Using Chemical Formulas

Total Page:16

File Type:pdf, Size:1020Kb

Using Chemical Formulas Chemistry I: Using Chemical Formulas Formula Mass – The sum of the average atomic masses of all elements in the compound. Units are amu. Molar Mass - The mass in grams of 1 mole of a substance. Substance can be atoms, molecules, formula units, or ions. Units are g/mol. Molecular Mass – The mass in grams of 1 mole of a molecular substance. Units are g/mol. Only used for molecules. Molecular Weight – Old fashioned term that just won’t die. Means the same as Molar Mass. Units are g/mol. Calculate the Molar Mass of the following compounds: H2O 18.02 g/mol NaCl 58.44 g/mol C6H12O6 180.18g/mol HC2H3O2 60.06g/mol CuSO4 5H2O 249.72g/mol 1 Molar Mass can be used as a conversion factor to determine the number of moles of a substance from a given mass, or the mass of a substance from a given number of moles. To find Mass in grams from moles: USE THE GRID TO CANCEL UNITS!!!! # of moles (mass on periodic table) grams = _____ mass in grams 1 mole Example 1. What is the mass of 5.00 moles of Nitrogen gas? 2 5.00 mol N2 28.02 g N2 = 1.40 x10 g N2 1 mol N2 To find Moles from mass in grams: # of grams 1 mole = _____ moles (mass on periodic table) grams Example 2. How many moles of Ammonium Dichromate are contained in 5.50 grams of the substance? 5.50 g (NH4)2 Cr2O7 1 mol (NH4)2 Cr2O7 = 0.218 mol (NH4)2 Cr2O7 252.10g (NH4)2 Cr2O7 2 Counting Particles in Compounds Consider a 0.750 mole sample of CH4 Calculate the mass, moles, and molecules of the compound , and the mass, moles, and atoms of each element in a given amount of a compound. 1. Moles of Compound Mass of Compound: Find the Molar Mass: 1(12.01) + 4(1.10) g/mol = 16.41g/mol CH4 = 12.3 g CH4 2. Moles of Compound Moles of Elements in the compound: Use the subscripts in the formula! Carbon: = 0.750 mole C Hydrogen: = 3.00 mole H 3. Moles of Element in the Compound Mass of Elements in compound: Use Molar Mass of the Element: Grams Carbon: = 9.01 gC Grams Hydrogen: = 3.03 g Hydrogen Notice that the mass of the individual elements must add up to the mass of the compound. (It’s close, but off .01 gram because of sig fig rounding…) 3 4. Moles of each element in compound Atoms of each element in compound: Use Avogadro’s Number: 6.022 x 1023 atoms = 1 mole of atoms Atoms Carbon: = 4.52 E 23 atoms Carbon Atoms Hydrogen: = 1.81 E 24 atoms Hydrogen 5. Moles of Molecules of the compound Molecules of the compound Use Avogadro’s Number: 6.022 x 1023 molecules = 1 mole of molecules = 4.52 E 23 CH4 molecules Mass Mole Atom Conversion Practice Fill in the following table 1 2 3 4 5 Grams of Moles of Grams of Atoms of Molecules of Compound each each each element compound element element 21.6 g 2.40 mole H 2.42 g H 1.44 x 1024 7.22 x 1023 1.20 1.20 mole O 19.2 gO 7.22 x 1023 moles H2O MM =18.02 g/mol 171.5g 3.50 mol H 3.54gH 2.11x10 24 H 1.05 x10 24 1.75 1.75 mol S 56.1gS 1.05 x10 24S moles 7.00mol O 112g O 4.21 x10 24O H2SO4 MM =98.09 g/mol 4 460 g 10.0 mol N 140 g N 6.02 x10 23 3.01 x10 24 5.00 20.0 mol O 320 g O 1.20 x10 25 moles N2O4 MM =92.02 g/mol 73.2g 0.625 mol B 6.76g B 3.76 x10 23 3.76 x10 23 0.625 1.88 mol Cl 66.5 gCl 1.13 x10 24 moles BCl3 MM =117.1 g/mol 513.51g 18.0 mol C 216.2 gC 1.08 x1025 9.03x1023 1.50 33.0 mol H 33.3 g H 1.99x10 25 molecules moles 16.5 mol O 264.gC 9.94x10 24 