Energy Efficiency Comparison Between Compact Fluorescent Lamp and Common Light Bulb
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Infrared Spectra of Noble Gases (12000 to 19000 Ar Curtis 1
Journal of Research of the Nationa l Bureau of Sta ndards Vol. 49, No. 2, August 1952 Resea rch Paper 2345 Infrared Spectra of Noble Gases (12000 to 19000 Ar Curtis 1. Humphreys and Henry 1. Kostkowski . The first spectra of heliUl.n, neon, argon, krypton, and xe non, excited by discharges in gelssler t ubes, operated by direct connection to a transformer, have been explored in the ll1frared (1 2090 to 19000 A) . A hi~h-reso lu t.i o n , automatically recording, infrared spec trom eter, emploYlllg a. 15009-h~ es -p e r-lllch gratlllg and lead-sulfi de photocond ucting detector, was used as t he dlspersmg mstrument. A new set of wavelength values is reported for all t hese spectra. New data include 18 pre viously unreported lines of neon and 36 of krypton all of which have been. classified . .~h e descriptions of t he spectra of argon, krypton, and xe non represent essent ially a repetit IOn of t he observations of Sitt ner and Peck. Several prev io~ s l y missing classificat ions a re supplied, also a few amended interpretat ions. The analysIs of t hese spectra m ay be regarded as complete. Use of selected lines as wavelength standards is suggested., 1. Introduction mocouple detector were reported by Humphreys and Plyler [2] . These observations covered the same The essentially complete character of both the spec tral region in which the data herein reported were d escription and interpretation of th e photographed obtained, but, because of well-known limitations af spec tra of the noble atmospheric gases makes it fecting the precision of spectral data obtained by apparent that any reopening of th e subject can be prism spec trometers with thermal detectors, may be justified only on the basis of th e availability of new' considered as en tirely sup erseded by the presen t sources of information, such as a new technique of work. -
Compact Fluorescent Light Bulbs
Compact Fluorescent Light Bulbs What is a compact fluorescent lamp (CFL) bulb? A CFL bulb is a type of fluorescent bulb that screws into a standard light socket, such as a lamp or ceiling light fixture. CFLs use much less energy and last up to 10 times longer than standard light bulbs. What is in a compact fluorescent lamp (CFL) bulb? A CFL bulb is made of glass, a ceramic and metal base, a luminous powder called phosphor, and a small amount of mercury. How much mercury is contained in a CFL bulb? Manufacturers report that the amount of mercury contained in a CFL bulb is five milligrams, which is less than two ten-thousandths of an ounce. The mercury could be in the form of an invisible vapor or in a bead the size of the period at the end of this sentence. A mercury fever thermometer contains about 100 times more mercury than a CFL bulb. Is it harmful is it to be in the room where a CFL bulb has broken? The amount of mercury vapor that is released from one broken bulb is not enough to make anyone sick. However, it is best to avoid any exposure to mercury. We recommend that you ventilate the room air to the outdoors by opening a window or a door and leave the room for a few hours before cleaning up the broken bulb. How should I clean up a broken CFL bulb? It is not necessary to hire a professional to clean up the bulb. By following the directions below, you can safely clean up a broken CFL bulb. -
Fluorescence Spectroscopy and Chemometrics in the Food Classification − a Review
Czech J. Food Sci. Vol. 25, No. 4: 159–173 Fluorescence Spectroscopy and Chemometrics in the Food Classification − a Review Jana SÁDECKÁ and Jana TÓTHOVÁ Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovak Republic Abstract Sádecká J., Tóthová J. (2007): Fluorescence spectroscopy and chemometrics in the food classification − a review. Czech J. Food Sci., 25: 159–173. This review deals with the last few years’ articles on various fluorescence techniques (conventional, excitation-emis- sion matrix, and synchronous fluorescence spectroscopy) as a tool for the classification of food samples. Chemometric methods as principal component analysis, hierarchical cluster analysis, parallel factor analysis, and factorial discrimi- nate analysis are briefly reminded. The respective publications are then listed according to the food samples: dairy products, eggs, meat, fish, edible oils, and others. Keywords: chemometrics; fluorescence spectroscopy; food analysis Fluorescence spectroscopy is a rapid, sensitive, distinguish. The analytical information contained and non-destructive analytical technique pro- in fluorescence spectra can be extracted by using viding in a few seconds spectral signatures that various multivariate analysis techniques that relate can be used as fingerprints of the food products several analytical variables to the properties of (dairy products, fishes, edible oils, wines, etc.). the analyte(s). The multivariate techniques most The application of fluorescence in food analysis frequently used allow to group the samples with has increased during the last decade, probably similar characteristics, to establish classification due to the propagated use of chemometrics. The methods for unknown samples (qualitative analysis) study by Norgaard (1995) can serve as a general or to perform methods determining some proper- investigation of how to enhance the potential of ties of unknown samples (quantitative analysis). -
