<<

Examensarbete vid Institutionen för geovetenskaper Degree Project at the Department of Earth Sciences ISSN 1650-6553 Nr 370

Compositional Systematics of from Western Bergslagen, Sweden Huvud- och spårelementsystematik i zinkblände från västra Bergslagen, Sverige

Aristeidis Kritikos

INSTITUTIONEN FÖR

GEOVETENSKAPER

DEPARTMENT OF EARTH SCIENCES

Examensarbete vid Institutionen för geovetenskaper Degree Project at the Department of Earth Sciences ISSN 1650-6553 Nr 370

Compositional Systematics of Sphalerites from Western Bergslagen, Sweden Huvud- och spårelementsystematik i zinkblände från västra Bergslagen, Sverige

Aristeidis Kritikos

ISSN 1650-6553

Copyright © Aristeidis Kritikos Published at Department of Earth Sciences, Uppsala University (www.geo.uu.se), Uppsala, 2016 Abstract

Compositional Systematics of Sphalerites from Western Bergslagen, Sweden Aristeidis Kritikos

Sphalerite is, apart from being the main global source of zinc (Zn), also one of the main source for the critical elements indium (In), gallium (Ga) and germanium (Ge), which can be extracted as by-products during Zn mining. In the westernmost part of the Palaeoproterozoic Bergslagen ore province, Sweden, In-anomalies have been reported from sulphide mineralizations. These In-anomalies can be attributed to either pre-ore formation crustal processes manifested by the local (Svecofennian, c. 1.87-1.89 Ga) syn-volcanic mineralisations, or to epigenetic metasomatic events primarily related to younger (c. 1.80- 1.79 Ga) granitoids. In this study, samples from 19 different mineralisations in westernmost Bergslagen were examined by both electron probe microanalyzer (EPMA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), in order to firstly, measure trace element concentrations, and especially those of the critical element In, Ga and Ge, and secondly, to apply this information to gain new information on the trace element inventory and incorporation mechanisms of sphalerite. The dataset also allows for testing the ore-formation process models, not least in cases of elevated In- contents. Utilization of these two analytical methods also provided the opportunity for a direct spot-to- spot comparison of their performance in detecting trace element concentrations in sphalerite. The results verify the In-enrichment of the area, whereas Ga and Ge only follow crustal abundancies. The concentrations of the other trace elements vary significantly, even at a sample scale. The compositional variation shows several patterns between certain elements, suggesting that their incorporation in the sphalerite lattice was allowed via substitution mechanisms (e.g. In3++(Cu+,Ag+)↔2Zn2+; Fe2++Cd2++Mn2+↔3Zn2+; Cu++Mn2++In3+↔3Zn2+). In contrast, some measured high Cd, Ag and Pb concentrations are attributed to nano (or micro) inclusions of primarily galena. Other elements such as As, Sn, Sb, Se, Au, Tl, Ni, Te and Mo yielded, in almost all the samples, concentrations below the detection limit for both analytical methods. Discrimination methods based on trace element concentrations and distribution of the In-enriched mineralizations suggest that the In- anomalies are most likely related to Svecofennian volcanic to subvolcanic hydrothermal processes, forming mineralisations that were later modified during the Svecokarelian orogeny. Finally, the direct comparison of EPMA results to that of LA-ICP-MS, showed the significantly better performance of the latter method in detecting trace-level concentrations, provided that a proper calibration procedure has been followed.

Keywords: Western Bergslagen, sphalerite, critical elements, trace elements, substitution mechanisms, EPMA, LA-ICP-MS.

Degree Project E1 in Earth Science, 1GV025, 30 credits Supervisors: Karin Högdahl and Erik Jonsson Department of Earth Sciences, Uppsala University, Villavägen 16, SE-752 36 Uppsala (www.geo.uu.se)

ISSN 1650-6553, Examensarbete vid Institutionen för geovetenskaper, No. 370, 2016

The whole document is available at www.diva-portal.org

Populärvetenskaplig sammanfattning

Huvud-och spårelementsystematik i zinkblände från västra Bergslagen, Sverige Aristeidis Kritikos

Sulfidmineralet zinkblände är, förutom att vara den huvudsakliga globala källan för zink (Zn), också ett av de viktigaste värdmineralen för de kritiska metallerna indium (In), gallium (Ga) och germanium (Ge), vilka kan utvinnas som viktiga biprodukter vid zinkbrytning. I den västligaste delen av malmprovinsen Bergslagen i Mellansverige har In-anomalier rapporterats från flera mineraliseringar. Dessa lokala In-anrikningar kan tillskrivas antingen processer verksamma innan och under den vulkaniska aktiviteten, eller senare geologiska händelser relaterade till yngre graniter. I denna studie har zinkblände från 19 olika mineraliseringar i västra Bergslagen karakteriserats med två olika system för mikrokemisk analys; elektronmikrosond (EPMA) och laserablativ induktivt kopplad plasma-masspektrometri (LA-ICP-MS). Detta har gjorts för att mäta spårelementhalter, och särskilt då för de kritiska metallerna In, Ga och Ge. Genom att använda dessa två metoder parallellt gavs också möjligheten till direkta jämförelser mellan dem vad gäller deras kapacitet för spårelementanalys av zinkblände. Resultaten verifierar att detta område är anomalt In-anrikat, medan halterna av Ga och Ge är låga och endast följer genomsnittshalterna för kontinental jordskorpa. Halterna av de övriga spårelementen varierar avsevärt, även på individuell provskala, och visar i flera fall systematiska mönster mellan vissa element. Dessa mönster tyder på att deras införlivande i zinkbländestrukturen gått via flera specifika utbytes-(substitutions-)mekanismer (t.ex. In3++ (Cu+, Ag+) ↔2Zn2+; Fe2+ + Cd2++ Mn2+ ↔3Zn2+, Cu++ Mn2++ In3+ ↔3Zn2+). Däremot kan förhöjda halter av Cd, Ag och Pd tillskrivas nano- (eller mikro-) inneslutningar av framförallt blyglans. Andra element, som As, Sn, Sb, Se, Au, TI, Ni, Te och Mo uppvisade halter under detektionsgränserna för båda analysmetoderna i nästan alla undersökta prov. Bildningsmässiga (genetiska) diskrimineringsmetoder baserade på spårelementhalter kombinerat med de geologiska och spatiella relationerna för de In-anrikade mineraliseringarna tyder på att de senare bildades genom svekofenniska vulkanisk-hydrotermala processer och därefter modifierats under svekokarelsk bergskedjebildning. Slutligen, i den direkta jämförelsen av EPMA gentemot LA-ICP-MS, visade den senare metoden signifikant bättre kapacitet för spårämnesanalys, förutsatt att ett korrekt kalibreringsprotokoll har följts.

Nyckelord: Västra Bergslagen, zinkblände, kritiska metaller, spårelement, substitutionsmekanismer, EPMA, LA-ICP-MS.

Examensarbete E1 i geovetenskap, 1GV025, 30 hp Handledare: Karin Högdahl och Erik Jonsson Institutionen för geovetenskaper, Uppsala universitet, Villavägen 16, 752 36 Uppsala (www.geo.uu.se)

ISSN 1650-6553, Examensarbete vid Institutionen för geovetenskaper, Nr 370, 2016

Hela publikationen finns tillgänglig på www.diva-portal.org

Table of Contents

1. Introduction and background ...... 1 1.1 Critical elements for energy saving devices ...... 2 1.2 Sphalerite ...... 3 2. Geological setting of the Bergslagen ore province ...... 5 2.1 Volcanic evolution ...... 9 2.2 Metallogenesis of Bergslagen ...... 10 3. Methodology ...... 11 3.1 Sample preparation ...... 13 3.2 Reflected light microscopy ...... 13 3.3 Electron Microprobe Analysis ...... 14 3.3.1 EPMA analytical setup ...... 15 3.4 LA-ICP-MS ...... 16 3.4.1 LA-ICP-MS analytical setup ...... 17 4. Studied mineralizations ...... 18 4.1 Långban ...... 20 4.2 Lahäll ...... 21 4.3 Myssfallet ...... 22 4.4 Myssberget/Mysstjärnen ...... 23 4.5 Näset ...... 23 4.6 Getberget ...... 25 4.7 Skatviken ...... 26 4.8 Björkskogsnäs ...... 27 4.9 Hasselhöjden ...... 28 4.10 Silvhytte gruvor/Silvbergsfallet ...... 29 4.11 Nordmark ...... 30 4.12 Plåtgruvan ...... 30 4.13 Hällefors ...... 31 4.14 Gruvåsen ...... 32 4.15 Borns Koppargruva ...... 34 4.16 Månhöjden ...... 35 4.17 Limtjärn ...... 35 4.18 Alkvetterns Silvergruvor ...... 36 4.19 Gåsborn ...... 37 5. Results ...... 38 5.1 EMPA analysis ...... 38 5.2 LA-ICP-MS analysis ...... 41

Table of Contents (continued)

5.3 Major and trace elements ...... 43 5.3.1 Iron ...... 43 5.3.2 Cadmium ...... 44 5.3.3 Manganese ...... 45 5.3.4 Cobalt ...... 46 5.3.5 Copper ...... 47 5.3.6 Indium ...... 49 5.3.7 Germanium ...... 50 5.3.8 Gallium ...... 50 5.3.9 ...... 50 5.3.10 Mercury ...... 51 5.3.11 Lead ...... 52 5.3.12 Bismuth ...... 53 5.3.13 Arsenic ...... 53 5.3.14 Selenium ...... 54 5.3.15 Tin ...... 54 5.3.16 Antimony ...... 54 5.3.17 ...... 55 5.3.18 Thallium ...... 55 5.3.19 Nickel ...... 55 5.3.20 Molybdenum ...... 55 5.3.21 Tellurium ...... 55 6. Discussion...... 56 6.1 EMPA vs LA-ICP-MS analyses ...... 56 6.1.1 The Pb-Bi problem ...... 60 6.2 Substitution mechanisms and data trends ...... 62 6.3 Elemental patterns ...... 66 6.3.1 Critical or ‘high-tech’ elements ...... 66 6.3.2 The other elements ...... 69 6.4 Genetic considerations ...... 69 7. Conclusions ...... 73 8. Acknowledgements ...... 75 9. References ...... 76 Appendix A: EMPA results ...... 85 Appendix B: LA-ICP-MS results ...... 105 Appendix C: LA-ICP-MS data of the 1831.1815 sample……………………………...... 111

1. Introduction and background

During the last decade there has been a rapid increase in the demand for many metals, not least due to a growing global middle class such as represented by the BRICS countries. This, coupled with concerns

about climate change (e.g. through CO2 emissions) have generated extensive interest in new technologies that are more energy-efficient and more environmentally friendly. Some elements are critical components in modern hi-tech and energy saving applications like LCD’s and touchscreens, solar cells, LED-lamps and in devices such as high-temperature thermometers. One of the most important sources for some of these elements, including indium, are zinc ores (i.e. mainly sphalerite) from which they are produced as important by-products (e.g. Moskalyk, 2003; Alfantazi & Moskalyk, 2003; Höll et al., 2007). The Bergslagen ore province in central Sweden has a long mining tradition, going back at least to the Middle Ages (Allen et al., 1996), and features more than 8500 mined and explored deposits (SGU databases). Many of these are sphalerite-bearing base-metal deposits hosted by c. 1.9 Ga metavolcanic rocks or their intercalated skarns. Sphalerite can host a wide range of minor and trace elements, including the sought after elements In, Ga and Ge. Actual contents can vary depending on crystallization temperature, metal source and type of mineralization, and it has been shown that the highest concentrations of these elements are found in epithermal and skarn deposits (Cook et al., 2009). Significant anomalies of the critical element In have previously been reported from western

Bergslagen, and the roquesite (CuInS2) has been identified at Lindbom’s Prospect, the Långban mines and Gåsborn (Burke & Kieft, 1980; Jonsson et al. 2013). Sphalerites from Lindbom’s Prospect have been shown to contain up to 1.5 wt.% In (Jonsson et al., 2013), and up to 10 and 15 wt.% respectively at Långban and Gåsborn (Burke & Kieft, 1980; Kieft & Damman, 1990). Additionally, sphalerite with low but still elevated In concentrations (above c. 25 ppm) have been found in the southern and western part of the region (the Marketorp, Zinkgruvan, Kaveltorp, Getön, Gruvåsen and Björkskogsnäs deposits) (Sundblad & Ahl, 2008; Cook et al., 2009). The observation of anomalous In concentrations in a few deposits in particularly westernmost Bergslagen suggests that this element may be present in other similar mineralizations in that part of the province. The hypothesis is thus that this area may harbor overall increased contents of In and associated metals, potentially due to either pre-ore formation crustal processes, or through later, epigenetic metasomatic events. In order to test this, a suite of sphalerite samples were chosen for detailed major and trace element analysis. Thus the element concentrations of sphalerite samples from 19 mineralizations in westernmost Bergslagen have been analyzed, with special focus on their potential content of these so-called high- tech elements. The microchemical analyses were carried out using both electron probe microanalyser (EPMA) and laser ablation inductively coupled plasma mass spectroscopy (LA-ICP-MS). In addition

1 to geological considerations, the analytical results from EPMA are compared with results from LA- ICP-MS and the suitability of the latter for trace element analysis in sphalerites evaluated. The generated datasets have also been applied to test the viability of important known or potential substitution mechanisms in sphalerite, and the application of trace element systematics for genetic discriminations.