C12H22 O11 MM =342.34 g/mol Finding % Composition of a Formula (units= g element/100 g compound) Example: Find the % Composition of Fe2O3 1. Start with 1 mole of the compound: In 1 mole Fe2O3 (formula units) there are 2 mole Fe (atoms) and 3 mole O (atoms) 2. Determine the moles of each element in the compound: 2 mole Fe 3 mole O 3. Convert the moles of each element to grams : 2 mole Fe 55.85 g Fe = 111.7 g Fe 3 mole O 16.00 g O = 48.00 g O 1 mole Fe 1 mole O 4. Add the mass of each element to determine the Molar Mass of the compound: 5 111.7 g Fe + 48.00 g O = 159.7 g Fe2O3 5. Divide the mass of each element in the compound by the Molar Mass of the compound, and multiply by 100. (111.7 g Fe/159.7 g Fe2O3 ) x 100 = 69.94% Fe (48.00 g O/159.7 g Fe2O3) x 100 = 30.06% O 6. Check to make sure the % s add up to 100. Do sample problem J on page 243. Calculation of Simplest Formula Simplest Formula or Empirical Formula: Lowest whole number ratio of atoms or ions in a compound. For an ionic compound, the simplest formula is the only formula used. For a molecular compound, we must also calculate the molecular formula, which may or may not be the simplest formula. Example: Calculate the Simplest formula of a compound which has the following % composition: 35.35 % Cr, 38.07% O, 26.58% K To Calculate Simplest formula from % composition: Remember units of % composition are g element/ 100 g compound. 1. Assume you have 100 g of the compound. 2. Use the % composition to calculate the # of grams of each element in the 100 grams of compound: In 100 g of the above compound, there are: 35.35 g Cr, 38.07g O, 26.58 g K. 6 3. Convert the masses of each element to moles using Molar Mass: .6798 moles Cr 2.379 moles O .6798 moles K 4. Divide each # of moles by the smallest number, to obtain a mole ratio. This mole ratio is the ratio of atoms in the compound, if it is a whole number ratio, it is the simplest formula. K Cr O3.5 5. If you do not obtain a whole number ratio after step 4, multiply the ratio by small whole numbers, starting with 2,3,4,etc. until you obtain a whole number ratio. (K Cr O3.5) x2 = K 2Cr2 O7 Do sample problem M on page 247 Molecular Formulas Used for molecular compounds only. Simplest formula is just a RATIO of the atoms in a molecule. A molecule usually has more atoms than is indicated by the smallest whole number ratio. Molecular Formula – the exact number of each type of atom in a molecule. Molecular formula can be determined from the simplest formula if we know the molecular mass of the substance. (Molar Mass of the Simplest Formula) x = Molecular Mass Molecular Formula = Simplest Formula X Sample Problem N on p. 248: 7 Practice Problem 2. on page 249: Formula of a Hydrate Hydrate: Anhydrous Compound: Waters of Hydration: Example Problem Washing soda is a hydrate of sodium carbonate. A student wanted to determine how many waters of hydration are in a formula unit of the hydrate. The student took a sample of the hydrate and heated it to evaporate the water. To make sure all of the water had evaporated she massed it after heating it several times, until the mass was constant. The student obtained the following data: Mass of the hydrate before heating: 2.714 g Mass of the compound after heating to a constant mass: 1.006 g Determine: 8 A. The mass % of water in the hydrate. B. The formula of the hydrate. 9 .
