice the supply pipe diameter funnel. By so doing, the air gap backpressure from adding but never less than one inch. is defeated. contaminated fluids or gases See Figure 12. into a potable water supply (3) At an air gap, we expose the system. Generally, the selection water to the surrounding air FIGURE 12. with its inherent bacteria, dust of the proper device to use is Air gap. based upon the degree of hazard particles, and other airborne posed by the cross-connection. pollutants or contaminants. In addition, the aspiration effect of Additional considerations are Diameter based upon piping size, location, “D” the flowing water can drag down and the potential need to surrounding pollutants into the periodically test the devices to “2D” reservoir or holding tank.
    [Show full text]
  • Pocket Guide to Inspecting, Testing and Maintaining Fire Protection Equipment
    1 Pocket Guide to Inspecting, Testing and Maintaining Fire Protection Equipment Fourth Edition Emergency Response Consultants Pocket Guide to Inspecting, Testing and Maintaining Fire Protection Equipment Fourth Edition Emergency Response Consultants This pocket guide is made available for informational purposes only in support of the insurance relationship between FM Global and its clients. This information does not change or supplement policy terms or conditions. No liability is assumed by or through the use of this information. The liability of FM Global is limited to that contained in its insurance policies. This pocket guide is produced in partnership with Emergency Response Consultants, a member of the FM Global Group. Emergency Response Consultants offers detailed hands-on training to site-level emergency response staff and management. Table of Contents 3 Introduction . 4 General Sprinkler System Layout . 5 Control Valves . 6 Post Indicator Valve (PIV) . 7 Wall-Mounted Post Indicator Valve (WPIV) . 11 Post Indicator Valve Assembly (PIVA) . 15 Indicating Butterfly Valve (IBV) . 18 Outside Screw and Yoke (OS&Y) Valve . 21 Curb Box or Roadway Valve . 24 Performing a Main Drain Test . 27 Common Valve Problems . 29 Hydrants . 30 Sprinklers and Piping . 34 Alarm Check Valves (Wet Valves) . 36 Check Valves . 40 Dry-Pipe Valves . 41 Performing a Flushing Investigation . 47 Fire Pumps – Diesel . 52 Fire Pumps – Electrical . 62 Pressure-Reducing Valves (PRVs) . 68 Pumper and Standpipe Connections . 70 Special Protection Systems . 72 Fire Alarm Systems . 74 Extinguishers . 77 Fire Doors . 79 Establishing an Inspection, Testing and Maintenance Program . 82 Maintenance of Fire Protection Equipment . 88 4 Introduction Prevention and readiness are the keys to property loss control .
    [Show full text]
  • Submersible Pump Check Valves Installation Instructions Models 80VFD 2” Thru 8” Flomatic Corporation
    Submersible Pump Check Valves Installation Instructions Models 80VFD 2” thru 8” Flomatic Corporation Operation: Flomatic 80VFD check valves are designed to prevent backflow, minimizing hydraulic shocks and give years of trouble-free operation without maintenance when installed properly and sized to the pumping application with regards to flow and maximum system pressures. The valve can be installed vertically or horizontally. Construction: The Flomatic 80VFD check valve body has been constructed to handle the rated system flow and pressures as stated, and in addition support the weight of the submersible pump, pipe and the water in the riser pipe. In addition, the valves have been uniquely designed to absorb some of the hydraulic water shocks associated with well water pumping when the check valve installation instructions are followed below. IMPORTANT INSTALLATION INSTRUCTIONS It is very important to install a check valve properly to help insure a trouble free water system. If the installation instructions are not followed or the valve is disassembled, warranty or any warranty claims will be void. On the back of this page is a diagram of a typical submersible valve installation (Fig. 1). A. Pipe Flow Velocities: Flomatic 80VFD is designed for both low and high flow conditions. For best service life a normal flow velocity range is 1 to 10 feet per second. B. System pressure: It is important to take the total system hydraulics into the calculation and not only the pump’s well setting when selecting valve type and model. In general, Flomatic 80VFD valve bodies are pressure rated 600 psi or 1,384 feet of static water column pressure.
