OSA Handbook of Applied Photometry

Total Page:16

File Type:pdf, Size:1020Kb

OSA Handbook of Applied Photometry Final manuscript, December 1, 1996 OSA Handbook of Applied Photometry Chapter 3 – Photometric Standards Dr. Yoshihiro Ohno Table of Contents 3.1 History of photometric standards ····································································· 1 3.2 Photometry, physical photometry, and radiometry ·········································· 2 3.3 SI units and the international legal metrology system ········································4 3.4 Luminous intensity standards ··········································································· 6 3.4.1 Detector-based candela realization ······················································· 6 3.4.2 Source-based candela realization ·························································· 9 3.4.3 Luminous intensity transfer standard lamps ······································· 11 3.4.3.1 Lamp types ·········································································· 11 3.4.3.2 Lamp seasoning ···································································· 12 3.4.3.3 Lamp characteristics and screening ······································ 13 3.4.3.4 Operation and handling of standard lamps ··························· 17 3.4.4 Illuminance transfer standard photometers ········································· 18 3.4.4.1 Requirements for standard photometers ······························ 18 3.4.4.2 Characterization of standard photometers ··························· 20 3.4.4.3 Operation and handling of standard photometers ················ 23 3.4.4.4 Determination of the reference plane ··································· 24 3.5 Luminous flux standards ················································································· 26 3.5.1 Goniophotometric method ·································································· 26 3.5.2 Absolute integrating sphere method ··················································· 29 3.5.3 Luminous flux transfer standards ························································ 31 3.5.3.1 Requirements for standard lamps ········································· 31 3.5.3.2 Seasoning and screening ······················································· 33 3.5.3.3 Operation and handling of standard lamps ···························· 34 - i - 3.6 Luminance standards ······················································································· 34 3.6.1 Detector-based realization of luminance unit ········································34 3.6.2 Method using a diffuse reflectance/transmittance standard ················ 36 3.6.3 Luminance transfer standards ····························································· 38 3.6.3.1 Opal glass ············································································ 38 3.6.3.2 Integrating sphere sources ··················································· 38 3.6.3.3 Luminance meters ······························································· 39 3.7 Color temperature standards ·········································································· 40 3.7.1 Definitions of terms ··········································································· 40 3.7.2 Realization of distribution temperature scale····································· 41 3.7.3 Color temperature transfer standards ················································· 42 Acknowledgement ··································································································· 45 Reference ················································································································· 46 - ii - 3.1 History of photometric standards The history of the standards for light dates back to the early nineteenth century, when the flame of a candle was used as a unit of luminous intensity that was called the candle. The candle power, the old name for the luminous intensity, originated from the use of candles. As early visual photometers were improved, it was determined that candles were not reproducible to the accuracy of the measurement even when the composition, form, and rate of burning were carefully specified. Numerous efforts were made to use controlled flame lamps. In the mid nineteenth century, the standard candles were gradually superseded by various other flame standards such as the carcel lamp, the pentane lamp, and Hefner lamp1. Despite careful specifications of manufacturing details and numerous determinations of the correction factors, none of the flame standards proved adequate for accurate photometry. In the late nineteenth century, suggestions were made to construct some form of standard depending on the radiation given by a specified area of surface at a given temperature, such as the melting platinum standard known as the Violle standard. This standard utilizing molten platinum, however, was found unsatisfactory because of variations in the surface emissivity and the freezing point caused by contamination. About the same time, the use of an incandescent filament lamp as a standard was proposed. But it was found to be impractical because it was not possible to specify and manufacture such a lamp to the extreme accuracy required for an absolute standard. In early twentieth century, to improve the Violle standard, investigations on platinum point blackbodies began at some national laboratories. The blackbody consisted of a cylindrical radiator made of pure fused thoria (about 45 mm long), which was immersed in pure molten platinum maintained at the temperature of solidification (2042 K). The entire