Recommended publications
  • Tutorial 2 FORMULAS, PERCENTAGE COMPOSITION
    T-6 Tutorial 2 FORMULAS, PERCENTAGE COMPOSITION, AND THE MOLE FORMULAS: A chemical formula shows the elemental composition of a substance: the chemical symbols show what elements are present and the numerical subscripts show how many atoms of each element there are in a formula unit. Examples: NaCl: one sodium atom, one chlorine atom in a formula unit CaCl2: one calcium atom, two chlorine atoms in a formula unit Mg3N2: three magnesium atoms, two nitrogen atoms in a formula unit The presence of a metal in a chemical formula indicates an ionic compound, which is composed of positive ions (cations) and negative ions (anions). A formula with only nonmetals indicates a + molecular compound (unless it is an ammonium, NH4 , compound). Only ionic compounds are considered in this Tutorial. There are tables of common ions in your lecture text, p 56 (cations) and p 57 (anions). A combined table of these same ions can be found on the inside back cover of the lecture text. A similar list is on the next page; all formulas needed in this and subsequent Tutorial problems can be written with ions from this list. Writing formulas for ionic compounds is very straightforward: TOTAL POSITIVE CHARGES MUST BE THE SAME AS TOTAL NEGATIVE CHARGES. The formula must be neutral. The positive ion is written first in the formula and the name of the compound is the two ion names. EXAMPLE: Write the formula for potassium chloride. The name tells you there are potassium, K+, and chloride, Cl–, ions. Each potassium ion is +1 and each chloride ion is -1: one of each is needed, and the formula for potassium chloride is KCl.
    [Show full text]
  • Determination of the Molar Mass of an Unknown Solid by Freezing Point Depression
    Determination of the Molar Mass of an Unknown Solid by Freezing Point Depression GOAL AND OVERVIEW In the first part of the lab, a series of solutions will be made in order to determine the freezing point depression constant, Kf, for cyclohexane. The freezing points of these solutions, which will contain known amounts of p-dichlorobenzene dissolved in cyclohexane, will be measured. In the second part of the lab, the freezing point of a cyclohexane solution will be prepared that contains a known mass of an unknown organic solid. The measured freezing point change will be used to calculate the molar mass of the unknown solid. Objectives and Science Skills • Understand and explain colligative properties of solutions, including freezing point depression. • Measure the freezing point of a pure solvent and of a solution in that solvent containing an unknown solute. • Calculate the molar mass of the unknown solute and determine its probable identity from a set of choices. • Quantify the expected freezing point change in a solution of known molality. • Quantitatively and qualitatively compare experimental results with theoretical values. • Identify and discuss factors or effects that may contribute to the uncertainties in values determined from experimental data. SUGGESTED REVIEW AND EXTERNAL READING • Reference information on thermodynamics; data analysis; relevant textbook information BACKGROUND If a liquid is at a higher temperature than its surroundings, the liquid's temperature will fall as it gives up heat to the surroundings. When the liquid's temperature reaches its freezing point, the liquid's temperature will not fall as it continues to give up heat to the surroundings.
    [Show full text]
  • 2•Stoichiometry: Chemical Arithmetic Formula Conventions (1 Of
    Superscripts used to show the charges on ions Mg2+ the 2 means a 2+ charge (lost 2 electrons) Subscripts 2•Stoichiometry: Chemical Arithmetic used to show numbers of atoms in a formula unit Formula Conventions H2SO4 two H’s, one S, and 4 O’s (1 of 24) Coefficients used to show the number of formula units 2Br– the 2 means two individual bromide ions Hydrates CuSO4 • 5 H2O some compounds have water molecules included stoichiometry study of the quantitative relationships in chemical formulas and equations. atomic mass weighted average mass of an atom, found on the periodic table 2•Stoichiometry: Chemical Arithmetic formula mass sum of the atomic masses of the Stoichiometry Terms atoms in a formula molecular mass sum of the atomic masses of the (2 of 24) atoms in a molecular formula gram molecular mass molecular mass written in grams molar mass same as gram molecular mass empirical formula formula reduced to lowest terms Formula or molecular mass is found by simply summing the atomic masses (on the periodic table) of each atom in a formula. H2SO4 2•Stoichiometry: Chemical Arithmetic 1.01 + 1.01 + 32.06 + 16.0 + 16.0 + 16.0 + 16.0 = 98.08 u Calculating Formula Mass 2(1.01) + 32.06 + 4(16.0) = 98.06 u or 98.06 g/mole (3 of 24) Generally, round off your answers to the hundredths or tenths place. Don’t round off too much (98.06 g/mol or 98.1 g/mol is OK, but don’t round off to 98 g/mol) Units Use u or amu if you are referring to one atom or molecule A mole (abbreviated mol) is a certain number of things.