1.1 Critical elements for energy saving devices

Several elements that were previously only known as oddities or ‘’chemical exotica’’ have been increasingly utilized during the last decades, and now play an important role in many technological applications. Some of these elements, however, are not easily available in quantities that can cover the demand. This is due to their very low concentration, or that production is dominated by one or only a few countries (European Commission, 2014). These elements are in part referred to as energy-critical elements (APS Physics, 2011) or critical raw materials (European Commission, 2014), or even high- tech elements. According to an official definition by the European Commission, (2014) critical raw materials are those of high economic importance and high supply risk (Fig. 1), and presently include 20 different raw materials. The term ‘critical’ does not specifically reflect the geological conditions of their occurrence, but is rather a subject to political, economic and technological conditions and therefore new elements can be added to the list or be taken out, as these conditions change. The fact that the European Commission is updating the list every third year shows how fluid the term ‘critical’ is when applied in this context. Gallium (Ga), germanium (Ge), and indium (In) are representative examples to assess the ‘rarity’ of elements. Although their continental crustal concentrations are not particularly low compared to others (19, 1.5 and 0.05 ppm for Ga, Ge and In, respectively, whereas Ag has a crustal abundance of around 0.05 ppm), however, efficient geological processes to enrich them in concentrations high enough to form mineralizations or in which they are an essential component are rare or nonexistent (e.g. European Commission, 2014). Therefore, the main sources for these three critical elements are primarily sphalerite for indium and germanium, and bauxite and sphalerite for gallium. In sphalerite they only occur as trace components incorporated via substitution mechanisms, whereas in the residual soil bauxite, gallium substitutes for aluminium (e.g. Johan, 1988; Carillo-Rosua et al., 2008; Butcher and Brown, 2014).

2

Figure 1. The 20 most critical raw materials as of 2014, in terms of supply risk and economic importance (from European Commission, 2014). Abbreviations: Be=beryllium, Bo=borate, Co=cobalt, Cr=chromium, Fl=fluorspar, Ga=gallium, Ge=germanium, Gr=graphite, HREE=heavy rare earth elements, In=indium, LREE=light rare earth elements, Mg=magnesium, Mt=magnesite, Nb=niobium, PGM=platinum-group metals, Sb=antimony, W=tungsten.

1.2 Sphalerite

Sphalerite is the main zinc mineral in almost all sulphide-dominated base metal deposits, including sedimentary exhalative (SEDEX), volcanic-hosted massive sulphides (VHMS), epithermal vein systems, skarns, and Mississippi Valley Type (MVT) deposits (Lockington et al., 2014). While its ideal chemical formula is ZnS, most sphalerites occur as (Zn,Fe)S due to the high efficiency of Fe incorporation in the sphalerite crystal lattice through Fe2+ ↔ Zn2+ substitution. Sphalerite was given its current name by Ernst Friedrich Glocker (1846). Until then, it was known as blende (Agricola, 1546), or was mistaken for galena, especially dark-colored varieties, but obviously never yielded any lead. This is the reason why the mineral was named sphalerite after the Greek word ’sfaleros’ for misleading. Sphalerite exhibits a wide range of colors; from colourless, via honey-yellow and ruby-red, to dark brown or even black. These variations often reflect the Fe content, but also Mn and Cd can influence the color (Togari, 1978). Its translucency (or, conversely, opacity) ranges from completely translucent to nearly opaque.

3

Table 1. Key properties of sphalerite based on data from Anthony et al. (1990).

Sphalerite has a face-centered cubic (FCC) lattice with tetrahedrally coordinated Zn and S ions (Fig. 2). It is trimorphous with the hexagonal wurtzite and the very rare trigonal matraite (Table 1). Experimental studies on the stability conditions of ZnS polymorphs by Scott & Barnes (1972) have shown that the sphalerite-wurtzite transformation is a function of sulfur fugacity (fS2) and temperature at a given pressure, and that sphalerite is Zn-deficient (mole ratio of S/ (Zn+Fe) > 1) while wurtzite is S-deficient (S/ (Zn+Fe) ˂ 1). Sphalerite can incorporate a large number of different elements in its structure via substitution mechanisms that are mainly governed by similarities in size and charge of substituting ions and Zn2+, but also by the ease that these ions can be tetrahydrally coordinated (Goldschmidt, 1954). Johan (1988) suggested the following general substitution mechanisms in sphalerite: • M+ + M3+ ↔ 2Zn2+ • 2M+ + M2+ + M4+ ↔ 4Zn2+ • (x+2y)M+ + yM2+ + xM3+ + yM4+ ↔ (4-4y-2x)Zn2+

Where M+ = Ag, Cu; M2+ = Cu, Fe, Cd, Hg, Zn; M3+ = In, Ga, Fe, Tl; M4+=Ge, Sn, Mo, W; x and y are atomic proportions of M3+ and M4+ respectively, substituting for Zn2+. Complete substitution of Cd2+ or Hg2+ for Zn2+, and Se2-or Te2- for S2- can yield different (end member) minerals that belong to the sphalerite group: hawleyite (ideally CdS), (ideally ZnSe), metacinnabar (ideally HgS), (ideally HgSe) and coloradoite (ideally HgTe) (Cook et al., 2009; Lockington et al., 2014).

4

The minerals that co-exist with sphalerite in a given mineral assemblage can also influence the incorporation of certain elements within the sphalerite (George et al., 2015). For example, Ag+ is preferentially incorporated into galena over co-existing sphalerite, while in recrystallized Cu-rich deposits chalcopyrite will become the primary host of Sn3+, Sn2+ and Ga3+ (Cook & Ciobanu, 2015).

Figure 2. a) Zn-S tetrahedron, b) section of FCC crystal lattice of sphalerite, and c) the hexagonal wurtzite (modified after Weber, 2001)

2. Geological setting of the Bergslagen ore province

The Fennoscandian shield consists of various rock units that range from the Archaean in the northeast, to Palaeoproterozoic in the central parts and Neooproterozoic in the west (e.g. Lahtinen et al., 2009) and includes Norway, Sweden, Finland and the north-westernmost part of Russia (Fig. 3). To the west the Shield is bounded by the Phanerozoic Caledonian orogen and to the east and south it is covered by Phanerozoic platform sedimentary rocks. The Palaeoproterozoic central part of the shield formed during the Svecokarelian orogeny, between c. 2.1 and 1.8 Ga, and is proposed to have evolved through several orogenic stages (e.g. Lahtinen et al., 2009).

5

Figure 3. The major geological domains in the Fennoscandian Shield with the Bergslagen region outlined with a black rectangle (from Stephens et al., 2009, modified after Koistinen et al., 2001).

The Bergslagen province is located in the southern part of the Svecokarelian orogen and was formed between c. 1.9 and 1.8 Ga. To the west, Bergslagen is succeeded by the 1.85-1.65 Ga Transscandinavian Igneous belt (Högdahl et al., 2004). In part, some of the westernmost units are also overprinted by the 1.0-0.9 Ga Sveconorwegian orogeny. Bergslagen is dominated by Palaeoproterozoic rocks, but younger intrusive rocks and minor Neoproterozoic to Lower Palaeozoic sedimentary rocks are also present (Allen et al., 1996, Stephens et al., 2009). The Palaeoproterozoic Svecofennian meta-supracrustal units consist mainly of 1.91-1.87 Ga felsic metavolcanic rocks that are in parts interbedded with marbles, clastic metasedimentary rocks, as well as metamorphosed mafic extrusive rocks (Stephens et al., 2009 and references therein).

6

Figure 4. Simplified bedrock geological map of the Bergslagen ore province and near surroundings. The thick black line represents the suggested eastern extension of the Sveconorwegian orogen. From Stephens et al. (2009).

The felsic metavolcanic rocks are particularly abundant in the northwestern and western to southwestern parts of the province (Fig. 4) and consist mainly of fine to finely medium-grained rhyolitic ash-siltstones (Allen et al., 1996), and dacitic volcanic to sub-volcanic rocks (Stephens et al., 2009). The term leptite was previously used to describe the more coarse-grained of these felsic metavolcanic rocks, whereas the term hälleflinta denoted the very fine-grained types (Geijer & Magnusson, 1944; Oen et al., 1982). The metasedimentary rocks are most abundant in the southeastern part of Bergslagen. They occur stratigraphically both under and over the metavolcanic rocks and comprise turbiditic metagraywackes and metaargillites, respectively, and are often represented by migmatites in the more

7 high-grade areas. More well-sorted metasedimentary rocks (e.g. metaarkoses and quartzites) are less common (e.g. Stephens et al., 2009). Marbles, both calcitic and dolomitic occur interbedded with the metavolcanic rocks, mainly within the upper part of the stratigraphy (e.g. Stephens et al., 2009). The supracrustal rocks are intruded by numerous intrusions of different generations. The oldest generation range from tonalite to granite with limited intermediate to mafic intrusions and were emplaced between 1.90-1.87 Ga, i.e. essentially synchronous with the volcanic activity. They are abundant in the northern, central and eastern part of the Bergslagen region (Fig. 4) and may be referred to as GDG rocks after the ‘granitoid-dioritoid-gabbroid’ rock suite (in the terminology of Stephens et al., 2009). These early-orogenic rocks, together with the metasupracrustal units, have been variably affected by the deformation and metamorphism associated with the Svecokarelian orogeny (e.g. Hermansson et al., 2008). Regional deformation occurred during multiple phases, reflecting a polyphase tectonic scenario with extensional and compressional periods (Hermansson et al., 2008; Beunk & Kuipers, 2012). At least two ductile deformation phases have been suggested during the D2 and D4 compressional deformation episodes forming the F2 and F4 folding systems, respectively (Stephens et al., 2009; Beunk & Kuipers, 2012). The region is structurally dominated by the youngest fold generation (F4) that exhibit mainly tight to isoclinal geometry and axial surfaces striking E-W to NE-SW (Stephens et al., 2009; Beunk & Kuipers, 2012). The older fold generation (F2) is locally observed as upright to overturned refolded folds (Beunk & Kuipers, 2012). In addition to Svecokarelian deformation, the western part of the Bergslagen region has been overprinted by the Sveconorwegian orogeny, which is expressed by mainly brittle structures with increasingly penetrative and ductile character towards the west (Stephens et al., 2009). Formation of ductile high-strain zones striking NE-SW or N-S, related to this overprint is conspicuous in this area (Stephens et al., 2009). The northern boundary of Bergslagen coincides with the E-W-striking Gävle- Rättvik deformation zone, a c. 30 km wide oblique slip deformation zone that displays either dextral or sinistral strike slip components (Högdahl et al., 2009), formed during a roughly N-S shortening (Högdahl et al., 2009; Beunk & Kuipers, 2012 and references therein). The timing for the deformation episodes are inferred to at 1.87-1.86 Ga for D2 and 1.83-1.82 Ga for D4 (Hermansson et al., 2008; Beunk & Kuipers, 2012). In Bergslagen regional metamorphism during the Svecokarelian orogeny reached greenschist to upper amphibolite facies conditions. In general, four metamorphic domains have been recognized (Stephens et al., 2009). The central domain comprises mainly low pressure amphibolite and upper greenschist facies rocks (500-700 oC and 0.2-0.6 GPa), (Stephens et al., 2009). To the south and north, the metamorphic grade is higher, mostly upper amphibolite facies and locally in granulite facies towards the contact to the TIB (Andersson, 1997 ; Stephens et al., 2009). In the western part, greenschist facies conditions prevail (Allen et al., 1996; Stephens et al., 2009). Andersson et al. (2006) suggested two metamorphic events, an older that peaks synchronous with D2 deformation around 1.87-1.86 Ga,

8 followed by second metamorphic pulse at around 1.8 Ga that is more prominent in the southern part of the region. The youngest Svecokarelian rocks in the Bergslagen region are granites and associated pegmatites that occur scattered throughout the district and are described as the GP (granite-pegmatite) suite (Stephens at al., 2009). They represent late to post-orogenic, c. 1.85-1.75 Ga intrusions, emplaced during the waning stage of the Svecokarelian orogeny. To the south and west of Bergslagen there are intrusions belonging to the 1.85-1.65 Ga Transscandinavian Igneous Belt (TIB) that strictly is not a part of Bergslagen but rather delimits this region in these directions. The TIB extends from southern Sweden and continues north-northwest-wards below the Caledonides to the north-western coast of Norway (Högdahl et al., 2004). The belt consists of various types of igneous rocks, both metavolcanic and plutonic, ranging from felsic to intermediate and mafic composition (Högdahl et al., 2004). The TIB is included in the GSDG (granitoid-syenitoid-dioritoid-gabbroid) suite of Stephens et al. (2009) that also embraces older intrusions (1.88-1.87 Ga and 1.87-1.84 Ga) in the eastern and northern part of Bergslagen.

