The ADFGVX Cipher

Total Page:16

File Type:pdf, Size:1020Kb

The ADFGVX Cipher Lakehead University Theory of Cryptology Math{3375 The ADFGVX Cipher Wilson Poulter & Justin Kulp, Lakehead University he ADFGVX cipher is a private-key en- as cryptanalytic security [2]. cryption method that uses a Polybius At the time, the French army had a dedicated Tsquare to encrypt a plaintext message cryptanalysis group known as the Bureau du Chiffre, once, it then uses a keyword to transpose let- or Cipher Bureau. By April 4, 1918, Lieutenant ters of the singly encrypted text, adding ad- Georges Painvin, a member of the Bureau, was able ditional difficulty for cryptanalysis. to identify two messages with identical strings and orderings of text, indicating plaintext with the same History beginning and keys. This, and other clues led to a systematic and statistical breakdown of the Ger- On the frontline of trench warfare during the First man scheme during times of heavy communication. World War (1914-1918), communication was an in- However, the Allies never did develop an univer- tegral part of daily activities. In order to carry sal method for decrypting ADFGVX ciphers. The out an effective offensive, messages containing bat- largest success of Painvin was on June 3, 1918, when tle plans had to be transmitted along the kilome- he intercepted and decrypted the (translated) mes- tres of trench networks to commanding officers. The sage \Rush munitions Stop Even by day if not seen," obvious method for accomplishing this task at the which was later confirmed, and prepared the French time was through the use of radio telegraphy. By army for an attack on June 7 [2]. these means, operators could send messages using Morse code to other operators located far away. Al- Method though this was the only practical way of sending messages at the time, the use of radio had the draw- The ADFGVX cipher first employs a 6 × 6 Poly- back that one could not control who the message bius square to encrypt plaintext monographs into was sent to. Thus, enemy operators could intercept digraphs and then applies a single columnar trans- virtually every message sent, providing them with a position on the modified text. Simply put, the plain- tactical advantage. In order to protect the content text letters are substituted by digraphs and are then of messages even after they had been intercepted, transposed in columns by the use of a keyword [3]. cryptographers from all countries began to develop This combination of fractionation and transposition ciphers that would protect their messages even if makes the cipher especially difficult for cryptanaly- they were intercepted [1]. sis [1]. The ADFGX cipher originally came into use on March 5, 1918, and later evolved into the more com- Polybius Square plicated ADFGVX cipher to include numbers. The method was invented by the German Colonel Fritz To accomplish the first step of encryption, plain- Nebel and was chosen by a conference of German text characters are substituted using a 6 × 6 Poly- cipher specialists to be used during the war. It was bius square. The Polybius square is a checkerboard designed to optimize radio operator success as well scheme that uses the letters A, D, F, G, V, and X, Page 1 of 5 Lakehead University Theory of Cryptology Math{3375 A D F G V X from the keyword, moving down to a new row when A O K Z P 4 G all letters from the keyword have been used. D J 3 R 5 H I As an example, using the keyword MATHEMAT- F 8 W V C T Y ICS, which becomes MATHEICS, we would write G 1 S D 2 E X out (1) as follows, V B M 0 A F L X 7 U N 9 Q 6 MATHEICS FGDFFXAG (2) Table 1: A sample ADFGVX Polybius Square FVAAAXDF VGAGDVFX in order, as column and row identifiers, which forms Thus the characters of the digraphs form columns a grid where each element of the grid can be identi- underneath the letters of the keyword. × fied by its row and column header [3]. In this 6 6 The keyword's letters are then rearranged in al- scheme, the English alphabet and the digits 0{9 are phabetical order, with their corresponding columns randomly placed within the grid and each of these rearranged in the same order simultaneously. In our characters maps to an unique pair of letters. Using previous example MATHEICS would be rearranged the sample Polybius square in Table 1, we get that to read ACEHIMST, and (2) would become, the number 8 encrypts to the pair FA, and the pair AD decrypts to the letter K. ACEHIMST In the original ADFGX cipher, one uses a 5 × 5 GAFFXFGD (3) Polybius square, with each letter mapping to one of VDAAXFFA the 25 different digraphs. Of course, since there are GFDGVVXA 26 letters in the English alphabet, one traditionally To complete the encryption, the left-most