    [Show full text]
  • Solute Concentration: Molality
    5/25/2012 Colligative Properties of Solutions . Colligative Properties: • Solution properties that depend on concentration of solute particles, not the identity of particles. Previous example: vapor pressure lowering. Consequences: change in b.p. and f.p. of solution. © 2012 by W. W. Norton & Company Solute Concentration: Molality . Changes in boiling point/freezing point of solutions depends on molality: moles of solute m kg of solvent • Preferred concentration unit for properties involving temperature changes because it is independent of temperature. © 2012 by W. W. Norton & Company 1 5/25/2012 Calculating Molality Starting with: a) Mass of solute and solvent. b) Mass of solute/ volume of solvent. c) Volume of solution. © 2012 by W. W. Norton & Company Sample Exercise 11.8 How many grams of Na2SO4 should be added to 275 mL of water to prepare a 0.750 m solution of Na2SO4? Assume the density of water is 1.000 g/mL. © 2012 by W. W. Norton & Company 2 5/25/2012 Boiling-Point Elevation and Freezing-Point Depression . Boiling Point Elevation (ΔTb): • ΔTb = Kb∙m • Kb = boiling point elevation constant of solvent; m = molality. Freezing Point Depression (ΔTf): • ΔTf = Kf∙m • Kf = freezing-point depression constant; m = molality. © 2012 by W. W. Norton & Company Sample Exercise 11.9 What is the boiling point of seawater if the concentration of ions in seawater is 1.15 m? © 2012 by W. W. Norton & Company 3 5/25/2012 Sample Exercise 11.10 What is the freezing point of radiator fluid prepared by mixing 1.00 L of ethylene glycol (HOCH2CH2OH, density 1.114 g/mL) with 1.00 L of water (density 1.000 g/mL)? The freezing-point-depression constant of water, Kf, is 1.86°C/m.
    [Show full text]
  • Δtb = M × Kb, Δtf = M × Kf
    8.1HW Colligative Properties.doc Colligative Properties of Solvents Use the Equations given in your notes to solve the Colligative Property Questions. ΔTb = m × Kb, ΔTf = m × Kf Freezing Boiling K K Solvent Formula Point f b Point (°C) (°C/m) (°C/m) (°C) Water H2O 0.000 100.000 1.858 0.521 Acetic acid HC2H3O2 16.60 118.5 3.59 3.08 Benzene C6H6 5.455 80.2 5.065 2.61 Camphor C10H16O 179.5 ... 40 ... Carbon disulfide CS2 ... 46.3 ... 2.40 Cyclohexane C6H12 6.55 80.74 20.0 2.79 Ethanol C2H5OH ... 78.3 ... 1.07 1. Which solvent’s freezing point is depressed the most by the addition of a solute? This is determined by the Freezing Point Depression constant, Kf. The substance with the highest value for Kf will be affected the most. This would be Camphor with a constant of 40. 2. Which solvent’s freezing point is depressed the least by the addition of a solute? By the same logic as above, the substance with the lowest value for Kf will be affected the least. This is water. Certainly the case could be made that Carbon disulfide and Ethanol are affected the least as they do not have a constant. 3. Which solvent’s boiling point is elevated the least by the addition of a solute? Water 4. Which solvent’s boiling point is elevated the most by the addition of a solute? Acetic Acid 5. How does Kf relate to Kb? Kf > Kb (fill in the blank) The freezing point constant is always greater.