2.1 Volcanic evolution

The volcanic succession in several areas in Bergslagen, especially within the western part, shows a distinctive stratigraphic sequence of coarse-grained, poorly stratified volcanic units, overlain by finer- grained, more stratified volcanic rocks with abundant limestone interbeds and mineralizations, in turn overlain by argillite-turbidite sediments. This succession reflects a first order volcano-tectonic evolution according to Allen et al. (1996), who suggested that Bergslagen was formed in an extensional back-arc tectonic setting, inboard an active continental margin. The depositional environment has been divided in two separate stages; an initial stage of intense volcanism and crustal extension, followed by waning volcanism and thermal subsidence (Allen et al., 1996). During the early intensive stage a more than 8 km thick pile of mostly relatively coarse-grained, poorly stratified, rhyolitic rocks were deposited during a time span of about 15 m.y. The marine depositional depth fluctuated from above to below the wave base, indicating that continuous subsidence was competing with intense volcanic output and the subsequent crustal doming, as well as with sedimentation (Allen et al., 1996). The intensive stage was followed by a period of waning volcanism and regional subsidence when fine grained, stratified rhyolitic rocks and associated limestone interbeds were formed. The deposition of argillitic turbidites that overlie the volcanic succession is related to regional, post-volcanic subsidence. The character of the volcanic rocks reflect proximal, medial and distal facies related to volcanic centra that were scattered throughout the Bergslagen district (Allen et al., 1996).

9

Prior to ductile deformation and metamorphism, the volcanic rocks were affected to variable extend by sodic, potassic and magnesian alteration (e.g. Lundström, 1995; Stephens et al., 2009). The alkali alteration mainly caused readjustments of feldspar compositions while magnesium alteration resulted in the replacement of feldspars by phyllosilicates and locally amphiboles. A striking feature of the metavolcanic rocks in the Bergslagen region is that potassium alteration is present mostly in the upper part of the stratigraphic column while sodium and magnesium alteration is more prominent in the lower part. This feature was previously believed to be related to stratigraphy (Lagerblad and Gorbatschev, 1985), but is now rather regarded as a result of the relative position in relation to hydrothermal convection cells (e.g. Jonsson, 2004 and references therein).

2.2 Metallogenesis of Bergslagen

The Bergslagen region has a long mining history and has been continuously mined for at least 1000 years (Allen et al., 1996). Possibly copper and iron mine operation could have started already around 500 AD (Åkerman, 1994). Recent compilations of SGU databases show that there are at least 8500 mines and prospects in this region. Some significant metal deposits that are still in operation or have been in the near past and include the Cu-(Zn-Pb-Au) deposit at Falun, closed in 1992 (e.g. Sundblad, 1994), the Fe-oxide deposit at Dannemora, closed in 2015 (e.g. Dahlin et al., 2012), the apatite Fe-oxide deposit at Grängesberg, closed in 1989 (e.g. Jonsson et al., 2010), and the still active Zn-Pb-Cu-Ag-Au sulphide mine at Garpenberg (e.g. Jansson, 2011), the Zn-Pb-(Ag-Cu-Co), sulphide mine at Zinkgruvan (e.g. Hedström et al., 1989) and the Lovisagruvan (Zn-Pb-Ag) sulphide mine (e.g. Stephens et al., 2009 and references therein). In general, the main metallic deposits in Bergslagen can be grouped into six different types (Allen et al., 1996; Stephens et al., 2009 and references therein). 1) Mn-rich and Mn-poor, Fe-oxide skarn deposits (e.g. Dannemora); 2) banded iron formations (BIF) and quartz-rich Fe-oxide deposits (e.g. Striberg); 3) apatite Fe-oxide deposits (e.g. Grängesberg); 4) stratiform Mn-oxides that are locally associated with Fe-oxides and Mn and Fe-rich skarns (e.g. Långban); 5) W-oxide skarns (e.g. Yxsjöberg), and 6) Zn-Pb-Ag-(Cu-Au) sulphide deposits (e.g. Sala, Garpenberg) (Fig. 5). The latter base metal deposits comprise two end-member types: a) stratiform, bedded, ash-siltstone hosted Zn-Pb- Ag-rich and Fe and Cu-poor deposits (‘SAS type’), and b) stratabound, Zn-Pb-Ag-Cu-rich, volcanic associated massive and disseminated sulphides associated with marble and skarn (‘SVALS type’) (Allen et al., 1996). Most of the metallic mineralization is hosted by felsic metavolcanic rocks and its associated marbles and skarns (Allen et al., 1996; Stephens et al., 2009). Both sulphide and Mn-rich Fe-oxide mineralizations and banded iron formations are associated with Mg and often also K-altered metavolcanic rocks, while the Mn-poor Fe-oxide deposits are hosted by metavolcanic rocks particularly

10 affected by Na alteration (Lagerblad & Gorbatschev, 1985; Allen et al., 1996). It has been suggested that during the waning stage of volcanism, which is mainly represented by the K-altered metavolcanic rocks, the conditions were more favorable for ore formation (e.g. Jansson, 2011). During this stage localized, deep subaqueous environments became more extensive due to both regional and local subsidence exceeding the sedimentation rate, and as these were locally associated with the formation of stable hydrothermal systems, optimal settings for ore formation could be attained. In addition to this, the regional extension created a hot upper crust, after several million years of intensive volcanism, with a very high, near-surface geothermal gradient which is necessary for the establishing of extensive hydrothermal systems (Allen et al., 1996). The base metal sulphide and associated Fe-oxide mineralizations have been proposed to represent either synvolcanic, seafloor to sub-seafloor exhalative (Vivallo & Rickard, 1990; Allen et al., 1996) or synvolcanic, sub-seafloor replacement mineralizations, or a combination of these processes (Allen et al., 1996; Jansson, 2011). Over time the origin and genetic mechanisms of the metallic mineralizations in Bergslagen have been debated extensively, not least whether, and to what extent, the different generations of intrusions have contributed to the existing ores (e.g. Hellingwerf & Baker, 1985; Bergman et al., 1995). Particularly the W-oxide skarn deposits have been debated and have been suggested that they were formed by contact metasomatism related to hydrothermal fluids generated by some granitic intrusions and at least two W- deposits (Yxsjöberg and Wigström) are related to the younger 1.80 Ga GP suite (Stephens et al., 2009 and references therein). In the case of the Långban-type deposits, quite conclusive evidence has shown that the main enrichment of elements such as B, Be, Bi, Mo, Sn and W cannot be attributed to younger intrusives, but to the original, synvolcanic process (Jonsson & Billström, 2009, and references therein). The younger granitic intrusive suites, including the TIB rocks have thus been suggested to be responsible for ore mineralization in the western part of Bergslagen province (e.g. Moore, 1970), which has later been argued against by Högdahl et al. (2007), Jonsson & Billström (2009) and Andersson (2014), who concluded that most of the TIB intrusives most likely only caused variable thermal input that remobilized pre-existing, syngenetic components.

3. Methodology

In order to obtain detailed results on the major and trace element concentrations incorporated within sphalerite 36 samples from 19 mineralizations from westernmost Bergslagen were studied. These samples were firstly prepared as polished sections and examined in reflected light microscope and selected samples were analyzed by electron probe microanalyzer (EPMA). Subsequent to this, yet a selection was analyzed by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS).

11

Figure 5. Distribution of the metallic deposits throughout Bergslagen. From Stephens et al. (2009). Significant ore deposits: F=Falun, D=Dannemora, G=Garpenberg, Z=Zinkgruvan, Gr=Grängesberg, St=Striberg, L=Långban, Y=Yxsjöberg and S=Sala.

12

3.1 Sample preparation

The majority of the samples (n=29), had been prepared as polished sections before the initiation of this project, while an additional seven samples were prepared during this study. Sample preparation included sawing the hand specimen in smaller parts that fit the 25 mm diameter sample mold. Epoxy resin was added until solidification and hardening (after c. 48 hours), and was then followed by the grinding-polishing procedure (Lundh & Rosen, 2011) with the use of silicon carbide (SiC) powder and diamond spray of successively finer size (down to 0.25 μm). Finally, the prepared polished sections were documented in reflected light microscope producing maps of the surface of each sample (Fig. 6) for navigation during the microchemical analyses (EMPA and LA-ICP-MS) as well as for making notes and highlighting features during the reflected light examination.

3.2 Reflected light microscopy

Prior to microchemical analyses all samples were studied by reflected light (ore) microscopy, which is the most informative and readily available technique for determining principal ore mineralogical features, including textures and ore mineral assemblages. The relative proportions of identified mineral phases, detailed textural observations and inter-mineral relations have been documented and the sphalerites that were to be analysed were chosen and marked on sample maps (Fig. 6). Descriptions of fundamental as well as more advanced ore microscopy and its applications are given by Gribble & Hall (1992) and Craig & Vaughan (1994), respectively.

Figure 6. Examples of sample maps that were used during ore microscopy and served as navigational aids for the microchemical analyses. Red lines highlight occurrence of sphalerite.

13

3.3 Electron Microprobe Analysis

The ore microscopic study was followed by electron microprobe analysis (EMPA) in a selection of 30 samples (out of 36 in total), that covered all 19 localities. EMPA is an in situ-analytical technique used to determine the chemical composition of samples, primarily minerals, metals, glasses and other solids by analyzing the generated X-rays from the sample when interacted with a beam of electrons (Reed, 2005). The characteristic lines of the X-ray spectra reveal the elements that are present in the sample volume whereas the intensity of the lines can determine the concentration of the elements quantitatively when compared with known X-ray spectra of element standards. The principle behind an electron microscope to generate images or chemical information is that a beam of electrons is produced in an electron gun by heating a filament until the heat is enough to overcome the work function of the material and the electrons can escape from the material. The electron beam follows a vertical path through an electron column, and with the aid of electromagnetic lenses the beam is focused and directed towards the specimen (Reed, 2005). Once it hits the sample, interactions between the beam electrons and the sample produce, at first, backscattered and secondary electrons due to high-angle deflection and electron to electron repulsion respectively, which are subsequently ejected from the sample. The signal of both backscattered electrons (BSE) and secondary electrons (SE) is used to produce high quality imaging of the tested area (BSE and SE images, respectively) (Reed, 2005). When the electron beam hits the sample it produces internal transitions of electrons within the cell of the atom of any given element present. These transitions are accompanied by X-ray emissions that are characteristic of each of the elements. Once X-rays are generated in the sample, they are selected using an analytical crystal(s) with specific lattice spacing(s). The geometry of the X-ray generating sample and the analytical crystal is such that they maintain a constant take-off angle (Fig. 7). The wavelength of the X-rays reflected into the detector may be varied by changing the position of the analyzing crystal relative to the sample i.e. the X-ray source crystal distance is a linear function of the wavelength. Consequently, X-rays from only one element at a time can be measured on the spectrometer and the position of a given analytical crystal must be changed in order to adjust to a wavelength characteristic of another element (Reed, 2005). X-rays of specific wavelengths from the analytical crystal are passed on to the X-ray detector. The sample, crystal, and detector must lie on the so-called Rowland circle and remain on it for all wavelengths of interest in order to focus X-rays efficiently. Because the sample and take-off angle of the X-rays are fixed, the analytical crystal and detector must both move to remain on the Rowland circle. Detectors used in wavelength dispersive spectrometry (WDS) are most commonly gas proportional counter types, in which incoming X-rays enter the detector through a collimator (slit) and a thin window.

14

They are absorbed by atoms of the counter gas, and then a photoelectron is ejected by each atom absorbing an X-ray (Reed, 2005). Standard materials of known elemental proportions are then used for X-ray signal comparison (Reed, 2005). WDS analysis provide very precise and accurate quantitative analysis for elements with atomic numbers higher than 5 (B). For most instruments the elements H, He, Li, Be and B (with atomic numbers 1, 2, 3, 4 and 5 respectively) cannot be normally detected in this technique but the EPMA at UU can analyze both Be and B. In addition to the atomic number limitation, WDS analysis cannot distinguish among the valence states of the elements (e.g. between Fe2+ and Fe3+).

Figure 7. Configuration of sample, analytical crystal and detector on the Rowland circle within the WDS spectrometer (modified from Henry & Goodge, 2015).

3.3.1 EPMA analytical setup

Prior to EMPA the samples were carbon-coated in order to prevent charging of the non-conductive minerals, which was done by means of a carbon sputter. The analyses were performed using an electron beam voltage of 20 kV and a current of 20 nA, count time was 20 sec and 2x10 sec for background. The following standards were used for calibration (including the detection limits of each element): S (22 ppm), Zn (sphalerite, 88 ppm), Fe (metallic, 52 ppm), Mn (pyrophanite, 86 ppm), Cd (metallic, 124 ppm), Cu (metallic, 154 ppm), Hg (HgS, 320 ppm), Ge (metallic, 300 ppm), Ga (AsGa, 202 ppm), In

(InP, 126 ppm), Sn (cassiterite, 110 ppm), Se (metallic, 540 ppm), Sb (Sb2S3, 126 ppm), Pb (galena, 400 ppm), Bi (metallic, 272 ppm), Ag (metallic, 130 ppm), Co (metallic, 120 ppm) , and As (AsGa, 130 ppm). The elements were measured on the following peaks and spectrometers: S (Lα in PETH), Zn (Ka in LIF), Fe (Kα in LIF), Mn (Kα in PETH), Cd (Lα in PETH), Hg (Mα in PETH), As (Lα in TAP), Cu (Kα in LIF), Ni (Kα in LIF), Sb (Lα in PETH), Ag (Lα in PETH) and Pb (Mβ in PETH), Ge (Kα in

15

LIF), Ga (Kα in LIF), In (Lα in PETH), Sn (Lα in PETH), Se (Lα in TAP), Bi (Mα in PETH) and Co (Kα in LIF).