column would merge the letters i and j into a single letter. is now written as a string of characters horizontally, Whereupon the correct letter would be chosen con- with the topmost letters of the column becoming the textually when decrypting [1]. leftmost in the string, the bottommost becoming the Since, in each case, a single plaintext character rightmost. This is then repeated for the second col- is mapped to more than one ciphertext character, umn, etc., until the last column [3]. This transforms the ADFGVX and ADFGX ciphers are examples of (3) into the final, encrypted, string: fractionating ciphers. As an example, using Table 1, the plaintext mes- GVGAD FFADF AGXXV FFVGF XDAA: (4) sage CRYPTOGRAPHY will result in the cipher- text: Now the ciphertext may now be sent with some degree of confidence that it will not be decrypted by FGDFF XAGFV AAAXD FVGAG DVFX: (1) someone without a key. Columnar Trasposition Strengths To make this cipher even stronger, our already once encrypted text is encrypted again using columnar The ADFGVX cipher was designed to not only be transposition, or in other words, by moving around a strong cipher, but also to be a relatively simple groups of the ciphertext via some keyword. cipher to use. The major advantage of this cipher To elaborate, suppose we have some keyword (in in the context of the First World War had to do the language the message is written in), we eliminate with the substituted Polybius square. The Polybius all the duplicate letters of the keyword, preserving square generally uses the digits 1{5 to act as column the leftmost letters. For example, if the keyword is headers and row identifiers, which was suited for its ZYXY we write ZYX, rather than ZXY [1]. With original method of encoding (knocks or light flashes), the remaining ordered characters, the message is ar- however as mentioned above, these messages were ranged so that the encoded message can be read being encoded using Morse code. Thus it is most \correctly" (that is, so that if it were decrypted it sensible to use characters which have Morse equiv- would be a readable message) from left to right, and alents that are all very distinct from one another, from top to bottom. Then each character of the these being the letters A, D, F, G, V, and X. Ex- encrypted message is placed directly under a letter amples of the International Morse symbols for the Page 2 of 5 Lakehead University Theory of Cryptology Math{3375 A · | assuming that each character maps to only one di- D | ·· graph and vice-versa, since monographs are simply F ·· | substituted with digraphs. For this same reason if G | | · an index of coincidence calculation was performed V ··· | on the encrypted text of 36 digraphic combinations, X | ·· | the index of coincidence would remain the same. It is when this method of substituting monographs Table 2: International Morse Symbols for ADFGVX with digraphs is coupled with the columnar transpo- sition described above, that the ADFGVX cipher be- letters A, D, F, G, V, and X can be seen in Table comes strong [3]. By the process of columnar trans- 2. By using these distinct letters, one may assume position, each of the two singular characters from ev- operator accuracy would increase [2]. ery digraph is re-associated with the character above As previously mentioned, the ADFGVX and re- it or below it in its column, or the character at the lated schemes act as a fractionating cipher since they top or bottom of the row next to it (right for top, left map each character to more than one letter, as a for bottom). In the general case, the frequency of result of the usage of the Polybius square. Addition- every digraph should be changed to something that ally, the underlying concept of the Polybius square is more reflective of a polyalphabetic cipher, since can be modified, adding additional dimensions, by two of the same digraphs may no longer correspond the example of the ADFGVX cipher, to aid in en- to the same plaintext letter. For 36 characters, the coding an alphabet of any length. Although, if the index of coincidence for a uniform distribution of length of the alphabet cannot be factored into di- text is 1=36 ' 0:027778. Using Table 1 and the key- mensions to form a Polybius square (or modified word WARIOPNCES to encrypt the text used to \Polybius rectangle"), then either some letters will compute (5), and then computing the new index of have to map to a non-unique digraph (one letter coincidence leads to the following, appears in more than one position in the square), 36 ( ) or certain digraphs will have to map back to a non- X n 2 IC ' i ' 0:032469 (6) unique plaintext letter (more than one letter appears new N in one position of the square).