    [Show full text]
  • Find the Molar Mass of Sodium Carbonate, Na 2CO3. Na 2 X
    Moles and Molar Mass The mole is the "counting unit" used by chemists to indicate the number of atoms, ions, molecules, or formula units present in a particular chemical sample. The mole is similar to other counting units that you've used before....pair (2), dozen (12), and gross (144). One mole of a compound contains Avogadro's number (6.022 x 1023) of molecules (molecular compound) or formula units (ionic compound). The molar mass of a compound tells you the mass of 1 mole of that substance. In other words, it tells you the number of grams per mole of a compound. The units for molar mass are, therefore, grams/mole. To find the molar mass of a compound: 1. Use the chemical formula to determine the number of each type of atom present in the compound. 2. Multiply the atomic weight (from the periodic table) of each element by the number of atoms of that element present in the compound. 3. Add it all together and put units of grams/mole after the number. Example: Find the molar mass of sodium carbonate, Na2CO3. Na 2 x 23.0 = 46.0 C 1 x 12.0 = 12.0 O 3 x 16.0 = 48.0 molar = 106.0 g/mole mass For many (but not all) problems, you can simply round the atomic weights and the molar mass to the nearest 0.1 g/mole. HOWEVER, make sure that you use at least as many significant figures in your molar mass as the measurement with the fewest significant figures.
    [Show full text]
  • 16.4 Calculations Involving Colligative Properties 16.4
    chem_TE_ch16.fm Page 491 Tuesday, April 18, 2006 11:27 AM 16.4 Calculations Involving Colligative Properties 16.4 1 FOCUS Connecting to Your World Cooking instructions for a wide Guide for Reading variety of foods, from dried pasta to packaged beans to frozen fruits to Objectives fresh vegetables, often call for the addition of a small amount of salt to the Key Concepts • What are two ways of 16.4.1 Solve problems related to the cooking water. Most people like the flavor of expressing the concentration food cooked with salt. But adding salt can of a solution? molality and mole fraction of a have another effect on the cooking pro- • How are freezing-point solution cess. Recall that dissolved salt elevates depression and boiling-point elevation related to molality? 16.4.2 Describe how freezing-point the boiling point of water. Suppose you Vocabulary depression and boiling-point added a teaspoon of salt to two liters of molality (m) elevation are related to water. A teaspoon of salt has a mass of mole fraction molality. about 20 g. Would the resulting boiling molal freezing-point depression K point increase be enough to shorten constant ( f) the time required for cooking? In this molal boiling-point elevation Guide to Reading constant (K ) section, you will learn how to calculate the b amount the boiling point of the cooking Reading Strategy Build Vocabulary L2 water would rise. Before you read, make a list of the vocabulary terms above. As you Graphic Organizers Use a chart to read, write the symbols or formu- las that apply to each term and organize the definitions and the math- Molality and Mole Fraction describe the symbols or formulas ematical formulas associated with each using words.
    [Show full text]
  • AP Chemistry Summer Assignment #6 1. What Is the Molecular Mass Of
    AP Chemistry Summer Assignment #6 1. What is the molecular mass of crotonaldehyde C 4H6O? 2. A substance contains 23.0 g sodium, 27.0 g aluminum, and 114 g fluorine. How many grams of sodium are there in a 120.-g sample of the substance? 3. NaHCO 3 is the active ingredient in baking soda. How many grams of oxygen are in 0.35 g of NaHCO 3? 4. A sample of copper weighing 6.93 g contains how many moles of copper atoms? 5. Roundup, a herbicide manufactured by Monsanto, has the formula C 3H8NO 5P How many moles of molecules are there in a 500.-g sample of Roundup? 6. What is the molecular weight of ammonium chloride? 7. What is the percent by mass of bromine in ammonium perbromate? (The perbromate ion is BrO 4-.) 8. A chloride of rhenium contains 63.6% rhenium. What is the formula of this compound? 9. The mass percent of carbon in a compound containing only oxygen and carbon is 27.29%. Calculate the empirical formula. 10. A 2.00-g sample of an oxide of bromine is converted to 2.936g of AgBr. Calculate the empirical formula of the oxide. (Mol. mass. for AgBr = 187.78) 11. Phenol is a compound which contains 76.57% carbon, 6.43% hydrogen, and 17.0% oxygen. The empirical formula of phenol is __ 12. The empirical formula of a group of compounds is CHCl. Lindane, a powerful insecticide, is a member of this group. The molecular weight of lindane is 290.8.