blackbody was heated in a high-frequency induction furnace with 7 kW power to bring it to the melting point. An agreement was first established in 1909 among the national laboratories of France, Great Britain, and the United States to use this method. The unit was recognized as the international candle. This standard was adopted by the Commission Internationale de l’Eclairage (CIE) in 19212. After a successful realization of the candle in 19313, this method became universally recognized. In 1948, it was adopted by the Conférence Générale des Poids et Mesures (CGPM)4 with a new Latin name “candela.” In 1967, CGPM adopted a more precise definition of the candela5 as The candela is the luminous intensity, in the perpendicular direction, of a surface of 1/600000 square meter of a blackbody (full radiator) at the temperature of freezing platinum under a pressure of 101325 newton per square meter. The candela also became one of the base SI units (Systéme International d’Unités) when the SI was established in 19606. Although this definition served to establish the uniformity of photometric measurements in the world, difficulties in fabrication of the blackbody and in improving accuracy were addressed. Since the mid 1950s, suggestions were made to define the candela in relation to the optical watt so that complicated source standards would not be needed. There were many efforts to determine the - 1 - constant that would provide a numerical relationship between the photometric quantities and the radiometric quantities7,8. In 1979, the new definition of the candela was adopted by the CGPM9 defining the candela in relation to the radiant power (watt) by introducing the constant Km as described in the later sections of this chapter. The 1979 redefinition of the candela has allowed the use of appropriate techniques to derive the photometric units from the radiometric scales. After the new definition, most national laboratories have realized the candela based on the absolute responsivity of detectors rather than blackbody radiation. Before the international intercomparison of photometric units held by the Comité Consultatif de Photométrie et Radiométrie (CCPR) in 198510, many national laboratories realized the candela by using room temperature electrical substitution radiometers (ESRs). This intercomparison showed a ± 1 % variation of the national units of the candela, which was slightly better than previous intercomparisons, but the improvement was less than expected. In the early 1980s, the silicon photodiode self-calibration technique11,12 was developed and used extensively for realization of photometric units. Absolute cryogenic radiometers are now used in national laboratories to provide radiometric scales with uncertainties on the order of 0.01 %. The candela is now realized based on cryogenic radiometers at several national laboratories. With these recent improvements in technology, a smaller variation of national units is expected, and will be the subject of another CCPR international intercomparison of photometric units planned for 1998. 3.2 Photometry, physical photometry, and radiometry The primary aim of photometry is to measure visible radiation or light, in such a way that the results correlate as closely as possible with what the visual sensation would be of a normal human observer exposed to that radiation. Until about 1940, visual comparison techniques of measurements were predominant in photometry, where typically an observer was required to match the brightness of two visual fields viewed either simultaneously or sequentially. In modern photometric practice, almost all measurements are made with photodetectors, and is referred to as physical photometry. In order to achieve the aim of photometry, one must take into account the characteristics of the human vision. The relative spectral responsivity of the human eye is similar for most observers but can vary depending on individuals and on the viewing conditions. A relative spectral responsivity of the human
Recommended publications
  • CIE Technical Note 004:2016
    TECHNICAL NOTE The Use of Terms and Units in Photometry – Implementation of the CIE System for Mesopic Photometry CIE TN 004:2016 CIE TN 004:2016 CIE Technical Notes (TN) are short technical papers summarizing information of fundamental importance to CIE Members and other stakeholders, which either have been prepared by a TC, in which case they will usually form only a part of the outputs from that TC, or through the auspices of a Reportership established for the purpose in response to a need identified by a Division or Divisions. This Technical Note has been prepared by CIE Technical Committee 2-65 of Division 2 “Physical Measurement of Light and Radiation" and has been approved by the Board of Administration as well as by Division 2 of the Commission Internationale de l'Eclairage. The document reports on current knowledge and experience within the specific field of light and lighting described, and is intended to be used by the CIE membership and other interested parties. It should be noted, however, that the status of this document is advisory and not mandatory. Any mention of organizations or products does not imply endorsement by the CIE. Whilst every care has been taken in the compilation of any lists, up to the time of going to press, these may not be comprehensive. CIE 2016 - All rights reserved II CIE, All rights reserved CIE TN 004:2016 The following members of TC 2-65 “Photometric measurements in the mesopic range“ took part in the preparation of this Technical Note. The committee comes under Division 2 “Physical measurement of light and radiation”.
