Shake Slice and Shake Concordant Links
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Shake Slice and Shake Concordant Links
Abstract Shake Slice and Shake Concordant Links by Anthony Bosman The study of knots and links up to concordance has proved significant for many problems in low dimensional topology. In the 1970s, Akbulut introduced the notion of shake concordance of knots, a generalization of the study of knot concordance. Recent work of Cochran and Ray has advanced our understanding of how shake con- cordance relates to concordance, although fundamental questions remain, especially for the class of shake slice knots. We extend the notion of shake concordance to links, generalizing much of what is known for knots, and o↵er a characterization in terms of link concordance and the infection of a link by a string link. We also discuss a number of invariants and properties of link concordance which extend to shake concordance of links, as well as note several that do not. Finally, we give several obstructions to alinkbeingshakeslice. Acknowledgments To Tim Cochran, for introducing me to some wonderful mathematics and your constant encouragement. Your influence is still felt. To Shelly Harvey, for your generosity and mentorship–thank you! To Andy Putman and Jae Choon Cha, for many helpful conversation and your gracious support. To my committee members, Prof. Mike Wolf and Prof. Lisa Biswal, for your valuable time and suggestions. To my fellow graduate students–current and graduated, especially the topologists, for the many helpful conversations and shared experiences, and my officemates, what would I have done without you? To the rest of the Rice mathematics department and greater Rice community, for creating such a warm and friendly place to think, learn, and teach. -
Arxiv:1609.04353V1 [Math.GT] 14 Sep 2016 K Sp(L) ≥ 2G4(Lβ#I=1Li) − N
SPLITTING NUMBERS OF LINKS AND THE FOUR-GENUS CHARLES LIVINGSTON Abstract. The splitting number of a link is the minimum number of crossing changes between distinct components that is required to convert the link into a split link. We provide a bound on the splitting number in terms of the four-genus of related knots. 1. Introduction A link L ⊂ S3 has splitting number sp(L) = n if n is the least nonnegative integer for which some choice of n crossing changes between distinct components results in a totally split link. The study of splitting numbers and closely related invariants includes [1, 2, 3, 4, 5, 12, 14]. (In [1, 12, 14], the term splitting number permits self-crossing changes.) Here we will investigate the splitting number from the perspective of the four-genus of knots, an approach that is closely related to the use of concordance to study the splitting number in [3, 4] and earlier work considering concordances to split links [11]. Recent work by Jeong [10] develops a new infinite family of invariants that bound the splitting number, based on Khovanov homology. We will be working in the category of smooth oriented links, but notice that the splitting number is independent of the choice of orientation. To state our results, we remind the reader of the notion of a band connected sum of a link L.A band b is an embedding b: [0; 1] × [0; 1] ! S3 such that Image(b) \ L = b([0; 1] × f0; 1g). The orientation of the band must be consistent with the orientation of the link. -
Arxiv:2009.04641V1 [Math.GT] 10 Sep 2020
A NOTE ON PURE BRAIDS AND LINK CONCORDANCE MIRIAM KUZBARY Abstract. The knot concordance group can be contextualized as organizing problems about 3- and 4-dimensional spaces and the relationships between them. Every 3-manifold is surgery on some link, not necessarily a knot, and thus it is natural to ask about such a group for links. In 1988, Le Dimet constructed the string link concordance groups and in 1998, Habegger and Lin precisely characterized these groups as quotients of the link concordance sets using a group action. Notably, the knot concordance group is abelian while, for each n, the string link concordance group on n strands is non-abelian as it contains the pure braid group on n strands as a subgroup. In this work, we prove that even the quotient of each string link concordance group by its pure braid subgroup is non-abelian. 1. Introduction A knot is a smooth embedding of S1 into S3 and an n-component link is a smooth embedding of n disjoint copies of S1 into S3. The set of knots modulo a 4- dimensional equivalence relation called concordance forms the celebrated knot con- cordance group C using the operation connected sum, while the set of n-component links modulo concordance does not have a well-defined connected sum (even when the links are ordered and oriented) [FM66]. As a result, multiple notions of link concordance group have arisen in the literature with somewhat different structural properties [Hos67] [LD88] [DO12]. We focus on the n-strand string link concordance group C(n) of Le Dimet as it is the only link concordance group which is non-abelian. -
Concordance Groups of Links 1