    [Show full text]
  • Atomic Weights and Isotopic Abundances*
    Pure&App/. Chem., Vol. 64, No. 10, pp. 1535-1543, 1992. Printed in Great Britain. @ 1992 IUPAC INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY INORGANIC CHEMISTRY DIVISION COMMISSION ON ATOMIC WEIGHTS AND ISOTOPIC ABUNDANCES* 'ATOMIC WEIGHT' -THE NAME, ITS HISTORY, DEFINITION, AND UNITS Prepared for publication by P. DE BIEVRE' and H. S. PEISER2 'Central Bureau for Nuclear Measurements (CBNM), Commission of the European Communities-JRC, B-2440 Geel, Belgium 2638 Blossom Drive, Rockville, MD 20850, USA *Membership of the Commission for the period 1989-1991 was as follows: J. R. De Laeter (Australia, Chairman); K. G. Heumann (FRG, Secretary); R. C. Barber (Canada, Associate); J. CCsario (France, Titular); T. B. Coplen (USA, Titular); H. J. Dietze (FRG, Associate); J. W. Gramlich (USA, Associate); H. S. Hertz (USA, Associate); H. R. Krouse (Canada, Titular); A. Lamberty (Belgium, Associate); T. J. Murphy (USA, Associate); K. J. R. Rosman (Australia, Titular); M. P. Seyfried (FRG, Associate); M. Shima (Japan, Titular); K. Wade (UK, Associate); P. De Bi&vre(Belgium, National Representative); N. N. Greenwood (UK, National Representative); H. S. Peiser (USA, National Representative); N. K. Rao (India, National Representative). Republication of this report is permitted without the need for formal IUPAC permission on condition that an acknowledgement, with full reference together with IUPAC copyright symbol (01992 IUPAC), is printed. Publication of a translation into another language is subject to the additional condition of prior approval from the relevant IUPAC National Adhering Organization. ’Atomic weight‘: The name, its history, definition, and units Abstract-The widely used term “atomic weight” and its acceptance within the international system for measurements has been the subject of debate.
    [Show full text]
  • Atomic Mass Is the Mass of an Atom in Atomic Mass Units (Amu)
    Chemical Quantities Introduction Chapter 7 in our textbook Micro World Macro World atoms & molecules grams Atomic mass is the mass of an atom in atomic mass units (amu) By definition: 1 atom 12C “weighs” 12 amu On this scale H = 1.00794 amu O = 15.9994 amu Natural chlorine is: 75.78% 35Cl (34.968853 amu) 24.22% 37Cl (36.965903 amu) Chlorine Gas Average atomic mass of chlorine: (75.78 x 34.968853) + (24.22 x 36.965903) 100 = 35.45 amu Average atomic mass (35.45) Suppose you made a dot with your pencil like the one below, how many carbon atoms would be in the dot? The answer is: Approximately 4 000 000 000 000 000 000 That’s four billion, billion carbon atoms. So how do we handle such large numbers? Paper is sold by the ream. Eggs are sold Pencils are by the dozen. sold by the gross. Shoes are sold by the pair. Beverages are sold by the case. What about atoms? For really large numbers of items we use the MOLE. The mole (mol) is the amount of a substance that contains as many elementary entities as there are atoms in exactly 12.00 grams of 12C 1 mol = 6.022 x 1023 The value, 6.02 x 1023, is called Avogadro’s number in honor of Amedeo Avogadro. In 1811, Avogadro proposed that equal volumes of gas when at the same pressure and temperature have equal numbers of atoms or molecules regardless of the nature of the gas. Avogadro’s Principle Pressure = Pressure Volume = Volume Temperature = Temperature Number of particles = Number of particles The French physicist Jean Perrin in 1909 proposed naming the constant in honor of Avogadro.