3.4 LA-ICP-MS

Since it was first commercialized in 1983 ICP-MS has become a widely-used, rapid multielement technique, even if it displayed rather extensive complexities in its application compared to other similar methods, as for example optical emission spectrometry (ICP-OES) (Thomas, 2001a). The basic principle of the laser ablation method can be summarized as the formation of a very fine-particle aerosol from the sample with use of an UV laser. The aerosol becomes ionized in the form of positively charged atoms as it passes through an argon-gas plasma torch of very high temperature, and these ions, that contain the elemental signature of the sample, are transported and analyzed in a mass spectrometer equipped with specific detectors that transform the mass-charge ratios of the ions to a signal. The signal is finally compared with calibration standards with known elemental concentration and transformed to detailed and accurate quantification of the elements present in the sample. For LA-ICP-MS analyses sample preparation is minor, which is one of several advantages that this technique offers. Thick sections only need to be wiped off with an ethanol solution prior to entering the instrument, in order to remove unwanted fine particles. The laser used is a pulsed beam of UV light that ablates the material. Navigation of the laser beam along the sample holder and image on the samples is done by an operating software (e.g. MassHunter 4.1, http://www.agilent.com/en-us/products/software- informatics/atomic-spectroscopy-data-systems/icp-ms-masshunter-software). The beam source lies within a holder that contains strong magnets. The laser beam diameter is adjustable between 20-80 μm and is built to have uniform radial power in order to produce flat-bottomed ablation craters for more accurate measurement. The ablated material aerosol enters the plasma torch (Fig. 8) where it is transformed to positive charged ions (Thomas, 2001b). The torch consist of three concentric tubes one inside the other where argon gas is flowing within the outer two tubes and the aerosol in the inner tube (Thomas, 2001c). As the argon gas flows through the torch, it breaks down to argon atoms, argon ions and electrons due to the high temperature that can reach up to 10000 oC, and what is known as an inductively coupled plasma discharge is formed (Thomas, 2001d). When the aerosol is introduced into the plasma it transforms directly into ions, due to the high temperature and energy of the plasma. This causes electrons to leave the outer cell of the sample atoms and subsequently produce positively charged ions that are directed into the mass spectrometer (Thomas, 2001e). The mass spectrometer of the LA-ICP-MS set-up needs to have a high vacuum in order to operate properly and the sample ions need to be focused before reaching the mass analyzer. Focusing is crucial in order to obtain low background levels as well as low detection limits, and is obtained by a set of special ion lenses (Fig. 8). The focused ions are directed to the mass analyzer where they are separated

16 according to their mass/charge ratios with the aim to separate the ions of interest from possible unwanted ions (e.g. matrix, argon and non-analyte) before they reach the detector (Thomas, 2001f). The detector converts the ions into electrical pulses where the magnitude of these pulses correspond to the number of analyte ions present in the sample. Trace element analyses can then be carried out by comparing the ion signal with that of known reference materials that are used as calibration standards (Thomas, 2002a; Thomas, 2002b).

Figure 8. Schematic representation of a LA-ICP-MS configuration. (Redrawn after Thomas, 2001b).

3.4.1 LA-ICP-MS analytical setup

A selection of 26 samples previously analyzed by EPMA was further selected for analysis by laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) at the Department of Earth Sciences, University of Gothenburg. The instruments used were a New Wave NWR-213 for the laser ablation, and the ICP-MS instrument is a quadrupole-type Agilent 8800QQQ. The following elements were analyzed (followed by the detection limit of each element): Mn 0.82 ppm, Fe 14 ppm, Co 0.07 ppm, Ni 0.7 ppm, Cu 0.11 ppm, Ga 0.11 ppm, Ge 0.23 ppm, As 1.97 ppm, Se 3.3 ppm, Mo 8.5 ppm, Ag 0.05 ppm, Cd 0.4 ppm, In 0.007 ppm, Sn 3.66 ppm, Sb 1.14 ppm, Te 2.31 ppm, Au 0.02 ppm, Hg 0.14 ppm, Tl 0.52 ppm, Pb 0.05 ppm, and Bi 0.02 ppm. The total count time at each spot was set at 60 seconds, including a 24 second background measurement followed by 30 seconds of ablation. The spot size was set at 30 microns and the fluence at 4.8 J/cm2. Multiple standard analyses were also run at the beginning and end of every 18-22 sample analyses to correct for instrument drift. For best results, calibration was done using a combination of the synthetic sulphide MASS-1 standard (Wilson et al., 2002) and of a natural sphalerite sample, which was prepared to provide real matrix match. For this, a specimen from Plåtgruvan (1831.1815) which yielded almost homogeneous ZnS EMPA result, was used. The elements S, Zn, Cd, Mn, Fe, Co and In were calibrated using the natural sphalerite standard (1831.1815) while the MASS-1 standard was used

17 for the remaining elements. As internal standard the Fe content obtained by EMPA analyses was used for each sample. Finally, data reduction and signal filtering was conducted with the software Glitter (Griffin et al., 2008).

4. Studied mineralizations

In total, 36 sphalerite-bearing samples from 19 mineralizations in westernmost Bergslagen were examined (Fig.9). Below, each locality is described briefly with respect to geology and mineralization. In addition, ore mineralogical and textural observations made with optical (reflected light) microscopy are also included.

Figure 9. Overview map of the study area in westernmost Bergslagen with major rock types noted as well as the localities of the examined samples: 1. Långban, 2. Lahäll, 3. Myssfallet, 4. Myssberget, 5. Näset, 6. Getberget, 7. Skatviken, 8. Björkskogsnäs, 9. Hasselhöjden, 10. Silvhytte gruva, 11. Nordmark, 12. Plåtgruvan, 13. Hällefors, 14. Gruvåsen, 15. Borns Koppargruva, 16. Månhöjden, 17. Limtjärn, 18. Alkvettern, 19. Gåsborn. Squares represent inset maps that are used later in this chapter (modified from Stephens et al., 2009).

18

Table 2. List of samples, their locality and mineralogical assemblage. Abbreviations: asp=arsenopyrite, bo=bornite, bn=bournonite, cp=chalcopyrite, co=covellite, cb=cubanite, ga=galena, hm=hematite, sph=sphalerite, mgn=magnetite, mr=marcasite, py=, po=pyrrhotite, tet=tetrahedrite.

LAH.001.1 2 Lahäll ga, sph, po 45 9 dolomitic marble LAH.001.2 2 Lahäll po, cp, sph and metavolcanic 23 10 LAH.001.4 2 Lahäll ga, mgn, sph rocks 6 - LAH.001.6 2 Lahäll sph, po, mgn, ga, hm 25 11 MyB.001.1 4 Myssberget ga, sph skarn 5 3 Myssf.B1.1 3 Myssfallet sph, po 20 10

Myssf.B2.1 3 Myssfallet sph, ga, cp - - skarn in marble Myssf.B3.1 3 Myssfallet po, py, mr, sph 23 10 Myssf.B4.1 3 Myssfallet sph, po 30 - Getberget I 6 Getberget ga, sph 60 10 skarn in marble Getberget (a) 6 Getberget ga, sph, po 70 9 Getberget (b) 6 Getberget ga, sph, mgn 11 5 Näset I 5 Näset po, cp, ga, sph 26 10 skarn in marble Näset II 5 Näset ga, po, sph, cp 12 10 Näset III 5 Näset ga, po, cp, sph - - 1925.0621 1 Långban sph, mgn, ga 31 - skarn in marble EJ.BhZ.Ib 1 Långban cp, sph, bo, co 10 6 EJ.MH11.2a 16 Månhöjden sph, mgn, hm, cp, co, 25 - b marble EJ.MH11.2b 16 Månhöjden sph, mgn, hm, cp, co, - - b Gås IIa 19 Gåsborn cp, py, po, sph, mr 14 7 skarn in marble Gås IIb 19 Gåsborn cp, py, po, sph, mr 3 - Gås NI And 19 Gåsborn cp, sph 13 9 57.4128 10 Silvhytte gruva sph, ga marble 23 10 57.4154 15 Borns cp, sph, po, cb, bn skarn 38 19 K / 1919.1470 (a) 11 Nordmark sph, cp 20 20 skarn in marble 1919.1470 (b) 11 Nordmark sph, cp 70 14 2007.0304 11 Nordmark sph, po, cp 24 11 1831.1815 12 Plåtgruvan sph, cp skarn 22 33 2000.0189 7 Skatviken ga, sph, cp marble/skarn 25 10 66.0010 8 Björkskognäs sph, ga, tet, py, cp marble 22 10 940069 17 Limtjärn sph, ga skarn 33 11 2002.0015 9 Hasselhöjden sph 22 15 marble 2002.0019 9 Hasselhöjden ga, sph - - Gruvåsen 14 Gruvåsen po, cp, sph, cb skarn 80 8 1831.1033 18 Alkvettern sph metavolcanics 27 12 HÄL.01.1 13 Hällefors sph, ga, po, tet, py, asp skarn 35 10

19

4.1 Långban

The Långban district is situated between the mining areas of Nordmark and Gåsborn, and around 20 km north-northeast of Filipstad (Fig. 9). Långban itself is one of the most mineralogically diverse deposits in the world, and has been a classic destination for mineral collectors and professional mineralogists since the 19th century (Holtstam & Langhof, 1999). This complex mineralization comprises abundant Fe and Mn oxide ores, minor Pb-Zn-(Cu-Fe-As-Ag) sulphides, native metals, as well as Mn-arsenates, arsenites, Pb-silicates and Pb-oxychlorides (Nysten et al., 1999). The immediate area around the Långban mines is dominated by dolomitic marble and associated felsic metavolcanic and metasedimentary rocks (Björk, 1986) (Fig. 10).

Figure 10. Simplified geological map of the Långban district, and nearby deposits, showing major rock types (from SGU datasets).

The main Långban mineralization (1 in Fig. 9 and Fig. 10) consists of iron- and manganese-oxides, manganese silicates and smaller amounts of sulphides which are mostly found in veins. The iron-oxide ores are dominated by hematite and magnetite, while the manganese ores are dominated by hausmannite 2+ 3+ 2+ 3+ (Mn Mn 2O4) and braunite (Mn Mn 6SiO12). Sulphide assemblages include bornite-chalcocite- chalcopyrite-galena-pyrite-pyrrhotite-sphalerite (Jonsson, 2004; Jonsson & Billström, 2009). Two samples from Långban were studied by reflected light microscopy. One sample (1925.0621) consists of sphalerite intergrown with galena and associated iron oxides (magnetite) in fractures in a silicate groundmass (Fig. 11a) and the other sample (EJ.BhZ.Ib) consists of a more massive sulphide mineralization consisting mainly by chalcopyrite with lesser amounts of bornite and sphalerite and rare covellite (Fig. 11b).

20

Figure 11. Ore mineral assemblages from the Långban deposit showing a) a sphalerite-galena assemblage and the relation to Fe-oxides and silicates (in black) (1925.0621), and b) covellite replacing bornite with abundant chalcopyrite (EJ.BhZ.Ib). Abbreviations: bo=bornite, co=covellite, cp=chalcopyrite, ga=galena, mgn=magnetite, sph=sphalerite. Photomicrographs in reflected, plane polarized light.

4.2 Lahäll

Lahäll is a sulphide (-oxide) mineralization (2 in Fig. 9 and Fig. 10) located around 5 kilometers northwest of the Långban mines. It is situated in a small marble body near the contact to the Filipstad granite which is part of the TIB (Björk, 1986). Although mainly hosted by the dolomitic marble, some local mineralization can be also found in altered K-rich felsic metavolcanic rocks nearby (Jonsson & Billström, 2009). The Lahäll mineralization comprises both sulphide and oxide ore (Bergkvist & Jonsson, 2004). The sulphide mineralization was primarily mined for argentiferous galena-rich ore. Associated sphalerite, pyrrhotite, chalcopyrite and arsenopyrite also occur. Iron oxides were also mined here at a modest scale (Magnusson, 1930; Jonsson & Billström, 2009). Ore microscopy of the samples from the Lahäll deposit showed two main types of assemblages in terms of sphalerite content. One (LAH.001.1) sphalerite-dominated type with minor pyrrhotite and galena (Fig. 12a) and a galena±pyrrhotite- dominated type (LAH.001.2), with minor chalcopyrite and sphalerite (Fig. 12c). Fe-oxides are also present, occasionally as magnetite associated with galena (LAH.001.4), as well as the more uncommon hematite, with sphalerite (Fig. 12b, d). The textures indicate significant recrystallization as well as remobilization of less refractory minerals, including most sulphides.

21

Figure 12. Ore mineral assemblages from Lahäll, a) dominant sphalerite with lesser galena and altered pyrrhotite (LAH.001.1), b) 90o system of spinel exsolution in magnetite (LAH.001.4), c) dominant pyrrhotite with minor chalcopyrite and sphalerite (LAH.001.2) and d) rare hematite associated with sphalerite and pyrrhotite (LAH.001.6). Abbreviations: sph=sphalerite, ga=galena, po=pyrrhotite, mgn=magnetite, hm=hematite, sp=spinel. Photomicrographs in reflected, plane polarized light.