    [Show full text]
  • Design and Use of Check Valves
    NIBCO INC. 1516 MIDDLEBURY ST. PHONE: 574.295.3000 WORLD HEADQUARTERS ELKHART, IN 46516-4740 FAX: 574.295.3307 USA WEB: www.nibco.com TECHNICAL BULLETIN Review Date: 01/18/2012 Original Date: 07/01/2003 Document ID: NTB-0703-02 Design and Use of Check Valves The simplicity of the check valve should not hide the importance of its function or its potential to cause problems. Check valves are installed to protect piping systems, equipment, and our health. Improperly installed check valves can result in costly repairs and system shutdowns. CHECK VALVE APPLICATION The check valve is an automatic shut-off valve. Under pressure and flow, the closure mechanism opens allowing the media to flow freely. When the flow and pressure stops, the closure mechanism returns automatically to the closed position, preventing the media from returning upstream. The most common installation is at the pump. A check valve may be installed on the suction side of the pump to maintain the pump's prime in the event of a pump shutdown. A check valve will be used commonly on the discharge of the pump to prevent backflow from the downstream system, when the pump shuts off. Check valves are used to prevent contaminated media in branches from flowing back into the main trunk line. The most common example is the use of backflow-prevention devices installed on any connection to a city water main. The backflow prevention device, a special form of check valve, prevents possibly contaminated water at a facility from flowing into the city water system when there is a sudden loss of water pressure in the main utility line.
    [Show full text]
  • Evaluation of Backflow Prevention Devices: a State-Of-The-Art Report
    NBSIR 76-1070 Evaluation of Backflow Prevention Devices: A State-of-the-Art Report Grover C. Sherlin Robert W. Beausoliel Center for Building Technology Institute for Applied Technology National Bureau of Standards Washington, D. C. 20234 June 1976 Final Report Prepared for Water Supply Division Environmental Protection Agency Washington, D. C. 20460 NBSIR 76-1070 EVALUATION OF BACKFLOW PREVENTION DEVICES: A STATE-OF-THE-ART REPORT Grover C. Sherlin Robert W. Beausoliel Center for Building Technology Institute for Applied Technology National Bureau of Standards Washington, D. C. 20234 June 1976 Final Report Prepared for Water Supply Division Environmental Protection Agency Washington, D. C. 20460 U.S. DEPARTMENT OF COMMERCE, Elliot L. Richardson, Secretary Edward O. Vetter, Under Secretary Dr. Betsy Ancker-Johnson. Assistant Secretary for Science and Technology NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Acting Director CONTENTS Abstract 1 1. Introduction 2 1.1 Purpose and Scope 2 1.2 Fundamentals of Backflow 3 2. Background Information 7 2.1 Historical Background and Recorded Incidents of Backflow through Backflow Connection and Cross-Connections 7 2.2 Navy Study of FCCCR Certification Procedures 9 2.3 A.S.S.E. Concern for Backflow Problems 10 2.4 Backflow Prevention Devices and Piping Arrangements 12 3. Elements in the Evaluation of Backflow Prevention Devices... 18 3.1 The Product Standards 18 3.2 The Plumbing Codes 19 3.3 The Manufacturers of Backflow Prevention Devices 23 3.4 Testing Laboratories 23 3.5 A Conceptual Model Cross-Connection Control Program 36 / 4. Evaluation of Devices 39 4.1 Design Considerations that Affect Reliability 39 4.2 Methods that Test Appropriate Attributes 45 5.
    [Show full text]
  • Hose Bibb Vacuum Backflow Preventer with Double Check Valve Breaker Atmospheric Vent (Continuous Pressure)
    CROSS CONNECTION: A cross connection is any actual or potential physical connection between a potable water supply line and any pipe, vessel, or machine containing a non potable fluid or has the possibility of containing a non potable fluid, solid or gas, such that it is possible for the non potable fluid, solid or gas to enter the water system by backflow. A cross connection could be any physical arrangement whereby a potable water supply is connected, directly or indirectly, with any non potable or unapproved water supply system, sewer, drain, conduit, pool, storage reservoir, plumbing fixture, or any other device which contains, or may contain, contaminated water, liquid, gases, sewage, or other waste of unknown or unsafe quality which may be capable of imparting contamination to the potable water supply as a result of backflow. ** BACKFLOW: Backflow is a flow in reverse from the normal direction of flow in a piping system. It occurs due to a differential pressure existing between two different points within a continuous fluid system; fluids of higher pressure flowing to a fluid of lower pressure. Backflow may occur due to either backsiphonage or backpressure. ** BACKSIPHONAGE: Backsiphonage is caused by negative pressure in the supply piping. Some common causes of backsiphonage are: (1) high velocity pipe lines; (2) line repair or break that is lower than a service point; (3) lowered main pressure due to high water withdrawal rate such as fire fighting or water main flushing; or (4) reduced supply pressure on the suction side of the booster pump. CONTINUOUS PRESSURE: An installation in which the pressure is being supplied continuously to a backflow prevention device for periods over 12 hours at a time.
    [Show full text]