    [Show full text]
  • 2.1 Relative Atomic and Molecular Masses, the Avogadro Constant, and the Mole Calculations AQA Chemistry
    2.1 Relative atomic and molecular AQA Chemistry masses, the Avogadro constant, and the mole Calculations The Avogadro constant Specification reference 3.1.2.2 MS 0.1 Recognise and use expressions in decimal and ordinary form MS 0.4 Use calculators to find and use power, exponential, and logarithmic functions MS 1.1Use an appropriate number of significant figures. Learning objectives After completing the worksheet you should be able to: carry out calculations using the Avogadro constant carry out calculations using numbers in standard and ordinary form substitute numerical values into algebraic equations, and change the subject of equations report calculations to an appropriate number of significant figures. Introduction One mole of any substance contains the same number of particles as the number of atoms in 12 g of carbon-12. This number of particles is a huge number and is called the Avogadro constant. It has a value of 6.02 1023 and is given the units of mol−1 (per mole). The relative atomic mass of an element in grams contains 6.02 1023 atoms or one mole of that element. The relative formula mass of a compound in grams contains 6.02 1023 particles (molecules or ions) or one mole of that compound. Therefore we use the term molar mass to describe the relative atomic or formula mass of a substance in grams and give it the unit g mol−1. To calculate the number of particles in a certain mass of a substance we can use the following equation. mass m (g) Number of particles = ´ 6.02 ´ 1023(mol-1) molar mass M (g mol-1) Worked example Question 1 How many molecules are there in 42.5 g of ammonia, NH3? Answer © Oxford University Press 2015 www.oxfordsecondary.co.uk/acknowledgements This resource sheet may have been changed from the original 1 2.1 Relative atomic and molecular AQA Chemistry masses, the Avogadro constant, and the mole Calculations Step 1 Calculate the molar mass of ammonia using the relative atomic masses of nitrogen and hydrogen from the periodic table.
    [Show full text]
  • Zumdahl Chapter 5 Gases
    5 Gases Contents 5.1 Pressure • Units of Pressure 5.2 The Gas Laws of Boyle, Charles, and Avogadro • Boyle’s Law • Charles’s Law • Avogadro’s Law 5.3 The Ideal Gas Law 5.4 Gas Stoichiometry • Molar Mass of a Gas 5.5 Dalton’s Law of Partial Pressures • Collecting a Gas over Water 5.6 The Kinetic Molecular Theory of Gases • Pressure and Volume (Boyle’s Law) • Pressure and Temperature • Volume and Temperature (Charles’s Law) • Volume and Number of Moles (Avogadro’s Law) • Mixture of Gases (Dalton’s Law) • Deriving the Ideal Gas Law • The Meaning of Temperature • Root Mean Square Velocity 5.7 Effusion and Diffusion • Effusion • Diffusion 5.8 Real Gases 5.9 Characteristics of Several Real Gases 5.10 Chemistry in the Atmosphere The steaming fumaroles located in Bjarnarflag, Iceland release a variety of gases. 178 Matter exists in three distinct physical states: gas, liquid, and solid. Although rel- atively few substances exist in the gaseous state under typical conditions, gases are very important. For example, we live immersed in a gaseous solution. The earth’s atmosphere is a mixture of gases that consists mainly of elemental nitrogen (N2) and oxygen (O2). The atmosphere both supports life and acts as a waste receptacle for the exhaust gases that accompany many industrial processes. The chemical reactions of these waste gases in the atmosphere lead to various types of pollution, including smog and acid rain. The gases in the atmosphere also shield us from harmful radiation from the sun and keep the earth warm by reflecting heat radiation back toward the earth.
    [Show full text]