Nikola Tesla
Nikola Tesla Nikola Tesla Tesla c. 1896 10 July 1856 Born Smiljan, Austrian Empire (modern-day Croatia) 7 January 1943 (aged 86) Died New York City, United States Nikola Tesla Museum, Belgrade, Resting place Serbia Austrian (1856–1891) Citizenship American (1891–1943) Graz University of Technology Education (dropped out) ‹ The template below (Infobox engineering career) is being considered for merging. See templates for discussion to help reach a consensus. › Engineering career Electrical engineering, Discipline Mechanical engineering Alternating current Projects high-voltage, high-frequency power experiments [show] Significant design o [show] Awards o Signature Nikola Tesla (/ˈtɛslə/;[2] Serbo-Croatian: [nǐkola têsla]; Cyrillic: Никола Тесла;[a] 10 July 1856 – 7 January 1943) was a Serbian-American[4][5][6] inventor, electrical engineer, mechanical engineer, and futurist who is best known for his contributions to the design of the modern alternating current (AC) electricity supply system.[7] Born and raised in the Austrian Empire, Tesla studied engineering and physics in the 1870s without receiving a degree, and gained practical experience in the early 1880s working in telephony and at Continental Edison in the new electric power industry. He emigrated in 1884 to the United States, where he became a naturalized citizen. He worked for a short time at the Edison Machine Works in New York City before he struck out on his own. With the help of partners to finance and market his ideas, Tesla set up laboratories and companies in New York to develop a range of electrical and mechanical devices. His alternating current (AC) induction motor and related polyphase AC patents, licensed by Westinghouse Electric in 1888, earned him a considerable amount of money and became the cornerstone of the polyphase system which that company eventually marketed. -
Induction in Alocasia Macrorrhiza' Received for Publication December 8, 1987 and in Revised Form March 18, 1988
Plant Physiol. (1988) 87, 818-821 0032-0889/88/87/081 8/04/$0 1.00/0 Gas Exchange Analysis of the Fast Phase of Photosynthetic Induction in Alocasia macrorrhiza' Received for publication December 8, 1987 and in revised form March 18, 1988 MIKO U. F. KIRSCHBAUM2 AND ROBERT W. PEARCY* Department ofBotany, University ofCalifornia, Davis, California 95616 ABSTRACT and Pearcy (10) used gas exchange techniques to investigate the slow phase of induction from about 1 to 45 min. These studies When leaves ofAlocasia macrorrhiza that had been preconditioned in indicated that there might also be a fast phase of induction that 10 micromoles photons per square meter per second for at least 2 hours is complete within the first minute after an increase in PFD. This were suddenly exposed to 500 micromoles photons per square meter per fast induction phase is difficult to analyze with gas exchange second, there was an almost instantaneous increase in assimilation rate. techniques because instrument response times are typically so After this initial increase, there was a secondary increase over the next slow as to obscure the underlying plant response. In the present minute. This secondary increase was more pronounced in high CO2 (1400 study, measurements of the induction response were made in a microbars), where assimilation rate was assumed to be limited by the gas-exchange system modified to resolve very fast responses. This rate of regeneration of ribulose 1,5-bisphosphate (RuBP). It was absent investigation of the fast induction phase extends our work done in low CO2 (75 microbars), where RuBP carboxylase/oxygenase (Rub- previously on the dynamics of photosynthesis of the Australian isco) was assumed to be limiting. -
High Moisture Accelerated Mechanical Behavior Degradation of Phosphor/Silicone Composites Used in White Light-Emitting Diodes
Article High Moisture Accelerated Mechanical Behavior Degradation of Phosphor/Silicone Composites Used in White Light-Emitting Diodes Jiajie Fan 1,2,3,*, Zhen Wang 1,2, Xunwei Zhang 1, Zhentao Deng 4, Xuejun Fan 5 and Guoqi Zhang 3 1 College of Mechanical and Electrical Engineering, Hohai University, Changzhou 213022, China 2 State Key Lab of Solid State Lighting, Changzhou Institute of Technology Research for Solid State Lighting, Changzhou 213164, China 3 Department of Microelectronics, EEMCS Faculty, Delft University of Technology, 2628 Delft, The Netherlands 4 College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518061, China 5 Department of Mechanical Engineering, Lamar University, Beaumont, TX 77710, USA * Correspondence: [email protected] Received: 12 June 2019; Accepted: 21 July 2019; Published: 31 July 2019 Abstract: In a high-power white light emitting diode (LED) package, the phosphor/silicone composite is typically used for photometric and colorimetric conversions, ultimately producing the white light. However, the phosphor/silicone composite is always exposed under harsh environments with high temperature, high blue light irradiation and high moisture when the LED operates. Therefore, its reliability issue has become one of the critical bottlenecks to improve the lifetime of a high-power white LED package. As the curing process and mechanical behavior of phosphor/silicone composite essentially determine its reliability, this paper firstly uses an in situ viscosity monitoring approach combined with Differential Scanning Calorimetry (DSC) and Fourier Transform Infrared Spectroscopy (FTIR) analysis to explain the curing mechanism of a phosphor/silicone composite by taking the effects of temperature and phosphor mass fraction into consideration. -