4.3 Myssfallet

Myssfallet (3 in Fig. 9 and Fig. 10) (also known as Fallgruvorna; Magnusson, 1930), is a sulphide mineralization occurring together with Fe-oxide mines, located about 600 meters E of the Lahäll deposit. It is hosted by the same skarn-bearing dolomitic marble body with associated felsic metavolcanic rocks as Lahäll (Fig. 10). The ore assemblage consists mainly of galena and sphalerite, immediately associated with pyrrhotite-bearing Fe oxide ores (Jonsson & Billström, 2009). In total, four samples from this locality were studied. Optical microscopy of these samples showed the rather massive character of the ore, consisting almost exclusively of sphalerite (estimated 80-98%), while minor ore minerals include galena, chalcopyrite and pyrrhotite (Fig. 13a). The latter is always present as variably altered grains and aggregates characteristically replaced by a mixture of pyrite, marcasite and magnetite, sometimes resulting in a ‘bird’s eye’ type of texture (Fig. 13b).

22

Figure 13. Ore mineral assemblages from Myssfallet a) mineral assemblage in Myssf.B2.1, b) ‘bird’s eye’ texture in pyrrhotite associated with sphalerite and silicates (Myssf.B3.1). Abbreviations: cp=chalcopyrite, ga=galena, mrc=marcasite, py=pyrite, sph=sphalerite. Black is silicate minerals. Photomicrographs in reflected, plane polarized light.

4.4 Myssberget/Mysstjärnen

The mineralizations at Myssberget (4 in Fig. 9 and Fig. 10) (the northernmost one also known as Mysstjärnen), are located just south of the contact between the Svecofennian meta-supracrustal rocks and the Filipstad granite, and has been divided into two types according to the character of mineralization and host rocks (Jonsson, 2004; Jonsson & Billström, 2009). The first type is found in scapolite-bearing amphibole-pyroxene skarn formed in marble, while the other type is hosted by locally extensively altered K-rich felsic metavolcanic rocks (Jonsson & Billström, 2009). In general, the area is dominated by quartz-rich to even quartzitic metasomatic rocks containing abundant gedritic amphibole, cordierite and pyroxene (Magnusson, 1930), that have been more recently interpreted as metamorphosed products of hydrothermally altered felsic metavolcanic rocks (Jonsson & Billström, 2009). Granitic dykes also occur and in places they intrude and cross cut the ore-bearing rocks (Jonsson & Billström, 2009). Ore microscopy showed that the studied sample (MyB.001.1) is dominated by galena, while sphalerite occurs only in minor amounts (Fig. 14). The latter exhibits characteristic orange to red internal reflections.

4.5 Näset

The Näset mines (5 in Fig. 9 and Fig. 10) (also known as Notnäset) are located south-east of the Getberget deposit and represent a -hosted mineralization similar to the Getberget deposit (Jonsson & Billström, 2009). The studied Näset samples (Näset I, II, III) exhibit more or less identical assemblages. The dominant ore mineral is chalcopyrite with abundant pyrrhotite and lesser amounts of

23 galena and sphalerite (Fig. 15a). Pyrrhotite occasionally exhibits extensive break-down and replacement features (Fig. 15b), while the content of galena varies between the samples, from being a minor to a major phase. The very fine-grained alteration of pyrrhotite inhibits precise identification of the alteration minerals but they may consist of magnetite and pyrite ± marcasite. The overall textures are indicative of extensive remobilization of the sulphide minerals.

Figure 14. Ore mineral assemblage from Myssberget (Mysstjärnen) (MyB.001.1) showing pre-dominant galena mineralization with minor sphalerite and silicates (black). Photomicrographs in reflected, plane polarized light.

Figure 15. Ore mineral assemblages from Näset, a) mineral assemblage in Näset I. The three black spots created during LA-ICP-MS analysis, and b) extensive pyrrhotite breakdown texture in Näset II. Abbreviations: cp=chalcopyrite, ga=galena, po=pyrrhotite, sph=sphalerite. Black is silicates. Photomicrographs in reflected, plane polarized light.

24

4.6 Getberget

The Getberget mine (6 in Fig. 9 and Fig. 10) is a carbonate-hosted Pb-Zn-Ag mineralization located about 2 km north of the Långban deposit. It is hosted in serpentine-rich skarn that occurs in a dolomitic marble (Magnusson, 1930; Zakrzewski, 1982). This marble body is potentially a northerly extension of the dolomite body that hosts the Långban deposit (Björk, 1986; Jonsson & Billström, 2009). In general, the sulphide mineralization is mainly disseminated and in veins and fractures and only sparingly does massive mineralization occur (Zakrzewski, 1982). Zakrzewski (1984) presented detailed observations on the ore mineralogy of the Getberget mine, and described the following main ore assemblage: galena-sphalerite-chalcopyrite-pyrrhotite, but also notes a number of other minor or trace minerals, such as stannoidite, ilmenite, acanthite, arsenopyrite, bornite, magnetite, cubanite, covellite, pyrite, , tetrahedrite and digenite. For sphalerite, which is the second most abundant ore mineral at Getberget, he distinguished one type featuring high Fe and low Cd content and a second one of low Fe and high Cd. In addition, galena at Getberget is known to be enriched in silver (Zakrzewski, 1982; Jonsson & Billström, 2009). Chalcopyrite is usually accompanied by cubanite and is locally replaced by digenite and bornite.

Figure 16. Ore mineral assemblages from Getberget, a) coarse grained galena-sphalerite mineralization in Getberget (a), b) small occurrence of chalcopyrite within galena and sparse magnetite (Getberget b), c) vein- controlled galena in Getberget (b), d) contact between coarse and fine-grained mineralization in Getberget I. Black is silicates. Abbreviations: cp=chalcopyrite, ga=galena, mgn=magnetite, sph=sphalerite. Photomicrographs in reflected, plane polarized light.

25

Reflected light microscopy of the Getberget samples (Fig. 16) showed abundant galena and coarse- grained sphalerite (Getberget a and Getberget b). Locally an abrupt contact between coarse and fine grained mineralization occurs (Getberget I). The samples are almost completely dominated by galena and sphalerite and only rarely do chalcopyrite and magnetite occur (Getberget b). Overall, sulphide mineralization here seems to be vein-controlled. Distinct - or vein-hosted mineralization is common, and even more massive sulphide assemblages exhibit textures indicating a late remobilization (Fig. 16).

4.7 Skatviken

Skatviken is a minor mineralization (7 in Fig. 9 and Fig. 17) that occurs in a small marble body south- west of Grythyttan. The marble host-rock is locally skarn-bearing and represents carbonate interbeds that are found in the higher stratigraphic levels of the Svecofennian meta-supracrustal sequence (e.g. Burke & Zakrzewski, 1990).

Figure 17. Simplified geological map showing the positions of Skatviken and nearby occurrences Björkskogsnäs and Hasselhöjden (based on SGU datasets).

The studied Skatviken sample (2000.0189) is galena-sphalerite-dominated, with minor chalcopyrite, usually as inclusions in sphalerite without showing any distinct ‘’chalcopyrite disease’’ texture (Fig. 18a). Mineralization of two general types are present within the sample and are represented by coarse- grained massive galena-sphalerite intergrowths, and as very fine-grained disseminated mineralization of the same minerals in carbonates (Fig. 18b).

26

Figure 18. Ore mineral assemblages of the Skatviken sample (2000.0189) showing a) a sphalerite-galena- chalcopyrite ore type and b), fine-grained, disseminated galena and sphalerite. Abbreviations: cp=chalcopyrite, ga=galena, sph=sphalerite. Photomicrographs in reflected, plane polarized light.

4.8 Björkskogsnäs

The Björkskogsnäs mineralization (8 in Fig. 9 and Fig. 17) lies c. 2 kilometers north-east of Skatviken and a few kilometers south-west of the municipality of Grythyttan. Like Skatviken, it is a small, sub- economic polymetallic mineralization hosted in a marble body within Svecofennian metavolcanic rocks (Fig. 17). The sulphide mineralization consists of layers, nests and veinlets with a thickness of up to several tens of centimeters, and is often surrounded by serpentine, tremolite and quartz (Burke & Zakrzewski, 1990). The main ore minerals are sphalerite, galena and chalcopyrite, with lesser pyrrhotite and pyrite. There is also a number of trace minerals that are found in small inclusions in sphalerite or galena, such as bournonite, Ag-rich tetrahedrite, cubanite, native antimony, and boulangerite as well as the rare mineral herzenbergite (SnS) (Burke & Zakrzewski, 1990). In Björkskogsnäs In-anomalies have been identified (Sundblad & Ahl, 2008). The studied Björkskogsnäs sample (66.0010) exhibits the following assemblage: sphalerite-galena- tetrahedrite-chalcopyrite, with a predominance of sphalerite (~ 90%), while tetrahedrite occurs as sparsely distributed large, euhedral to subhedral crystals scattered in the sample, and chalcopyrite as rare fracture fillings (Fig. 19).

27

Figure 19. Ore mineral assemblages from Björkskogsnäs (66.0010), a) large euhedral tetrahedrite crystals and minor galena within massive sphalerite, b) intense internal reflections in sphalerite. Abbreviations: ga=galena, sph=sphalerite, tet=tetrahedrite. Photomicrographs in reflected, (a), plane polarized light and (b), crossed- polarized light.

4.9 Hasselhöjden

The Hasselhöjden marble deposit (9 in Fig. 9 and Fig. 17) is situated c. 5 kilometers south of Grythyttan, and in close vicinity of the Skatviken and Björkskognäs mineralizations (Fig. 17). The carbonate body is about 1000m long and 200m wide at the surface. It is surrounded by a fine-grained felsic metavolcanic rock to the west and by slate to the east. Moderate-scale excavations of the marble have resulted in two quarries showing localized sulphide and oxide mineralization (Holtstam, 2002). The rock is heterogeneous, and there are elements of both calcitic and dolomitic marble, with varying proportions of impurities of e.g. quartz, hematite, and phyllosilicates (Holtstam, 2002 and references therein). Samples from this locality (2002.0015 and 2002.0019) examined in reflected light, consist of predominantly sphalerite, with galena as the only other ore mineral present (Fig. 20a).

Figure 20. Ore mineral assemblages from Hasselhöjden (2002.0015) a) sphalerite-galena mineralization and b) translucent sphalerite as seen in crossed polars. Abbreviations: ga=galena, sph=sphalerite. Photomicrographs in reflected, (a) plane polarized light, and (b), cross-polarized light.

28

4.10 Silvhytte gruvor/Silvbergsfallet

The area around Nordmark hosts abundant iron-oxide mineralization as well as, minor manganese- oxide, and sulphide mineralizations. One of the latter is Silvhytte gruvor (10 in Fig. 9 and Fig. 21) (also known as Silverbergsfallet) situated about 4 kilometers northwest of Nordmark. It is hosted by a small marble body of few hundreds of meters in length that occurs with felsic metavolcanic rocks, cut by gabbroid and granitic TIB intrusions belonging to the Filipstad suite (Fig. 21).

Figure 21. Simplified geological map of the Nordmark area showing the studied ore deposits (based on SGU datasets).

The studied sample (57.4128) exhibits a sphalerite-galena-rich assemblage featuring two main textural types. Firstly, the two ore minerals, and especially sphalerite are found undeformed with few fractures (Fig. 22a), whereas the other part of the sample contains sphalerite with abundant fractures, surrounded by less strained galena. This texture most likely represents late-stage deformation and remobilization of galena (Fig. 22b), being less refractive than the sphalerite.

Figure 22. Ore mineral assemblages from Silvhytte gruvor (57.4128), a) sphalerite-galena mineralization and b) deformed and fractured sphalerite grains surrounded by galena. Abbreviations: ga=galena, sph=sphalerite. Photomicrographs in reflected, plane polarized light.

29

4.11 Nordmark

The Nordmark mine field (11 in Fig. 9 and Fig. 21) is located c. 10 kilometers north of Filipstad . The field consists mainly of magnetite-bearing skarn mineralizations and was only mined for iron. It is hosted in a small marble body, similar to the Skatviken deposit. Both occur within felsic metavolcanic rocks and in immediate contact with younger intrusives (Filipstad and Hyttsjö granites; Björk, 1986; Högdahl et al., 2007). The intrusion of these magmas most likely resulted in a second stage of skarn formation and there are also indications of at least partial remobilization of pre-existing ore elements (Högdahl et al., 2007). Sphalerites from Nordmark occur as two paragenetic types. The first type is dark-brown and massive, representing early-stage mineralization, and the second type only occurs in cross-cutting skarn fractures formed at a later stage (E. Jonsson, pers. comm.). The studied Nordmark samples (1919.1470a, 1919.1470b and 2007.0304) otherwise exhibit similar features. They are almost completely dominated by sphalerite with minor to trace chalcopyrite and pyrrhotite (Fig. 23a). A striking feature in the sphalerite is the vivid orange-red internal reflections. (Fig. 23b).

Figure 23. Ore mineral assemblages from Nordmark (2007.0304), a) sphalerite-chalcopyrite-pyrrhotite mineralization and b) internal reflection in sphalerite under crossed polars. Abbreviations: cp=chalcopyrite, po=pyrrhotite, sph=sphalerite. Photomicrographs in reflected, (a) plane polarized light, and (b), cross-polarized light.