Recommended publications
  • COS433/Math 473: Cryptography Mark Zhandry Princeton University Spring 2017 Cryptography Is Everywhere a Long & Rich History
    COS433/Math 473: Cryptography Mark Zhandry Princeton University Spring 2017 Cryptography Is Everywhere A Long & Rich History Examples: • ~50 B.C. – Caesar Cipher • 1587 – Babington Plot • WWI – Zimmermann Telegram • WWII – Enigma • 1976/77 – Public Key Cryptography • 1990’s – Widespread adoption on the Internet Increasingly Important COS 433 Practice Theory Inherent to the study of crypto • Working knowledge of fundamentals is crucial • Cannot discern security by experimentation • Proofs, reductions, probability are necessary COS 433 What you should expect to learn: • Foundations and principles of modern cryptography • Core building blocks • Applications Bonus: • Debunking some Hollywood crypto • Better understanding of crypto news COS 433 What you will not learn: • Hacking • Crypto implementations • How to design secure systems • Viruses, worms, buffer overflows, etc Administrivia Course Information Instructor: Mark Zhandry (mzhandry@p) TA: Fermi Ma (fermima1@g) Lectures: MW 1:30-2:50pm Webpage: cs.princeton.edu/~mzhandry/2017-Spring-COS433/ Office Hours: please fill out Doodle poll Piazza piaZZa.com/princeton/spring2017/cos433mat473_s2017 Main channel of communication • Course announcements • Discuss homework problems with other students • Find study groups • Ask content questions to instructors, other students Prerequisites • Ability to read and write mathematical proofs • Familiarity with algorithms, analyZing running time, proving correctness, O notation • Basic probability (random variables, expectation) Helpful: • Familiarity with NP-Completeness, reductions • Basic number theory (modular arithmetic, etc) Reading No required text Computer Science/Mathematics Chapman & Hall/CRC If you want a text to follow along with: Second CRYPTOGRAPHY AND NETWORK SECURITY Cryptography is ubiquitous and plays a key role in ensuring data secrecy and Edition integrity as well as in securing computer systems more broadly.
    [Show full text]
  • Battle Management Language: History, Employment and NATO Technical Activities
    Battle Management Language: History, Employment and NATO Technical Activities Mr. Kevin Galvin Quintec Mountbatten House, Basing View, Basingstoke Hampshire, RG21 4HJ UNITED KINGDOM [email protected] ABSTRACT This paper is one of a coordinated set prepared for a NATO Modelling and Simulation Group Lecture Series in Command and Control – Simulation Interoperability (C2SIM). This paper provides an introduction to the concept and historical use and employment of Battle Management Language as they have developed, and the technical activities that were started to achieve interoperability between digitised command and control and simulation systems. 1.0 INTRODUCTION This paper provides a background to the historical employment and implementation of Battle Management Languages (BML) and the challenges that face the military forces today as they deploy digitised C2 systems and have increasingly used simulation tools to both stimulate the training of commanders and their staffs at all echelons of command. The specific areas covered within this section include the following: • The current problem space. • Historical background to the development and employment of Battle Management Languages (BML) as technology evolved to communicate within military organisations. • The challenges that NATO and nations face in C2SIM interoperation. • Strategy and Policy Statements on interoperability between C2 and simulation systems. • NATO technical activities that have been instigated to examine C2Sim interoperation. 2.0 CURRENT PROBLEM SPACE “Linking sensors, decision makers and weapon systems so that information can be translated into synchronised and overwhelming military effect at optimum tempo” (Lt Gen Sir Robert Fulton, Deputy Chief of Defence Staff, 29th May 2002) Although General Fulton made that statement in 2002 at a time when the concept of network enabled operations was being formulated by the UK and within other nations, the requirement remains extant.
    [Show full text]
  • Elements of Cryptography
    Elements Of Cryptography The discussion of computer security issues and threats in the previous chap- ters makes it clear that cryptography provides a solution to many security problems. Without cryptography, the main task of a hacker would be to break into a computer, locate sensitive data, and copy it. Alternatively, the hacker may intercept data sent between computers, analyze it, and help himself to any important or useful “nuggets.” Encrypting sensitive data com- plicates these tasks, because in addition to obtaining the data, the wrongdoer also has to decrypt it. Cryptography is therefore a very useful tool in the hands of security workers, but is not a panacea. Even the strongest cryp- tographic methods cannot prevent a virus from damaging data or deleting files. Similarly, DoS attacks are possible even in environments where all data is encrypted. Because of the importance of cryptography, this chapter provides an introduction to the principles and concepts behind the many encryption al- gorithms used by modern cryptography. More historical and background ma- terial, descriptions of algorithms, and examples, can be found in [Salomon 03] and in the many other texts on cryptography, code breaking, and data hiding that are currently available in libraries, bookstores, and the Internet. Cryptography is the art and science of making data impossible to read. The task of the various encryption methods is to start with plain, readable data (the plaintext) and scramble it so it becomes an unreadable ciphertext. Each encryption method must also specify how the ciphertext can be de- crypted back into the plaintext it came from, and Figure 1 illustrates the relation between plaintext, ciphertext, encryption, and decryption.