    [Show full text]
  • Luminance Requirements for Lighted Signage
    Luminance Requirements for Lighted Signage Jean Paul Freyssinier, Nadarajah Narendran, John D. Bullough Lighting Research Center Rensselaer Polytechnic Institute, Troy, NY 12180 www.lrc.rpi.edu Freyssinier, J.P., N. Narendran, and J.D. Bullough. 2006. Luminance requirements for lighted signage. Sixth International Conference on Solid State Lighting, Proceedings of SPIE 6337, 63371M. Copyright 2006 Society of Photo-Optical Instrumentation Engineers. This paper was published in the Sixth International Conference on Solid State Lighting, Proceedings of SPIE and is made available as an electronic preprint with permission of SPIE. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited. Luminance Requirements for Lighted Signage Jean Paul Freyssinier*, Nadarajah Narendran, John D. Bullough Lighting Research Center, Rensselaer Polytechnic Institute, 21 Union Street, Troy, NY 12180 USA ABSTRACT Light-emitting diode (LED) technology is presently targeted to displace traditional light sources in backlighted signage. The literature shows that brightness and contrast are perhaps the two most important elements of a sign that determine its attention-getting capabilities and its legibility. Presently, there are no luminance standards for signage, and the practice of developing brighter signs to compete with signs in adjacent businesses is becoming more commonplace. Sign luminances in such cases may far exceed what people usually need for identifying and reading a sign. Furthermore, the practice of higher sign luminance than needed has many negative consequences, including higher energy use and light pollution.
    [Show full text]
  • Report on Digital Sign Brightness
    REPORT ON DIGITAL SIGN BRIGHTNESS Prepared for the Nevada State Department of Transportation, Washoe County, City of Reno and City of Sparks By Jerry Wachtel, President, The Veridian Group, Inc., Berkeley, CA November 2014 1 Table of Contents PART 1 ......................................................................................................................... 3 Introduction. ................................................................................................................ 3 Background. ................................................................................................................. 3 Key Terms and Definitions. .......................................................................................... 4 Luminance. .................................................................................................................................................................... 4 Illuminance. .................................................................................................................................................................. 5 Reflected Light vs. Emitted Light (Traditional Signs vs. Electronic Signs). ...................................... 5 Measuring Luminance and Illuminance ........................................................................ 6 Measuring Luminance. ............................................................................................................................................. 6 Measuring Illuminance. ..........................................................................................................................................
    [Show full text]
  • Lecture 3: the Sensor
    4.430 Daylighting Human Eye ‘HDR the old fashioned way’ (Niemasz) Massachusetts Institute of Technology ChriChristoph RstophReeiinhartnhart Department of Architecture 4.4.430 The430The SeSensnsoror Building Technology Program Happy Valentine’s Day Sun Shining on a Praline Box on February 14th at 9.30 AM in Boston. 1 Happy Valentine’s Day Falsecolor luminance map Light and Human Vision 2 Human Eye Outside view of a human eye Ophtalmogram of a human retina Retina has three types of photoreceptors: Cones, Rods and Ganglion Cells Day and Night Vision Photopic (DaytimeVision): The cones of the eye are of three different types representing the three primary colors, red, green and blue (>3 cd/m2). Scotopic (Night Vision): The rods are repsonsible for night and peripheral vision (< 0.001 cd/m2). Mesopic (Dim Light Vision): occurs when the light levels are low but one can still see color (between 0.001 and 3 cd/m2). 3 VisibleRange Daylighting Hanbook (Reinhart) The human eye can see across twelve orders of magnitude. We can adapt to about 10 orders of magnitude at a time via the iris. Larger ranges take time and require ‘neural adaptation’. Transition Spaces Outside Atrium Circulation Area Final destination 4 Luminous Response Curve of the Human Eye What is daylight? Daylight is the visible part of the electromagnetic spectrum that lies between 380 and 780 nm. UV blue green yellow orange red IR 380 450 500 550 600 650 700 750 wave length (nm) 5 Photometric Quantities Characterize how a space is perceived. Illuminance Luminous Flux Luminance Luminous Intensity Luminous Intensity [Candela] ~ 1 candela Courtesy of Matthew Bowden at www.digitallyrefreshing.com.