Modelling Transitions in Consumer Lighting — Consequences of the E.U
Modelling Transitions in Consumer Lighting — Consequences of the E.U. ban on light bulbs Maarten Afman Energy & Industry section Infrastructure Systems & Services Faculty of Technology, Policy and Management Delft University of Technology Modelling Transitions in Consumer Lighting — Consequences of the E.U. ban on light bulbs M.Sc. Thesis ‘Final version d.d. 4th February 2010’ Maarten Afman Graduation committee: Prof.dr.ir. M.P.C. Weijnen (chair; TU Delft, Energy & Industry section ) Dr.ir. G.P.J. Dijkema (first supervisor; TU Delft, Energy & Industry section) Dr.ir. C. van Daalen (second supervisor; TU Delft, Policy Analysis section) ir. E.J.L. Chappin (daily supervisor; TU Delft, Energy & Industry section) dr. W. Jager (external supervisor; University of Groningen, Marketing department) Programme SEPAM – Systems Engineering, Policy Analysis and Management Graduation Delft, 18th February 2010 Address M.R. Afman, v.d. Heimstr. 55, 2613EA Delft, The Netherlands E-mail addr. [email protected] Student no. 9006424 Energy & Industry section Infrastructure Systems & Services Faculty of Technology, Policy and Management Delft University of Technology Summary The need for a ban on bulbs? Energy consumption of the residential lighting sector is high: 3.8 TWh per year for the Netherlands alone, approximately the production of a power plant of 800 MW. Consequently, if 40% of the energy consumption for consumer lighting could be saved, a 320 MW power plant could be taken off the grid. Such a saving would be realistic if consumers would not rely so much on outdated and inefficient lighting technology, i.e. the standard incandescent light bulb and halogen lighting. -
Comparison of Life-Cycle Analyses of Compact Fluorescent and Incandescent Lamps Based on Rated Life of Compact Fluorescent Lamp
Comparison of Life-Cycle Analyses of Compact Fluorescent and Incandescent Lamps Based on Rated Life of Compact Fluorescent Lamp Laurie Ramroth Rocky Mountain Institute February 2008 Image: Compact Fluorescent Lamp. From Mark Stozier on istockphoto. Abstract This paper addresses the debate over compact fluorescent lamps (CFLs) and incandescents through life-cycle analyses (LCA) conducted in the SimaPro1 life-cycle analysis program. It compares the environmental impacts of providing a given amount of light (approximately 1,600 lumens) from incandescents and CFLs for 10,000 hours. Special attention has been paid to recently raised concerns regarding CFLs—specifically that their complex manufacturing process uses so much energy that it outweighs the benefits of using CFLs, that turning CFLs on and off frequently eliminates their energy-efficiency benefits, and that they contain a large amount of mercury. The research shows that the efficiency benefits compensate for the added complexity in manufacturing, that while rapid on-off cycling of the lamp does reduce the environmental (and payback) benefits of CFLs they remain a net “win,” and that the mercury emitted over a CFL’s life—by power plants to power the CFL and by leakage on disposal—is still less than the mercury that can be attributed to powering the incandescent. RMI: Life Cycle of CFL and Incandescent 2 Heading Page Introduction................................................................................................................... 5 Background................................................................................................................... -
Fluorescent Light-Emitting Diode (LED) Microscopy for Diagnosis of Tuberculosis
Fluorescent light-emitting diode (LED) microscopy for diagnosis of tuberculosis —Policy statement— March 2010 Contents Abbreviations Executive summary 1. Background 2. Evidence for policy formulation 2.1 Synthesis of evidence 2.2 Management of declarations of interest 3. Summary of results 4. Policy recommendations 5. Intended audience References Abbreviations CI confidence interval GRADE grades of recommendation assessment, development and evaluation LED light-emitting diode STAG-TB Strategic and Technical Advisory Group for Tuberculosis TB tuberculosis WHO World Health Organization Executive summary Conventional light microscopy of Ziehl-Neelsen-stained smears prepared directly from sputum specimens is the most widely available test for diagnosis of tuberculosis (TB) in resource-limited settings. Ziehl-Neelsen microscopy is highly specific, but its sensitivity is variable (20–80%) and is significantly reduced in patients with extrapulmonary TB and in HIV-infected TB patients. Conventional fluorescence microscopy is more sensitive than Ziehl-Neelsen and takes less time, but its use has been limited by the high cost of mercury vapour light sources, the need for regular maintenance and the requirement for a dark room. Light-emitting diodes (LED) have been developed to offer the benefits of fluorescence microscopy without the associated costs. In 2009, the evidence for the efficacy of LED microscopy was assessed by the World Health Organization (WHO), on the basis of standards appropriate for evaluating both the accuracy and the effect of new TB diagnostics on patients and public health. The results showed that the accuracy of LED microscopy was equivalent to that of international reference standards, it was more sensitive than conventional Ziehl-Neelsen microscopy and it had qualitative, operational and cost advantages over both conventional fluorescence and Ziehl- Neelsen microscopy. -