4.12 Plåtgruvan

Plåtgruvan (12 in Fig. 9 and Fig. 21) is another minor metallic deposit in the Nordmark area, occurring almost equidistant between Nordmark and Filipstad, and forms part of the relatively extensive Aggruvorna ore field of predominantly Fe-oxide skarn deposits (Björk, 1986). These occur in a thin sliver of Svecofennian metavolcanic rocks, sandwiched between the subvolcanic to volcanic rocks of the c. 1.89 Ga Horrsjö complex (Jonsson, 2004; Högdahl & Jonsson, 2004a) to the east and the Filipstad granite of the TIB suite, to the west. It is a typical skarn-hosted Fe-oxide deposit with magnetite being

30 the principal ore mineral mined. Localized sulphide mineralizations were encountered here during the mining of the iron-oxide ore in the 18th and 19th centuries.

Figure 24. Ore mineral assemblages from Plåtgruvan (1831.1815) with characteristic sparse ’chalcopyrite disease’ structure within a homogeneous sphalerite mass. Gray mottling of the surface of the sphalerite are carbon coating remnants. Photomicrograph in reflected, plane polarized light.

The studied sample (1831.1815) consists of almost completely homogeneous sphalerite only sparsely affected by the so called ‘chalcopyrite disease’ (Fig. 24). This refers to small-scale chalcopyrite inclusions that are scattered within the sphalerite, a phenomenon that has been known for as long as ore microscopy has been practiced. It has been casually attributed to exsolution, but according to Barton & Bethke (1987), it most likely originates from replacement processes.

4.13 Hällefors

The Hällefors mines (13 in Fig. 9) are located directly east of the village Hällefors Silvergruvan within the so-called Grythyttan syncline, which is a major fold structure in western Bergslagen. The mines were in operation from the seventeenth century to the late 1970s (Hedström, 1984) and during the last year of production from the so-called eastern field (1977-1978) it produced 4.5 tons of Ag, 2.412 tons of Zn and 2.303 tons of Pb (Zakrzewski & Nugteren, 1984). Overall, the Grythyttan-Hällefors district hosts several types of ore deposits such as banded iron formations (BIFs), quartz-bearing skarn iron ores, Långban type manganese and iron ores, Mn-rich iron ores in carbonates and skarns, Mn ores in tuffites, as well as sulphidic Cu-Pb-Zn-Ag ores (Zakrzewski & Nugteren, 1984).

31

Figure 25. Ore mineral assemblage from Hällefors (HÄL.01.1) a) euhedral to subhedral crystals of arsenopyrite and pyrite in massive sphalerite, and b) abundant galena and pyrrhotite inclusions hosted by sphalerite. Abbreviations: ars=arsenopyrite, ga=galena, po=pyrrhotite, py=pyrite, sph=sphalerite. Photomicrographs in reflected, plane polarized light.

The sulphide mineralization is situated in the eastern limb of the syncline and is concentrated in a 2.5 x 0.5 NW-SE trending lens (Hedström, 1984). It hosts Zn-Pb-(Ag-Sb-As) deposits that are locally unusually rich in sulphosalt minerals (e.g. Wagner et al., 2005 and references therein). The mines have been divided into three fields: the western, the middle and the eastern fields (Hedström, 1984). The three ore fields differ in their structure. In the western and middle fields the mineralization appears along cross-cutting faults (Hedström, 1984), while in the eastern field, two principal mineralization styles can be identified: (1) stratabound massive sphalerite-galena-(arsenopyrite) ore closely associated with magnetite-rich Fe-Mn skarns in carbonates, and (2) discordant silver-rich sulphide-sulphosalt fissure veins (Zakrzewski & Nugteren, 1984; Wagner et al., 2005). Wagner et al. (2005) describe the major paragenesis of the stratabound massive sulphides in the following order: sphalerite, arsenopyrite, galena, in association with minor magnetite. Pyrrhotite is also present as elongate lamellar inclusions in sphalerite, 20-100μm in size. In the vein and fault related assemblages sphalerite, galena, pyrrhotite, chalcopyrite, arsenopyrite, tetrahedrite, bournonite, boulangerite and gudmundite are present (Hedström, 1984; Wagner et al., 2005). The studied sample (HÄL.01.1) is from the eastern field and it exhibits the following main ore assemblage: sphalerite, galena, pyrrhotite, tetrahedrite, pyrite, and arsenopyrite. The sphalerite contains small inclusions of pyrrhotite, pyrite and large euhedral crystals of arsenopyrite, while tetrahedrite is present as small rounded grains (Fig. 25). Sphalerite is also rather massive, representing the stratabound, massive syngenetic sulphide part of the eastern field.

4.14 Gruvåsen

The Gruvåsen mine field is located almost halfway between Filipstad and the municipality of Hällefors in the thin landmass that separates the lakes Yngen in the west and Saxen in the east (Fig. 9).

32

Figure 26. Simplified geological map showing the Gruvåsen and Borns Koppargruva deposits (based on SGU datasets).

The bedrock in the Gruvåsen area (14 in Fig. 9 and Fig. 26) is dominated by a marble lens that is interlayered within metasedimentary and metavolcanic rocks. The mineralizations are located inside the marble body close to Filipstad granite in the SW. All metal mineralization at Gruvåsen consists mainly of sulphide minerals in a skarn-type sulphide deposit (Hellingwerf, 1987; Hellingwerf & Raaphorst, 1988). These authors suggest that skarn were associated to two different alteration styles, which consist of a central zone of intense potassic alteration with Cu-Zn-Fe sulphide-rich pyroxene skarn, and a peripheral zone with weak potassic alteration hosting Zn-Fe-Pb-As sulphide-rich amphibole skarn. The central zone is dominated by the assemblage chalcopyrite-cubanite-pyrrhotite-sphalerite with

minor molybdenite. Cubanite (CuFe2S3) is found as exsolution lamellae in chalcopyrite or as rims around pyrrhotite when it is in contact with chalcopyrite. The sphalerite of the central zone is Cd-rich (up to 1 wt. %) (Hellingwerf, 1992). The assemblage for the peripheral zone is pyrrhotite-arsenopyrite- sphalerite-galena (Hellingwerf, 1987). The studied Gruvåsen sample (Gruvåsen) contains in decreasing order sphalerite-chalcopyrite- cubanite-pyrrhotite (Fig. 27). According to the paragenetic zoning described by Hellingwerf (1987), the sample seems to be part of the central zone of the mineralization.

33

Figure 27. Ore mineral assemblage from Gruvåsen, featuring sphalerite (sph), chalcopyrite (cp), cubanite (cb) and pyrrhotite (po). Photomicrograph in reflected, plane polarized light.

4.15 Borns Koppargruva

The Borns Koppargruva (copper-mine in English; 15 in Fig. 9 and Fig. 26) is part of the general Gruvåsen area (Hellingwerf, 1987) and it is a skarn-hosted mineralization within a marble lens with metavolcanic intercalations. The studied sample (57.4154) is chalcopyrite-pyrrhotite-dominated, with lesser amounts of sphalerite

and minor amounts of bournonite (PbCuSbS3), (Fig. 28). Extensive exsolution of cubanite from chalcopyrite (Fig. 28b) indicates that it is from the central alteration zone (Hellingwerf, 1987).

Figure 28. Ore mineral assemblages from Borns Koppargruva (57.4154), a) chalcopyrite-sphalerite-pyrrhotite mineralization and coarse amphibole crystals (black), b) cubanite exsolution within chalcopyrite, pyrrhotite and rare bournonite. Abbreviations: bn=bournonite, cb=cubanite, cp=chalcopyrite, po=pyrrhotite, sph=sphalerite. Photomicrographs in reflected, plane polarized light.

34

4.16 Månhöjden

The Månhöjden deposit is located almost 10 kilometers northwest of Gåsborn (16 in Fig. 9). It represents a mineralization in an inlier of marble and felsic metavolcanic rock in an area dominated by TIB intrusives (E. Jonsson, pers. comm.; SGU datasets). The samples (EJ.MHII.2a and EJ.MHII.2b) from Månhöjden show sulphides occurring together with iron oxide mineralization, and primarily consist of sphalerite, chalcopyrite, bornite, covellite, with abundant magnetite and hematite. Minor phases include Co-bearing sulphides. Chalcopyrite is partially replaced by bornite, and the latter is being replaced by covellite, mostly along fractures. Magnetite exhibits abundant replacement by hematite (Fig. 29).

Figure 29. Ore mineral assemblages from Månhöjden (EJ.MH11.2a) featuring a) sphalerite mineralization and hematite alteration within magnetite, b) replacement of chalcopyrite by bornite and successive fracture-related covellite alteration within bornite. Abbreviations: bo=bornite, co=covellite, cp=chalcopyrite, hm=hematite, mgn=magnetite, sph=sphalerite. Photomicrographs in reflected, plane polarized light.

4.17 Limtjärn

The Limtjärn deposit (17 in Fig. 9 and Fig. 30) is located about 5 kilometers west of the municipality of Persberg. It consists mainly of iron oxides (magnetite) ores with local concentrations of sulphides hosted by skarn-bearing marble and felsic metavolcanic rocks (Fig. 30). These immediate host rocks occupy a very limited area in a sliver between the Filipstad granite of the TIB suite to the west, and the Horrsjö complex to the east. There is, however, possible that the host rocks belong entirely to the Horrsjö complex (E. Jonsson, pers. comm.). The studied sample (940069) consists almost entirely of sphalerite, with traces of galena.

35

Figure 30. Simplified geological map of the area around Limtjärn, (based on SGU datasets).

4.18 Alkvetterns Silvergruvor

Alkvetterns Silvergruvor (18 in Fig. 9) is a small scale mineralization in a felsic metavolcanic sliver within the Filipstad granite, some 14 kilometers southeast of Storfors. The studied sample (1831.1033) is composed of a completely homogeneous sphalerite (Fig. 31).

Figure 31. Ore mineral assemblage from Alkvettern (1831.1033), a) light yellow-white internal reflections and b) twinning of sphalerite grains. Photomicrographs in reflected, plane polarized light.

36

4.19 Gåsborn

The Gåsborn area (19 in Fig. 9) is located c. 20 kilometers north-east of Filipstad and comprises a number of manganiferous iron-oxide mines and some minor sulphide mineralizations. The latter are relatively complex (Damman, 1988a) and are mainly hosted in skarn-altered marbles within mineralized felsic metavolcanic rocks. Metasedimentary rocks (mainly meta-graywackes) and some metabasite- lenses also occur in the area that is volumetrically dominated by younger TIB intrusions (Fig. 9). The sulphide ore assemblage comprise sphalerite-molybdenite-galena-arsenopyrite-pyrrhotite-chalcopyrite- pyrite-cubanite (Kieft & Damman, 1990). The studied samples from Gåsborn (Gås IIa, Gås IIb and Gås NI And) exhibit abundant pyrrhotite and chalcopyrite and minor sphalerite (estimated about 10%) (Fig. 32). Alteration of primary pyrrhotite and replacement by pyrite and marcasite is characteristically extensive in some of the samples (Fig. 32b, d). Another characteristic textural feature is the extent of fracture-controlled mineralization composed of altered pyrrhotite (Fig. 32d), indicating either a late introduction of ore-forming components, or local remobilization of the original sulphidic ore assemblage.

Figure 32. Ore mineral assemblages from Gåsborn a) chalcopyrite-pyrite-sphalerite-pyrrhotite mineralization in Gås II(a), b) sphalerite together with pyrrhotite featuring breakdown structure from Gås II(b), c) sphalerite- chalcopyrite assemblage from Gås NI And, d) fracture controlled mineralization of pyrrhotite in part replaced by pyrite and marcasite. Abbreviations: cp=chalcopyrite, py=pyrite, po=pyrrhotite, sph=sphalerite. Photomicrographs in reflected, plane polarized light.

37

5. Results 5.1 EMPA analysis

Thirty samples from 19 localities were analyzed by wave-length dispersive analyzer (WDS-EPMA) yielding 896 spot analyses in total. The totals of the analyses vary significantly, and a range between 98.5 and 101.5 wt. % was considered as acceptable. In total, 666 spot analyses fall within this range (all EMPA results are listed in Table 7 in Appendix A). The As, Ga, Ge and Sb concentrations were below the detection limit of the method in all samples, as was the majority of the analyses for Ag, Hg, In, Sb and Se. Mean and standard deviation values of each sample are presented in Table. 3. Results below the detection limits are not considered further.