    [Show full text]
  • Fundametals of Rendering - Radiometry / Photometry
    Fundametals of Rendering - Radiometry / Photometry “Physically Based Rendering” by Pharr & Humphreys •Chapter 5: Color and Radiometry •Chapter 6: Camera Models - we won’t cover this in class 782 Realistic Rendering • Determination of Intensity • Mechanisms – Emittance (+) – Absorption (-) – Scattering (+) (single vs. multiple) • Cameras or retinas record quantity of light 782 Pertinent Questions • Nature of light and how it is: – Measured – Characterized / recorded • (local) reflection of light • (global) spatial distribution of light 782 Electromagnetic spectrum 782 Spectral Power Distributions e.g., Fluorescent Lamps 782 Tristimulus Theory of Color Metamers: SPDs that appear the same visually Color matching functions of standard human observer International Commision on Illumination, or CIE, of 1931 “These color matching functions are the amounts of three standard monochromatic primaries needed to match the monochromatic test primary at the wavelength shown on the horizontal scale.” from Wikipedia “CIE 1931 Color Space” 782 Optics Three views •Geometrical or ray – Traditional graphics – Reflection, refraction – Optical system design •Physical or wave – Dispersion, interference – Interaction of objects of size comparable to wavelength •Quantum or photon optics – Interaction of light with atoms and molecules 782 What Is Light ? • Light - particle model (Newton) – Light travels in straight lines – Light can travel through a vacuum (waves need a medium to travel in) – Quantum amount of energy • Light – wave model (Huygens): electromagnetic radiation: sinusiodal wave formed coupled electric (E) and magnetic (H) fields 782 Nature of Light • Wave-particle duality – Light has some wave properties: frequency, phase, orientation – Light has some quantum particle properties: quantum packets (photons). • Dimensions of light – Amplitude or Intensity – Frequency – Phase – Polarization 782 Nature of Light • Coherence - Refers to frequencies of waves • Laser light waves have uniform frequency • Natural light is incoherent- waves are multiple frequencies, and random in phase.
    [Show full text]
  • Light and Illumination
    ChapterChapter 3333 -- LightLight andand IlluminationIllumination AAA PowerPointPowerPointPowerPoint PresentationPresentationPresentation bybyby PaulPaulPaul E.E.E. Tippens,Tippens,Tippens, ProfessorProfessorProfessor ofofof PhysicsPhysicsPhysics SouthernSouthernSouthern PolytechnicPolytechnicPolytechnic StateStateState UniversityUniversityUniversity © 2007 Objectives:Objectives: AfterAfter completingcompleting thisthis module,module, youyou shouldshould bebe ableable to:to: •• DefineDefine lightlight,, discussdiscuss itsits properties,properties, andand givegive thethe rangerange ofof wavelengthswavelengths forfor visiblevisible spectrum.spectrum. •• ApplyApply thethe relationshiprelationship betweenbetween frequenciesfrequencies andand wavelengthswavelengths forfor opticaloptical waves.waves. •• DefineDefine andand applyapply thethe conceptsconcepts ofof luminousluminous fluxflux,, luminousluminous intensityintensity,, andand illuminationillumination.. •• SolveSolve problemsproblems similarsimilar toto thosethose presentedpresented inin thisthis module.module. AA BeginningBeginning DefinitionDefinition AllAll objectsobjects areare emittingemitting andand absorbingabsorbing EMEM radiaradia-- tiontion.. ConsiderConsider aa pokerpoker placedplaced inin aa fire.fire. AsAs heatingheating occurs,occurs, thethe 1 emittedemitted EMEM waveswaves havehave 2 higherhigher energyenergy andand 3 eventuallyeventually becomebecome visible.visible. 4 FirstFirst redred .. .. .. thenthen white.white. LightLightLight maymaymay bebebe defineddefineddefined
    [Show full text]
  • Determination of Resistances for Brightness Compensation