    [Show full text]
  • A Cipher Based on the Random Sequence of Digits in Irrational Numbers
    https://doi.org/10.48009/1_iis_2016_14-25 Issues in Information Systems Volume 17, Issue I, pp. 14-25, 2016 A CIPHER BASED ON THE RANDOM SEQUENCE OF DIGITS IN IRRATIONAL NUMBERS J. L. González-Santander, [email protected], Universidad Católica de Valencia “san Vicente mártir” G. Martín González. [email protected], Universidad Católica de Valencia “san Vicente mártir” ABSTRACT An encryption method combining a transposition cipher with one-time pad cipher is proposed. The transposition cipher prevents the malleability of the messages and the randomness of one-time pad cipher is based on the normality of "almost" all irrational numbers. Further, authentication and perfect forward secrecy are implemented. This method is quite suitable for communication within groups of people who know one each other in advance, such as mobile chat groups. Keywords: One-time Pad Cipher, Transposition Ciphers, Chat Mobile Groups Privacy, Forward Secrecy INTRODUCTION In cryptography, a cipher is a procedure for encoding and decoding a message in such a way that only authorized parties can write and read information about the message. Generally speaking, there are two main different cipher methods, transposition, and substitution ciphers, both methods being known from Antiquity. For instance, Caesar cipher consists in substitute each letter of the plaintext some fixed number of positions further down the alphabet. The name of this cipher came from Julius Caesar because he used this method taking a shift of three to communicate to his generals (Suetonius, c. 69-122 AD). In ancient Sparta, the transposition cipher entailed the use of a simple device, the scytale (skytálē) to encrypt and decrypt messages (Plutarch, c.
    [Show full text]
  • The Mathemathics of Secrets.Pdf
    THE MATHEMATICS OF SECRETS THE MATHEMATICS OF SECRETS CRYPTOGRAPHY FROM CAESAR CIPHERS TO DIGITAL ENCRYPTION JOSHUA HOLDEN PRINCETON UNIVERSITY PRESS PRINCETON AND OXFORD Copyright c 2017 by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TR press.princeton.edu Jacket image courtesy of Shutterstock; design by Lorraine Betz Doneker All Rights Reserved Library of Congress Cataloging-in-Publication Data Names: Holden, Joshua, 1970– author. Title: The mathematics of secrets : cryptography from Caesar ciphers to digital encryption / Joshua Holden. Description: Princeton : Princeton University Press, [2017] | Includes bibliographical references and index. Identifiers: LCCN 2016014840 | ISBN 9780691141756 (hardcover : alk. paper) Subjects: LCSH: Cryptography—Mathematics. | Ciphers. | Computer security. Classification: LCC Z103 .H664 2017 | DDC 005.8/2—dc23 LC record available at https://lccn.loc.gov/2016014840 British Library Cataloging-in-Publication Data is available This book has been composed in Linux Libertine Printed on acid-free paper. ∞ Printed in the United States of America 13579108642 To Lana and Richard for their love and support CONTENTS Preface xi Acknowledgments xiii Introduction to Ciphers and Substitution 1 1.1 Alice and Bob and Carl and Julius: Terminology and Caesar Cipher 1 1.2 The Key to the Matter: Generalizing the Caesar Cipher 4 1.3 Multiplicative Ciphers 6
    [Show full text]
  • Short History Polybius's Square History – Ancient Greece
    CRYPTOLOGY : CRYPTOGRAPHY + CRYPTANALYSIS Polybius’s square Polybius, Ancient Greece : communication with torches Cryptology = science of secrecy. How : 12345 encipher a plaintext into a ciphertext to protect its secrecy. 1 abcde The recipient deciphers the ciphertext to recover the plaintext. 2 f g h ij k A cryptanalyst shouldn’t complete a successful cryptanalysis. 3 lmnop 4 qrstu Attacks [6] : 5 vwxyz known ciphertext : access only to the ciphertext • known plaintexts/ciphertexts : known pairs TEXT changed in 44,15,53,44. Characteristics • (plaintext,ciphertext) ; search for the key encoding letters by numbers chosen plaintext : known cipher, chosen cleartexts ; • shorten the alphabet’s size • search for the key encode• a character x over alphabet A in y finite word over B. Polybius square : a,...,z 1,...,5 2. { } ! { } Short history History – ancient Greece J. Stern [8] : 3 ages : 500 BC : scytale of Sparta’s generals craft age : hieroglyph, bible, ..., renaissance, WW2 ! • technical age : complex cipher machines • paradoxical age : PKC • Evolves through maths’ history, computing and cryptanalysis : manual • electro-mechanical • by computer Secret key : diameter of the stick • History – Caesar Goals of cryptology Increasing number of goals : secrecy : an enemy shouldn’t gain access to information • authentication : provides evidence that the message • comes from its claimed sender signature : same as auth but for a third party • minimality : encipher only what is needed. • Change each char by a char 3 positions farther A becomes d, B becomes e... The plaintext TOUTE LA GAULE becomes wrxwh od jdxoh. Why enciphering ? The tools Yesterday : • I for strategic purposes (the enemy shouldn’t be able to read messages) Information Theory : perfect cipher I by the church • Complexity : most of the ciphers just ensure computational I diplomacy • security Computer science : all make use of algorithms • Mathematics : number theory, probability, statistics, Today, with our numerical environment • algebra, algebraic geometry,..
    [Show full text]
  • Tap Code 1 2 3 4 5 1 a B C D E 2 F G H I J 3 L M N O P 4 Q R S T U 5
    Solution to Kryptos 2: Challenge 1 The audio files indicate that the prisoners are communicating with each other by “tapping”. There are two distinct tapping sounds which indicate the two prisoners are exchanging some sort of information back and forth. Furthermore, unlike Morse Code, each audio file is made up of pairs of taps which leads one to believe that each pair of taps corresponds to a word or letter. The longest tapping sequence is five, so if one assumes that each tap-pair corresponds to a pair of integers between 1 and 5, then this code could encipher 25 items – most likely letters. At this point, one could try a frequency analysis to help identify which pairs of integers correspond to which letters. Alternatively, a little research might yield the “tap code” (see e.g. Wikipedia) which has been used by prisoners of war in various conflicts throughout history, most recently Vietnam. It is based on the Polybius square, some of which have slightly different arrangements of the 26 letters placed into 25 cells. Challenge 1 was based on the following key found on Wikipedia: Tap code 1 2 3 4 5 1 A B C D E 2 F G H I J 3 L M N O P 4 Q R S T U 5 V W X Y Z The tap code table This has all letters except “K”, so “C” is used instead. The letter “X” is used to separate sentences. The first audio file begins with the following tap-pairs: (2,4), (4,3), (1,3), (3,4), (5,1), (1,5), (4,2),… which yields the following plaintext: i, s, c, o, v, e, r, … By adding in the likely punctuation, the complete conversation can be decoded: PLAINTEXT Prisoner 1: Is cover intact? Prisoner 2: Yes.
    [Show full text]
  • Grade 7 and 8 Math Circles Cryptography Introduction
    Faculty of Mathematics Centre for Education in Waterloo, Ontario N2L 3G1 Mathematics and Computing Grade 7 and 8 Math Circles March 19th/20th/21st Cryptography Introduction Before we begin, it's important to look at some terminology that is important to what we will be learning about. Plaintext: The message or information a sender wishes to share with a specific person. It is very easy to read and must be somehow hidden from those that are not intended to see it. Encryption: The process of the plaintext in such a way that only authorized parties can clearly read it. Ciphertext: The text created by plaintext. It looks like gibberish and is very hard to read. Cipher: A of transforming a message to conceal its meaning. Decryption: The opposite of . It is the process of turning ciphertext back into the readable plaintext. Substitution Cipher The earliest evidence of cryptography have been found in Mesopotamian, Egyptian, Chinese, and Indian writings, but it was the Hebrew scholars of 600 to 500 BCE that began to use simple substitution ciphers. In a substitution cipher the alphabet is rewritten in some other order to represent the the substitution. Caesar Ciphers The Caesar cipher is the simplest and most famous substitution cipher. It was first used by the famous Roman general Julius Caesar, who developed it to protect important military messages. 1 To produce a Caesar cipher simply shift the alphabet some units to the right. Julius Caesar's original cipher was created by shifting the alphabet three units to the right, as shown below. plaintext A B C D E F G H I J K L M ciphertext X Y Z A B C D E F G H I J plaintext N O P Q R S T U V W X Y Z ciphertext K L M N O P Q R S T U V W When encrypting a message, match every letter in the plaintext with the corresponding ciphertext letter beneath it.