CONCORDANCE GROUPS OF LINKS 1 Concordance groups of links ANDREW DONALD BRENDAN OWENS We define a notion of concordance based on Euler characteristic, and show that it gives rise to a concordance group L of links in S3 , which has the concordance group of knots as a direct summand with infinitely generated complement. We consider variants of this using oriented and nonoriented surfaces as well as smooth and locally flat embeddings. 57M25, 57M27, 57N70 1 Introduction A knot K in S3 is slice if it bounds a smoothly embedded disk ∆ in the four-ball; it is topologically slice if it bounds a locally flat embedded disk. Two oriented knots K0 , K1 are concordant if the connected sum −K0#K1 of one with the reverse mirror of the other is slice. This is an equivalence relation, and Fox and Milnor showed that the set of equivalence classes forms a group C under connected sum [11, 12]. Our goal in this paper is to generalise this construction in a natural way to links. The starting point is Lisca’s work [23, 24] on two-bridge links and lens spaces, as well as earlier work of Florens [9, 10]. These indicate that the following is a natural generalisation of sliceness to links. Definition 1 A link L in S3 is χ-slice1 if L bounds a smoothly properly embedded surface F in D4 without closed components, and with χ(F) = 1. If L is oriented we require F to be compatibly oriented. Some examples of χ-slice links are shown in Figure 1. -
Link Concordance and Groups
Abstract Link Concordance and Groups by Miriam Kuzbary This work concerns the study of link concordance using groups, both extracting concordance data from group theoretic invariants and deter- mining the properties of group structures on links modulo concordance. Milnor's invariants are one of the more fundamental link concordance in- variants; they are thought of as higher order linking numbers and can be computed using both Massey products (due to Turaev and Porter) and higher order intersections (due to Cochran). In this thesis, we generalize Milnor's invariants to knots inside a closed, oriented 3-manifold M. We call this the Dwyer number of a knot and show methods to compute it for null-homologous knots inside a family of 3-manifolds with free funda- mental group. We further show Dwyer number provides the weight of the first non-vanishing Massey product in the knot complement in the am- bient manifold. Additionally, we prove the Dwyer number detects knots K in M bounding smoothly embedded disks in specific 4-manifolds with boundary M which are not concordant to the unknot. This result fur- ther motivates our definition of a new link concordance group using the knotification construction of Ozsv`athand Szab`o.Finally, we give a proof that the string link concordance group modulo its pure braid subgroup is non-abelian. Acknowledgements I would first like to express my very great appreciation to my advisor Shelly Harvey. Your mentorship, support, and friendship has meant so much to me, and I am extremely proud to be your student. I am grateful to my collaborator Matthew Hedden for your support and efforts on our work together. -
Links Not Concordant to the Hopf Link
LINKS NOT CONCORDANT TO THE HOPF LINK STEFAN FRIEDL AND MARK POWELL Abstract. We give new Casson-Gordon style obstructions for a two–component link to be topologically concordant to the Hopf link. 1. Introduction 1.1. Definitions and previous results. An m–component (oriented) link is an embedded locally flat ordered collection of m disjoint (ori- ented) circles in S3. We say that two m–component oriented links L = 0 0 0 L1 ∪···∪Lm and L = L1 ∪···∪Lm are concordant if there exists a col- lection of m disjoint, embedded, locally flat, oriented annuli A1,...,Am 3 0 in S × [0, 1] such that ∂Ai = Li ×{0} ∪ −Li ×{1}, i =1,...,m. Throughout the paper we denote by H the Hopf link equipped with the orientation such that the linking number is 1, i.e. H consists of two generic fibres of the Hopf map h: S3 → S2 (z1, z2) 7→ [z1, z2], 3 2 2 2 2 where S ⊂ C is the set of (z1, z2) ∈ C with |z1| + |z2| = 1 and S2 ∼= CP1. There is a rich literature on obstructions for two links to be concor- dant. Roughly speaking the obstructions fall into the following cate- gories: (1) obstructions to the components (viewed as knots) being concor- dant (the landmark papers being the work of Levine [Lev69], Casson and Gordon [CG86] and Cochran, Orr and Teichner [COT03]); (2) Milnor’s µ-invariants (see Milnor [Mil57]), in particular the link- ing numbers; (3) obstructions from the multivariable Alexander polynomial and the Levine-Tristram signatures (see Murasugi [Mur67], Kawauchi [Kaw77][Kaw78, Theorem B], Nakagawa [Nak78] and Tristram [Tri69]); (4) twisted Alexander polynomials, twisted signature invariants and L2–signature invariants, where the corresponding representa- tions factor through a nilpotent quotient (e.g. -
Embedding 3-Manifolds in 4-Space and Link Concordance Via Double Branched Covers
Donald, Andrew (2013) Embedding 3-manifolds in 4-space and link concordance via double branched covers. PhD thesis http://theses.gla.ac.uk/4425/ Copyright and moral rights for this thesis are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Glasgow Theses Service http://theses.gla.ac.uk/ [email protected] Embedding 3-manifolds in 4-space and link concordance via double branched covers by Andrew Donald A thesis submitted to the College of Science and Engineering at the University of Glasgow for the degree of Doctor of Philosophy June 2013 ⃝c A. Donald 2013 Abstract The double branched cover is a construction which provides a link between problems in knot theory and other questions in low-dimensional topology. Given a knot in a 3-manifold, the double branched cover gives a natural way of associating a 3-manifold to the knot. Similarly, the double branched cover of a properly embedded surface in a 4-manifold is a 4-manifold whose boundary is the double branched cover of the boundary link of the surface. Consequently, whenever a link in S3 bounds certain types of surfaces, its double branched cover will bound a 4-manifold of an appropriate type.