    www.osram-os.com Application Note No. AN041 Determination of resistances for brightness compensation Application Note Valid for: TOPLED® / Chip LED® / Multi Chip LED® TOPLED E1608® /Mini TOPLED® / PointLED® Advanced Power TOPLED® / FIREFLY® SIDELED® Abstract This application note describes the procedure for adjusting the brightness of light emitting diodes (LEDs) in applications by means of resistors. For better repeatability, the calculation of the required resistance values is shown by means of an example. Author: Hofman Markus / Haefner Norbert 2021-08-10 | Document No.: AN041 1 / 14 www.osram-os.com Table of contents A. Introduction ............................................................................................................ 2 B. Basic procedure ..................................................................................................... 2 C. Possible sources of errors ..................................................................................... 3 Temperature ...................................................................................................... 3 Forward voltage ................................................................................................. 4 D. Application example .............................................................................................. 4 E. Conclusion ........................................................................................................... 12 A. Introduction Due to manufacturing tolerances during production, LEDs cannot be produced
    [Show full text]
  • 2.1 Definition of the SI
    CCPR/16-53 Modifications to the Draft of the ninth SI Brochure dated 16 September 2016 recommended by the CCPR to the CCU via the CCPR president Takashi Usuda, Wednesday 14 December 2016. The text in black is a selection of paragraphs from the brochure with the section title for indication. The sentences to be modified appear in red. 2.1 Definition of the SI Like for any value of a quantity, the value of a fundamental constant can be expressed as the product of a number and a unit as Q = {Q} [Q]. The definitions below specify the exact numerical value of each constant when its value is expressed in the corresponding SI unit. By fixing the exact numerical value the unit becomes defined, since the product of the numerical value {Q} and the unit [Q] has to equal the value Q of the constant, which is postulated to be invariant. The seven constants are chosen in such a way that any unit of the SI can be written either through a defining constant itself or through products or ratios of defining constants. The International System of Units, the SI, is the system of units in which the unperturbed ground state hyperfine splitting frequency of the caesium 133 atom Cs is 9 192 631 770 Hz, the speed of light in vacuum c is 299 792 458 m/s, the Planck constant h is 6.626 070 040 ×1034 J s, the elementary charge e is 1.602 176 620 8 ×1019 C, the Boltzmann constant k is 1.380 648 52 ×1023 J/K, 23 -1 the Avogadro constant NA is 6.022 140 857 ×10 mol , 12 the luminous efficacy of monochromatic radiation of frequency 540 ×10 hertz Kcd is 683 lm/W.
    [Show full text]
  • Exposure Metering and Zone System Calibration
    Exposure Metering Relating Subject Lighting to Film Exposure By Jeff Conrad A photographic exposure meter measures subject lighting and indicates camera settings that nominally result in the best exposure of the film. The meter calibration establishes the relationship between subject lighting and those camera settings; the photographer’s skill and metering technique determine whether the camera settings ultimately produce a satisfactory image. Historically, the “best” exposure was determined subjectively by examining many photographs of different types of scenes with different lighting levels. Common practice was to use wide-angle averaging reflected-light meters, and it was found that setting the calibration to render the average of scene luminance as a medium tone resulted in the “best” exposure for many situations. Current calibration standards continue that practice, although wide-angle average metering largely has given way to other metering tech- niques. In most cases, an incident-light meter will cause a medium tone to be rendered as a medium tone, and a reflected-light meter will cause whatever is metered to be rendered as a medium tone. What constitutes a “medium tone” depends on many factors, including film processing, image postprocessing, and, when appropriate, the printing process. More often than not, a “medium tone” will not exactly match the original medium tone in the subject. In many cases, an exact match isn’t necessary—unless the original subject is available for direct comparison, the viewer of the image will be none the wiser. It’s often stated that meters are “calibrated to an 18% reflectance,” usually without much thought given to what the statement means.