    [Show full text]
  • General Solution for the Adfgvx Cipher System
    10 Feb 61 FILE OR From File of Special Consultant (Friedman) SERIAL neral Solution for the ADFGVX Cipher System NUMBER Register No. 129 AND Serial No. 1010 SUBJECT NAME AND EXTENSION OF PERSON REQUESTING FILE ORGANIZATION, B TO Mr. William Friedman LI 6-8520 10 2nd. Str., SE, Wash., D. C. DATE RET'ND. INITIAL HERE RETURN To Mrs. Christian, AG-24, HSA, Ft. Geo. G. Meade Mdo WHEN TRANSFERRING FILE TO ANOTHER PERSON, COMPLET'""1ELF·ADDRESSED TRANSFER COUPON BELOW, DETACH, STITCH TO BLANK INSTRUCTIONS LETTER·SIZE PAPER AND PLACE IN OUT·GOING MAIL SERVIC -· 2ND TRANSFER COUPON Declassified and approved for release by NSA on 05-06-2014 pursuant to E.O. 1352a Co1alidential Register No. 1 2 9 WAR DEPARTMENT OFFICE THE cmEI' SIGNAL OFVICD 1·',' or W .lSBINGTQll I GENERAL SOLUTION FOR THB I ADFGVX CIPHER SYSTEM I. *!~ ,. : i~ ' ·!, ------------~--==....;..'"-=='.,,.;'*: 30 April 1959 ftl• 4oc,_at 18 :re~4 •a<mrIDnUAL•·typ ot JMI> ~tive 52()0.l 4&~ 8 J~.1957, u4 117 "thant1 qr: the Jtirectar, laticllal a.nmv·: AceDt:J' • . ' ... ' 4JJ!fl/~ .; ~':j_ S. W1J.lt.r4 . ! ColCMl, .AOC • ! AclJutut GeMnl. --·-··-··--- --· Classification chanr,ed to R68!1'1G6'Pli8 By Authority ot · HAP.CL:J G4 HAY"-:S, Col<! , Siena! Corps Actin~ Chief, Arm.y Sepurity A~cncy B y :·iA:.JCN G. CA "'PR:::tL1 1st Lt,., Si~ 1 April 1946• . NO ACCOUNTltll t!MCESSARJ Rt:GlSTRAnON CAJJCELED, b7 . Authority Hqs. ASA ltr dated 27 Feb 46 2d Ind 11 l~r 46, signed: - HAROLD G .. HAYES, Col.Ji Sir.mtl Corps Aetin.1; Ch!Pf t Ar?!W S~1:1:ri~y Afen·:y ~::t::ii.
    [Show full text]
  • Transposition Cipher in Cryptography, a Transposition Cipher Is a Method of Encryption by Which the Positions Held by Units of P
    Transposition cipher In cryptography, a transposition cipher is a method of encryption by which the positions held by units of plaintext (which are commonly characters or groups of characters) are shifted according to a regular system, so that the ciphertext constitutes a permutation of the plaintext. That is, the order of the units is changed. Mathematically a bijective function is used on the characters' positions to encrypt and an inverse function to decrypt. Following are some implementations. Contents • 1 Rail Fence cipher • 2 Route cipher • 3 Columnar transposition • 4 Double transposition • 5 Myszkowski transposition • 6 Disrupted transposition • 7 Grilles • 8 Detection and cryptanalysis • 9 Combinations • 10 Fractionation Rail Fence cipher The Rail Fence cipher is a form of transposition cipher that gets its name from the way in which it is encoded. In the rail fence cipher, the plaintext is written downwards on successive "rails" of an imaginary fence, then moving up when we get to the bottom. The message is then read off in rows. For example, using three "rails" and a message of 'WE ARE DISCOVERED. FLEE AT ONCE', the cipherer writes out: W . E . C . R . L . T . E . E . R . D . S . O . E . E . F . E . A . O . C . A . I . V . D . E . N . Then reads off: WECRL TEERD SOEEF EAOCA IVDEN (The cipherer has broken this ciphertext up into blocks of five to help avoid errors.) Route cipher In a route cipher, the plaintext is first written out in a grid of given dimensions, then read off in a pattern given in the key.