38

Långban Locality Lahäll Mysstjärnen Myssfället Getberget Näset couldn’t calculated. be in Numbers number spotsshow brackets analyzed. of All fromZn, apart and elements Fe shown (wt.%) S are ppm. in Table 3 Table . Presentation of Presentation . (12) 1925.0621 Sample(no. of spots) of Sample(no. Ej.BhZ.Ib (34) LAH.001.1 LAH.001.2 (34) LAH.001.4 (23) LAH.001.6 (5) (21) MyB.001.1 (3) Myssf.B1.1 Myssf.B3.1 (20) Myssf.B4.1 (23) (29) Getberget I Getberget(a) (36) Getberget(b) (26) (11) Näset I Näset Näset II Näset (26) stdev Mean Mean stdev Mean Mean stdev Mean stdev Mean stdev stdev Mean stdev Mean Mean stdev Mean stdev stdev Mean Mean stdev Mean stdev stdev Mean Mean stdev

the EMPA analyses results. EMPA the Zn Zn 65.6 62.4 56.7 56.1 55.9 57.3 0.16 54.9 0.42 58.4 58.7 0.45 56.9 0.24 0.35 55.8 54.3 55.8 0.22 55.4 56.8 0.8 0.7 0.5 0.6 0.5 0.7 0.8 1.7 S S 0.41 32.4 0.14 31.9 33.1 0.21 32.9 0.20 32.4 33.0 0.21 0.14 32.6 0.11 32.7 32.8 0.12 33.5 0.15 0.13 33.5 33.5 0.15 33.6 0.09 0.10 32.9 0.18 32.6 Fe Fe 0.36 0.44 0.27 0.16 0.16 0.18 10.1 0.40 0.24 0.13 0.23 0.10 0.33 10.4 1.2 1.6 8.9 9.5 8.6 9.2 8.7 8.9 8.5 8.5 9.9 0.5 8.5 0.8 9.6 Mn Mn 11028 4320 1030 9232 2380 5922 2050 1844 1255 2685 3030 4216 8595 1270 4855 4508 ˂ d.l ˂ 849 468 756 216 348 572 253 228 117 227 342 731

Co Co ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ 133 900 185 202 550 230 801 547 274 61 53 17 56 Cu Cu 10300

2374 2705 1627 ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ 139 EJ.BhZ.Ib and 66.0010 data are based in only one spot analysis therefore standard deviation 266 965 333 31 Ga Ga ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂

Ge Ge ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ As As ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ Se Se ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ Ag Ag ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ Cd Cd 10740 11154 27037 2221 2554 2155 2617 6437 2078 2064 2275 2000 2087 7031 1234 6913 8034 806 207 130 630 203 149 171 272 113 218 151 798 In In ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ Sn Sn ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ Sb Sb ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ Hg Hg ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ 332 610 586 202 640 Pb Pb 3302 1230 2903 3180 3061 2822 4854 2685 4477 2601 2622 2629 2472 3427 2927 2959 2828 410 604 319 537 377 647 332 469 358 522 638 392 Bi Bi 1054 2190 1065 1272 1155 1077 1177 1379 1311 1409 1268 1083 994 553 450 501 570 995 570 469 750 156 461 512 255 252 272 138 601

39

Manhöjden Locality Koppargruva Borrns Nordmark Gåsborn Nordmark Silvhytte Plåtgruvan Skatviken Björkskognäs Limtjärn Hasselhöjden Gruvåsen Alkvettern Hällefors Table 3 Table . Continued. Sample(no. of spots) of Sample(no. 57.4154 Ej.MHII.2a (38) 1919.1470(b) (25) Gås IIa (70) (8) 2007.0304 Gås IIb (10) (3) 57.4128 1831.1815 (14) (23) 2000.0189 (3) 66.0010 940069 (33) 2002.0015 Gruvåsen (2) (77) 1831.1033 (27) HÄL.01.1 (28) Mean Mean stdev Mean stdev Mean stdev stdev Mean Mean stdev stdev Mean Mean stdev stdev Mean stdev Mean Mean stdev Mean Mean stdev stdev Mean stdev Mean stdev

Zn Zn 56.5 66.5 56.1 57.8 0.16 0.34 59.7 56.4 0.26 0.44 67.3 65.1 0.42 0.44 59.7 0.25 65.2 66.8 0.32 68.5 55.0 0.05 67.0 0.29 60.2 0.9 0.5 0.7 0.6 S S 33.0 32.2 0.19 33.5 0.19 32.7 0.06 0.17 32.6 33.1 0.23 0.40 32.1 32.3 0.12 0.14 32.5 0.20 31.4 32.2 0.30 31.8 33.6 0.09 0.12 32.4 0.15 33.0 0.18 Fe Fe 0.12 0.08 0.44 0.09 0.37 0.33 0.02 0.06 0.36 0.03 0.04 0.03 0.34 0.01 0.31 9.0 0.5 0.6 9.2 9.2 8.2 8.8 1.1 3.1 5.8 2.5 9.9 0.7 6.3 Mn Mn 3085 3235 1322 1062 1155 1409 2108 1303 ˂ d.l ˂ ˂ d.l ˂ 651 631 107 873 225 255 354 387 266 210 100 453 205 357 948 596 14 Co Co 1019 ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ 377 152 229 122 564 357 133 401 297 107 260 276 120 288 153 273 61 96 61 28 92 64 Cu Cu 1920 4127 4776 2598 6933 3893 ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ 264 330 230 608 805 341 250 77 Ga Ga ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ Ge Ge ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ As As ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ Se Se ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ 960 Ag Ag ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ 187 160 273 113 64 Cd Cd 6448 6849 2935 2870 1177 1603 1730 2260 4688 ˂ d.l ˂ ˂ d.l ˂ 735 592 176 539 154 147 984 142 208 103 909 127 240 912 136 193 In In ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ 285 76 Sn Sn ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ 210 Sb Sb ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ 380 Hg Hg 1016 ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ ˂ d.l ˂ 761 382 380 558 Pb Pb 2882 2698 1962 2636 2648 2890 2555 2615 2810 3570 2613 3045 2459 2857 3025 382 289 939 332 394 393 396 400 212 341 346 806 293 502 Bi Bi 1148 1191 1356 1145 1470 1011 1129 1207 1369 1294 552 627 246 324 979 410 437 493 640 660 984 562 970 255 993 480 695 28 0

40

5.2 LA-ICP-MS analysis

Laser ablation inductively coupled plasma mass spectrometer (LA-ICP-MS) analyses were conducted on 26 sphalerite samples from 16 of the localities, yielding a total of 269 spot analyses. As for the EMPA analyses, an acceptable total was considered to be between 98.5-101.5 %; 203 spot analyses fell within this range, (all LA-ICP-MS results are listed in Table 8 in Appendix B), thus leading to the exclusion of e.g. the sample from Björkskognäs that fell outside of this range. Samples that contained significant amounts of magnetic minerals (i.e. magnetite) could not be analyzed by the LA-ICP-MS method due to the strong magnets that are located in the laser-holder system of the instrument, and therefore the samples from Månhöjden were not analyzed. LA-ICP-MS has very low detection limits for most elements and yields, once properly calibrated, high precision measurements of concentrations of a few ppm or less. In this case, As, Mo and Te were below the detection limits in all of the analyses while the concentration of Se, Sn, Sb, Ni, Tl, and Au were below the detection limits for most of the analyzed samples. Mean concentration and standard deviation values of each sample are presented in Table 4.

41

  Locality Skatviken Lahäll Lahäll Lahäll Lahäll Näset Lahäll Lahäll Limtjärn Långban Myssberget Hasselhöjden Gåsborn Gruvåsen Myssfallet Myssfallet Gåsborn Alkvettern Alkvettern Hällefors Hällefors Getberget Getberget Plåtgruvan Silvhytte gruvor Silvhytte Getberget Borns kop/va kop/va Borns Näset Nordmark Nordmark Nordmark Table 4 Table rough f rough ≤ deviation (standard the element measured.deviationnot Numbers be could in brackets show number of spots analyzed. Numbers in bold represent homogeneous distribution of All elements The samples from from samples The this for table considered not were samples this The sample from Björkskognäs (66.0010) yielded totals outside the accepted range (98.5 . Presentation. LA of the irst order distinction of Zack et al. (2002). Zack al. et of distinction order irst Sample (no spots) (no Sample 2000.0189 LAH.001.1 (5) LAH.001.2 Näset IINäset (5) (6) (9) LAH 001.6 LAH 940069 (10) EJ-BhZ-Ib MyB 001.1 MyB (5) 2002.0015 (11) (2) Gås IIa Gruvåsen Myssf.B1.1 (3) (13) Myssf.B3.1 (1) (8) Gås NI And (1) 1831.1033 (10) HÄL.01.1 (12) Getberget I Getberget a (10) (4) 1831.1815 (2) (9) 57.4128 (33) Getberget b (10) (4) 57.4154 Näset I Näset 1919.1470b (19) (14) 2007.0304 (11) 1919.1470a (19) apart fromZnapart and S, Fe shown (wt.%) are and Gås ppm. in II Myssf.BI.I mean mean stdev mean mean stdev stdev stdev mean mean stdev mean mean stdev mean stdev stdev mean mean mean stdev stdev mean stdev stdev mean stdev mean stdev mean stdev mean mean stdev stdev mean stdev stdev mean stdev mean stdev stdev mean mean mean stdev stdev mean stdev mean stdev Månhöjden (EJ.MHII.2A, EJ.MHII.2B) could (EJ.MHII.2A, EJ.MHII.2B) notMånhöjden analyzed be LA by 61.23 58.29 56.99 58.18 57.96 66.79 66.13 54.44 66.07 56.07 57.82 57.40 59.27 55.17 66.79 57.85 58.83 57.84 66.28 57.56 57.91 56.95 59.05 60.48 59.08 0.42 0.17 0.18 0.36 0.36 0.26 0.47 0.47 0.30 0.43 0.27 0.38 0.40 0.48 1.40 0.32 0.38 0.23 0.7 1.6 2.6 1.3 1.8 0.5 Zn 65 31.51 31.67 30.96 31.05 31.36 32.25 32.27 31.54 33.33 30.77 31.55 31.84 31.50 31.79 32.52 31.35 31.85 31.55 33.18 31.44 31.90 31.23 31.39 31.42 31.53 0.41 0.34 0.25 0.22 0.20 0.33 0.19 0.39 0.17 0.26 0.38 0.14 0.27 0.18 0.22 0.11 0.34 0.22 0.34 0.17 0.9 1.1 0.9 0.4 32 S - ICP

25%) whereas 25%) italicsnumbers heterogeneous in represent distribution (standard deviation ≥ - 0.004 0.14 0.41 0.13 0.26 0.35 0.11 0.02 0.08 0.26 0.43 0.17 0.01 0.19 0.43 0.24 0.18 0.01 0.99 0.47 0.20 0.14 0.07 0.39 0.12 10.6 0.18 10.0 12.1 0.36 0.40 10.3 MS analyses resultsMS 1.5 6.9 9.0 9.3 9.2 9.7 9.8 8.8 8.7 7.9 8.7 2.9 8.6 9.1 9.1 7.9 8.8 Fe 10 11248 10220 11917 11511 1914 5649 5229 6799 1816 2833 2249 2332 1525 1713 8891 3162 4438 1257 1604 3489 3482 1381 3323 ˂ d.l 299 274 259 373 182 226 251 391 111 342 949 768 Mn 38 81 87 41 78 64 95 69 46 29 30 64 8 1005 ˂ d.l 130 735 132 195 164 557 143 315 141 569 588 304 233 302 507 292 119 446 149 154 1.5 0.8 1.1 2.5 0.7 Co 70 11 12 28 38 19 13 69 26 32 32 30 33 5 5 8 3 7 5 6 4 1

˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l 0.07 ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l 0.9 0.3 1.1 0.5 0.8 1.1 0.3 Ni

14031 1409 1415 3319 1215 945 475 160 325 176 110 285 455 903 442 347 296 359 145 389 534 166 168 10 19 39 37 Cu 16 14 10 48 29 26 74 35 17 70 52 30 30 51 21 5 5 2 5 3 8 5 6 0.33 0.07 0.21 0.37 0.06 0.03 0.23 0.07 0.09 0.05 ˂ d.l 0.32 0.25 0.22 0.45 ˂ d.l 0.06 ˂ d.l ˂ d.l 0.29 0.33 ˂ d.l 0.27 ˂ d.l 0.14 0.40 0.04 0.34 0.47 0.17 0.52 0.1 0.4 0.3 Ga 3.8 2.1 0.5 10 2.1 1.2 2.2 1.2 1.1 7 0.32 0.36 0.09 0.16 0.04 0.11 0.06 0.12 0.09 0.04 0.13 0.10 0.10 0.10 0.07 0.03 0.12 0.08 0.08 0.12 0.09 0.09 0.11 0.76 0.68 0.61 0.68 0.68 0.66 0.59 0.60 0.69 0.17 0.63 0.56 0.67 0.64 0.69 0.72 0.61 0.60 0.72 0.81 0.50 0.73 0.70 0.66 0.66 0.67 Ge 0.5 ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l As ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l 184 3.3 3.6 1.1 Se 10 13 37 72 31 48 56 8 2 2 8 6 2 3 8 1 8 a are in based onlyspot analysis one standard therefore ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l Mo - - ICP 0.27 0.17 0.28 0.07 0.05 0.20 101 260 1.5 3.9 0.7 1.5 3.4 1.8 0.9 1.4 1.6 264 2.9 0.6 Ag 3.0 3.9 17 2.4 13 1.1 3.7 3.5 3.5 4.3 1.6 1.4 0.9 3.4 78 1.8 50 0.7 3.3 1.1 1.2 1.2 28 12 22 45 78 11 5 7 7 - - MS due high to magnetic content ofminerals. 5 %), therefore5 LA the 10134 24470 3303 1935 6935 1591 2723 1055 8270 2863 2019 5989 2312 3474 2375 1928 6182 4252 2431 9633 6225 230 617 624 226 137 302 686 675 859 827 988 813 621 866 618 Cd 13 58 28 31 24 20 70 20 54 43 35 18 10 17 0.33 19.0 0.04 0.02 0.30 0.01 0.28 0.41 0.20 151 185 144 118 335 129 398 107 227 224 218 0.9 0.2 0.9 21 12 15 60 24 34 14 67 15 83 31 19 64 76 28 74 83 In 6 3 4 1 2 1 2 3 5 1 ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l 30 19 Sn 34 18 ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l 215 ˂ d.l ˂ d.l ˂ d.l ˂ d.l 162 11 22 Sb 27 0 8 0 - ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l Te ICP - 0.02 0.23 0.12 0.02 0.08 0.04 0.02 0.38 ˂ d.l ˂ d.l 0.19 0.08 ˂ d.l ˂ d.l ˂ d.l ˂ d.l 0.03 ˂ d.l 0.03 0.05 0.04 ˂ d.l ˂ d.l ˂ d.l ˂ d.l 0.07 ˂ d.l 0.05 ˂ d.l ˂ d.l ˂ d.l 0.03 0.04 MS results from from results MS 0.1 0.6 Au