    [Show full text]
  • Recommended Light Levels
    Recommended Light Levels Recommended Light Levels (Illuminance) for Outdoor and Indoor Venues This is an instructor resource with information to be provided to students as the instructor sees fit. Light Level or Illuminance, is the amount of light measured in a plane surface (or the total luminous flux incident on a surface, per unit area). The work plane is where the most important tasks in the room or space are performed. Measuring Units of Light Level - Illuminance Illuminance is measured in foot candles (ftcd, fc, fcd) or lux (in the metric SI system). A foot candle is actually one lumen of light density per square foot; one lux is one lumen per square meter. • 1 lux = 1 lumen / sq meter = 0.0001 phot = 0.0929 foot candle (ftcd, fcd) • 1 phot = 1 lumen / sq centimeter = 10000 lumens / sq meter = 10000 lux • 1 foot candle (ftcd, fcd) = 1 lumen / sq ft = 10.752 lux Common Light Levels Outdoors from Natural Sources Common light levels outdoor at day and night can be found in the table below: Illumination Condition (ftcd) (lux) Sunlight 10,000 107,527 Full Daylight 1,000 10,752 Overcast Day 100 1,075 Very Dark Day 10 107 Twilight 1 10.8 Deep Twilight .1 1.08 Full Moon .01 .108 Quarter Moon .001 .0108 Starlight .0001 .0011 Overcast Night .00001 .0001 Common Light Levels Outdoors from Manufactured Sources The nomenclature for most of the types of areas listed in the table below can be found in the City of Los Angeles, Department of Public Works, Bureau of Street Lighting’s “DESIGN STANDARDS AND GUIDELINES” at the URL address under References at the end of this document.
    [Show full text]
  • Spectral Light Measuring
    Spectral Light Measuring 1 Precision GOSSEN Foto- und Lichtmesstechnik – Your Guarantee for Precision and Quality GOSSEN Foto- und Lichtmesstechnik is specialized in the measurement of light, and has decades of experience in its chosen field. Continuous innovation is the answer to rapidly changing technologies, regulations and markets. Outstanding product quality is assured by means of a certified quality management system in accordance with ISO 9001. LED – Light of the Future The GOSSEN Light Lab LED technology has experience rapid growth in recent years thanks to the offers calibration services, for our own products, as well as for products from development of LEDs with very high light efficiency. This is being pushed by other manufacturers, and issues factory calibration certificates. The optical the ban on conventional light bulbs with low energy efficiency, as well as an table used for this purpose is subject to strict test equipment monitoring, and ever increasing energy-saving mentality and environmental awareness. LEDs is traced back to the PTB in Braunschweig, Germany (German Federal Institute have long since gone beyond their previous status as effects lighting and are of Physics and Metrology). Aside from the PTB, our lab is the first in Germany being used for display illumination, LED displays and lamps. Modern means to be accredited for illuminance by DAkkS (German accreditation authority), of transportation, signal systems and street lights, as well as indoor and and is thus authorized to issue internationally recognized DAkkS calibration outdoor lighting, are no longer conceivable without them. The brightness and certificates. This assures that acquired measured values comply with official color of LEDs vary due to manufacturing processes, for which reason they regulations and, as a rule, stand up to legal argumentation.
    [Show full text]
  • Variable Star Photometry with a DSLR Camera
    Variable star photometry with a DSLR camera Des Loughney Introduction now be studied. I have used the method to create lightcurves of stars with an amplitude of under 0.2 magnitudes. In recent years it has been found that a digital single lens reflex (DSLR) camera is capable of accurate unfiltered pho- tometry as well as V-filter photometry.1 Undriven cameras, Equipment with appropriate quality lenses, can do photometry down to magnitude 10. Driven cameras, using exposures of up to 30 seconds, can allow photometry to mag 12. Canon 350D/450D DSLR cameras are suitable for photome- The cameras are not as sensitive or as accurate as CCD try. My experiments suggest that the cameras should be cameras primarily because they are not cooled. They do, used with quality lenses of at least 50mm aperture. This however, share some of the advantages of a CCD as they allows sufficient light to be gathered over the range of have a linear response over a large portion of their range1 exposures that are possible with an undriven camera. For and their digital data can be accepted by software pro- bright stars (over mag 3) lenses of smaller aperture can be grammes such as AIP4WIN.2 They also have their own ad- used. I use two excellent Canon lenses of fixed focal length. vantages as their fields of view are relatively large. This makes One is the 85mm f1.8 lens which has an aperture of 52mm. variable stars easy to find and an image can sometimes in- This allows undriven photometry down to mag 8.
    [Show full text]