    [Show full text]
  • An Introduction to Cryptography, Second Edition Richard A
    DISCRETE MATHEMATICS AND ITS APPLICATIONS Series Editor KENNETH H. ROSEN An INTRODUCTION to CRYPTOGRAPHY Second Edition © 2007 by Taylor & Francis Group, LLC DISCRETE MATHEMATICS and ITS APPLICATIONS Series Editor Kenneth H. Rosen, Ph.D. Juergen Bierbrauer, Introduction to Coding Theory Kun-Mao Chao and Bang Ye Wu, Spanning Trees and Optimization Problems Charalambos A. Charalambides, Enumerative Combinatorics Henri Cohen, Gerhard Frey, et al., Handbook of Elliptic and Hyperelliptic Curve Cryptography Charles J. Colbourn and Jeffrey H. Dinitz, The CRC Handbook of Combinatorial Designs Steven Furino, Ying Miao, and Jianxing Yin, Frames and Resolvable Designs: Uses, Constructions, and Existence Randy Goldberg and Lance Riek, A Practical Handbook of Speech Coders Jacob E. Goodman and Joseph O’Rourke, Handbook of Discrete and Computational Geometry, Second Edition Jonathan L. Gross and Jay Yellen, Graph Theory and Its Applications, Second Edition Jonathan L. Gross and Jay Yellen, Handbook of Graph Theory Darrel R. Hankerson, Greg A. Harris, and Peter D. Johnson, Introduction to Information Theory and Data Compression, Second Edition Daryl D. Harms, Miroslav Kraetzl, Charles J. Colbourn, and John S. Devitt, Network Reliability: Experiments with a Symbolic Algebra Environment Leslie Hogben, Handbook of Linear Algebra Derek F. Holt with Bettina Eick and Eamonn A. O’Brien, Handbook of Computational Group Theory David M. Jackson and Terry I. Visentin, An Atlas of Smaller Maps in Orientable and Nonorientable Surfaces Richard E. Klima, Neil P. Sigmon, and Ernest L. Stitzinger, Applications of Abstract Algebra with Maple™ and MATLAB®, Second Edition Patrick Knupp and Kambiz Salari, Verification of Computer Codes in Computational Science and Engineering William Kocay and Donald L.
    [Show full text]
  • History of Cryptography an EASY to UNDERSTAND HISTORY of CRYPTOGRAPHY Contents
    History of Cryptography AN EASY TO UNDERSTAND HISTORY OF CRYPTOGRAPHY Contents 1. Introduction 3 2. Classical Encryptions (Ancient Times) 4 3. Classical Encryptions (Middle Ages) 6 The Cipher of Mary Queen of Scots 6 Vigenère Ciphers 6 Uesugi Cipher 7 4. Modern Ciphers: Ciphers during World War I and the Emergence of Encryption Machines 8 German Communication Cables Disconnected by the United Kingdom 8 Zimmermann Telegram 8 ADFGVX Cipher 8 The Birth of Enigma 9 5. Modern Ciphers: Encryptions in the Computer and Internet Era 10 DES Cipher 10 Public-Key Cryptosystem 10 RSA Cipher 11 Decrypting the DES Cipher 12 Responsive Action of Cipher Enhancements for SSL 12 6. The Future of Encryption 13 7. Conclusion: Enhancing the Effectiveness of Encryptions used for SSL 14 References 14 © 2013 Thawte, Inc. All rights reserved. Thawte, the thawte logo, and other trademarks, service marks, and designs are registered or unregistered trademarks of Thawte, 2 Inc. and its subsidiaries and affi liates in the United States and in foreign countries. All other trademarks are property of their respective owners. 1. Introduction ncryption and related technologies are widely and frequently Eused as a means of ensuring that information is secure, and their importance has been growing with the increasingly wide- spread utilization of the Internet. The use of encryption can be traced to as far back as about 3000 B.C., during the Babylonian Era. Encryption technologies evolved as they were used in military and political settings, but as a result of the recent widespread use of the Internet and the dramatic increase in the amount of information people come into contact in their daily lives, the settings in which encryption technologies are applied and implemented have increased, and they are now used all around us in our daily lives.
    [Show full text]