Fluorescent Lighting About the Guide
RESPONSIBLE PURCHASING GUIDE fluorescent lighting About the Guide The Responsible Purchasing Guide for Lighting is published by the Responsible Purchasing Network in print, as a PDF file, and on the web. Print and PDF copies are available to the public for purchase. The online edi- tion includes additional resources available to members of the Responsible Purchasing Network, including: searchable product listings, multiple policy and specification samples, comparisons of standards, and related documents. Visit www.ResponsiblePurchasing.org to purchase a copy or to access the members-only web- based edition of the Guide. Responsible Purchasing Network © 2007 About the Responsible Purchasing Network The Responsible Purchasing Network (RPN) was founded in 2005 as the first national network of procurement-related professionals dedicated to socially and environmentally responsible purchasing. RPN is a program of the Center for a New American Dream (www.newdream.org) and guided by a volunteer Steering Committee of leading procurement stakeholders from government, industry, educational institutions, standards setting organizations, and non-profit advocacy organizations. Acknowledgements The Responsible Purchasing Network (RPN) would like to thank the following people for assisting with the development of this Guide. Their expertise helped to ensure quality and accuracy, though RPN alone accepts responsibility for any errors or omissions. Affiliations listed below were current when input was provided to RPN and are listed for identification purposes -
Evaluation of Electric Lighting Products
U.S. CONSUMER PRODUCT SAFETY COMMISSION DIRECTORATE FOR ENGINEERING SCIENCES EVALUATION OF ELECTRIC LIGHTING PRODUCTS December 2007 Anna Luo Electrical Engineer Division of Electrical Engineering Directorate for Engineering Sciences This report has not been reviewed or approved by, and may not necessarily reflect the views of, the Commission. Table of Contents I. INTRODUCTION...................................................................................................................... 1 II. PROJECT OUTLINE................................................................................................................ 1 III. VOLUNTARY STANDARDS................................................................................................ 1 IV. TERMINOLOGY.................................................................................................................... 2 V. PRODUCT CHARACTERISTICS........................................................................................... 3 VI. TASK 1 – Review of Incident Data......................................................................................... 4 A. Portable Lighting Incidents ............................................................................................ 4 B. Installed Lighting Incidents............................................................................................ 5 C. Incidents Associated with Other Factors........................................................................ 6 VII. TASK 2 - Inspection of Collected Samples .......................................................................... -
Skylighter™ Brand Fluorescent Strobe Lighting
Skylighter™ Brand Fluorescent Strobe Lighting Operator’s Manual Skylighter CFF2 Skylighter CFF4 Skylighter CFF8 OPERATOR MANUAL FOR SKYLIGHTER Skylighter CFF2 Skylighter CFF4 Skylighter CFF8 Thank you for selecting the Photogenic Professional Skylighter CFF series. The CFF series incorporates the newest electronic components, lamps, reflectors, and diffusion panels providing improved lighting distribution and control. These products are built for the demanding operational needs of the professional photographer and it is our expectation that your Skylighter CFF will provide you with years of dependable service. INTRODUCTION The Skylighter CFF series are an extremely diffused light head and require an external power supply. They have one, two, or four professional, plug-in, linear flashtubes, and one, two, or four non-adjustable, linear, fluorescent modeling lamps. The Skylighter CFF series are stand mounted on a strong, rotating yoke, but may be ceiling hung, as required. Before using your new Skylighter CFF for the first time, please read this manual carefully and acquaint yourself with the controls and features. In this way, you can quickly get the greatest benefit from your new unit and maintain an efficient and safe operation. SAFETY PRECAUTIONS Despite the measures that have been taken to make electronic flash equipment safe, it must be recognized that high voltages and high temperatures do exist within the power supply / lighting unit. Certain precautions must be observed in handling the unit. Contact with internal high voltage may result in severe injury or death. 1. Before installing or removing the flashtubes and modeling lamps, be sure this appliance is turned off, cooled and unplugged from AC power source and external power supply.