35%) following the the following 35%) ˂ d.l 3.1 1.2 1.7 0.7 0.5 1.2 3.6 0.6 2.4 0.9 Hg 29 3.1 21 45 10 18 42 11 11 13 48 12 49 27 50 13 10 15 90 17 18 10 11 45 27 20 87 62 6 7 8 9 7 8 5 6 9 1 ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l Tl 1 2 7349 5742 0.27 0.04 5291 7215 509 208 0.10 0.27 0.9 1.8 0.8 1.3 324 1.6 3.5 139 1.9 0.9 1.9 50 2.7 1.0 29 0.9 1.3 1.4 2.8 3.5 2.9 2.4 47 2.1 11 0.8 Pb 33 12 16 11 47 10 6 6 6 8 5

5 8 6 0.08 0.33 0.22 0.48 0.01 0.06 0.01 ˂ d.l ˂ d.l ˂ d.l ˂ d.l ˂ d.l 0.28 0.11 0.05 0.27 0.24 0.03 ˂ d.l 0.08 ˂ d.l 169 0.03 0.2 0.7 0.4 1.2 0.4 223 0.2 1.5 0.9 0.5 0.4 1.7 0.4 0.3 1.4 0.6 0.1 Bi 8 9 9

42

5.3 Major and trace elements

The results from LA-ICP-MS and EMPA analyses on sphalerite are presented below in terms of mean concentrations and standard deviation for each element. Standard deviation is given in percent for easier comparison between different samples, while the concentrations are given in ppm unless otherwise stated. A brief description of the trend of each element in natural sphalerite is also given, as reported in the literature. For the major elements (Fe, Mn, and Cd) EMPA data is used while the trace elements data is derived from LA-ICP-MS analysis, due to the higher accuracy and capacity of this method. A comparison between the two methods is presented in the discussion.

5.3.1 Iron

Fe is the most commonly appearing substituted element in sphalerite, and the concentration is often high enough for it to be included in the chemical formula, as (Zn,Fe)S. In some exceptionally Fe-rich examples the FeS solid solution with ZnS can reach up to 50 mol. % (e.g. Barton & Toulmin, 1966; Lepetit et al., 2003). In systems where sphalerite is in equilibrium with pyrite and pyrrhotite, Fe incorporation in sphalerite is pressure-dependent (Scott & Barnes, 1971). The Fe content in sphalerite has therefore been used for barometric determinations of e.g. metamorphogenic and metamorphosed ore deposits (e.g. Scott & Barnes, 1971), although there is some controversy over the application of this method (Wright & Julian, 2010, and references therein).

Figure 33. Plot of mean Fe concentrations of sphalerites from different localities of western Bergslagen, showing a relatively high local variation. Numbers next to the locality names show location in Fig. 9. Data derived from EMPA analyses.

The Fe-value obtained by the EMPA was used as the internal standard for the LA-ICP-MS data reduction process and therefore the presented results on Fe is based on the EMPA data. Overall, the samples show great variation in mean Fe content (Fig. 33) ranging from traces, near the detection limit

43 as in Hasselhöjden (2002.0015 with 380 ppm) up to ≥ 10 wt. % in the Näset (Näset I) and Myssberget (MyB.001.1) samples. Out of 30 samples, five have Fe mean concentrations ˂ 1 wt. %, while 19 samples contain ≥ 8 wt. % Fe. The low standard deviation values (stdev ≤ 10%), on the other hand, show that Fe is homogeneously distributed in the sphalerite matrix for the Fe-rich samples. There are however, some exceptions with very high standard deviation in the Fe-poor samples (Fig. 34).

Figure 34. Plot of standard deviation of Fe content between the localities. Two samples (from Långban and Björkskogsnäs) yielded only one analysis within the acceptable total range (98.5-101.5 %) therefore standard deviation values could not be measured. Numbers next to the locality names show location in Fig. 9.

5.3.2 Cadmium

The Cd contents in sphalerite have been extensively studied due to the significant role they play in the economic value of Zn deposits. Even though Cd is not a main component of the mineral, sphalerite is the main sink for Cd, which can substitute for Zn (Cd2+ ↔ Zn2+) due to their similar ionic radii (e.g. Qian, 1987; Pfaff et al., 2011; Julien et al., 2014). Considering the toxicity of Cd, the presence of Cd- bearing sphalerite in tailings and dumps can be a major environmental hazard (Cook et al., 2009 and references therein). The Cd contents in sphalerite are usually rather constant in a given deposit type, and normally range between 0.1-1.5 wt.% for stratiform deposits, while it can be even higher in Mississippi Valley Type (MVT) and Zn-rich veins in carbonate rocks (Lockington et al. 2014 and references therein). Gottesmann & Kampe (2007) used the Zn/Cd ratio to show genetic relationships of calc-silicate-hosted sphalerite ores. Cd concentrations obtained by EMPA analyses range between 0.1-1.5 wt. % in all but seven samples. Six samples contain less (530-950 ppm) and the sample from Myssberget (MyB.001.1) is exceptionally

44

Cd-rich with 2.7 wt. % (Fig. 35). In addition, the relatively low standard deviation values (Table 3) for most of the samples (stdev ≤ 20%) suggest that Cd is quite homogeneously distributed in the sphalerite lattice. The LA-ICP-MS analyses gave even lower standard deviation values (≤10%) due to the much lower detection limits of this method. These results are consistent with observations from other metamorphosed sphalerite-bearing massive sulphide deposits which show an even distribution of Cd in sample or even deposit scale (Lockington et al. 2014).

Figure 35. Plot of mean Cd concentrations of all analyses in the different localities. Gray horizontal lines represent 0.1 and 1.5 wt. %. Data derived from EMPA analyses. Numbers next to the locality names show location in Fig. 9.

5.3.3 Manganese

Mn is commonly found in sphalerite and the concentrations normally range from ppm-levels to a few wt. % (e.g. Graeser, 1969) and it can act as a strong chromophore even at low concentrations (Graeser, 1969). Mn is incorporated in the sphalerite structure by cation substitution (Mn+2 ↔ Zn+2), with an upper limit of around 7 mol. %, (c. 2 wt. %) of MnS (alabandite component) in solid solution with sphalerite. The upper limit is controlled by the contrasting structures of the two phases (Cook et al., 2009). It has been noted that there is a negative correlation of Mn with Fe in sphalerite, suggested to be a result as these elements compete at the mineral-fluid interface (Di Benedetto et al., 2005). The results from the EMPA analyses show that the Mn concentrations range from below detection limit in samples from Långban (Ej.BhZ.Ib), Månhöjden (Ej.MHII.2a), and Hasselhöjden (2002.0015), to more than 1 wt. % in Lahäll (LAH.001.2) (Fig. 36).

45

Figure 36. Plot of mean Mn concentrations of all analyses in the different localities. Data derived from EMPA analyses. Numbers next to the locality names show location in Fig. 9. Gaps in the graph due to below d.l concentrations.

The Mn mean concentrations of the vast majority of analyses are in the 0.1-1 wt. % range. The variation in a given deposit is large (Fig. 37) and the Mn-poor sphalerites tend to show the highest heterogeneity. This can potentially be due to Mn-bearing nano-inclusions within these samples, or just reflect the difficulty in measuring accurate Mn-concentrations when it is near the detection limit.

Figure 37. Standard deviation values of Mn concentrations showing wide inter-deposit variation. Gaps in the graph due to below d.l concentrations or data based in only one analyses (i.e. in Björkskogsnäs). Numbers next to the locality names show location in Fig. 9.

5.3.4 Cobalt

The size of Co2+ ion is similar to that of Zn2+ and therefore sphalerite can contain considerable amounts of Co through extensive CoS-ZnS solid solution (e.g. Cook et al. 2009; George et al., 2015). Increased Co concentrations may, however, decrease the economic value of a given Zn-deposit (e.g. Axelsson & Rodushkin, 2001). The variable Co contents in sphalerites from different ore deposit types most likely depend on its availability in the ore-forming system (Lockington et al., 2014). Sphalerites that are Co- bearing tend to have a characteristic green color (Cook et al. 2009).

46

The Co concentrations were below the EPMA detection limit for several of the samples, and therefore the presented results are from the LA-ICP-MS analyses (Fig. 38). The Co concentrations range from a few tens to several hundreds of ppm for most of the samples, with the exception of the sphalerites from Hällefors and Hasselhöjden that contain Co below detection limit and 3 ppm, respectively. Contrasting these, the sphalerite from Långban (Ej.BhZ.Ib) exhibits a Co concentration of about 1000 ppm. The standard deviation is low (Table 4) as expected as Co is incorporated in sphalerite by substitution. Most of the samples are found to be rather homogeneous (˂15% stdev), with the exception of Näset (Näset II) and the Co-poor sphalerite from Hasselhöjden (2002.0015).

Figure 38. Plot of mean Co concentrations of all analyses in the different localities. Data from LA-ICP-MS analyses. Gap in the graph due to below d.l concentrations (i.e. in Hällefors). Numbers next to the locality names show location in Fig. 9.

5.3.5 Copper

Cu is an element that is not easily incorporated in the sphalerite lattice, except when trivalent ions are present (e.g. In3+, Sb3+, Fe3+) allowing the coupled substitutions (e.g. Cu+ + In3+(Fe3+) ↔ 2Zn2+ and Sb3+ + Cu+ + Cu2+↔3Zn2+) (e.g. Johan, 1988; Carillo-Rosua et al., 2008; George et al., 2015). Seemingly, it can only be substituted in concentrations of some tens of ppm. However, it is quite common that micro or nano-scale Cu-rich inclusions, typically in the form of chalcopyrite, can give apparent and variable Cu concentrations in sphalerite analyses. The texture referred to as ‘chalcopyrite disease’ featuring chalcopyrite inclusions in sphalerite on varying scales, is often the result of replacement of the original Fe-bearing sphalerite by an aggregate of chalcopyrite and low-Fe sphalerite (Barton & Bethke, 1987). This is a common feature in many Cu-bearing Zn-deposits. The time-resolved LA-ICP-MS depth profiles can indirectly detect these inclusions by the recorded peaks in the signal profile.

47

Figure 39. Plot of mean Cu concentrations of all analyses in the different localities. Data derived from LA-ICP- MS analyses. Numbers next to the locality names show location in Fig. 9.

The LA-ICP-MS results for Cu show a high variability (Fig. 39) and the concentrations range between a few ppm (Limtjärn, Alkvettern) to a few thousands of ppm with maximum of 14000 ppm (1.4 wt. %) in Gås IIa from Gåsborn. The high standard deviation values of the samples (Table 4) as well as the discrete peaks in the signal profiles from the LA-ICP-MS analyses (Fig. 40) suggest that the higher Cu concentrations reflect the occurrence of Cu-rich micro to nano inclusions (e.g. of chalcopyrite), rather than lattice-bound Cu. Notably, such inclusions were not observed in the reflected- light microscopy study.

Figure 40. LA-ICP-MS Cu-signal profiles, a) smooth and flat, free of inclusions Cu-signal and b) peaks indicating Cu-rich inclusions present.

48

5.3.6 Indium

Sphalerite is the main ore mineral for the global production of In, even though it is locally found in higher concentrations in chalcopyrite (Schwarz-Schampera & Herzig, 2002). In can be incorporated into sphalerite via the coupled substitution Cu+ + In3+ ↔ Zn2+ + Fe2+ that is reflected in the negative correlation between In and Zn+Fe (e.g. Johan, 1988; Cook et al. 2009). Sphalerites with In concentrations of up to 7 wt. % have been reported from tin base-metal deposits in Canada, but these high In contents have been interpreted to be the result of exsolutions of minute grains of In-bearing minerals like roquesite (CuInS2). Burke & Kieft (1980) reported In contents up to 10.4 wt. % in a sphalerite from Långban, and Kieft & Damman (1990) noted very high In contents, up to over 15 wt. % in altered sphalerite from Gåsborn. It is likely that some of these higher values represent micro- or nano-inclusions of In-rich phases. Nevertheless, wt. % In contents in sphalerites due to substitution mechanisms have been determined by electron microprobe analysis (Cook et al. 2009 and references therein). Roquesite is known to form extensive solid solution with sphalerite and is locally important sources for In, like for example in the Toyoha mine, Japan (Ohta, 1989). The LA-ICP-MS analyses show that In concentrations vary from traces to up to 400 ppm (Fig. 41). Most of the samples contain more than 10 ppm while a few (Getberget, Gåsborn and Hällefors) are significantly enriched, with concentrations of 230 ppm (Getberget b), 335 ppm ( Gås NI And) and 400 ppm (HÄL.01.1), respectively. Regardless of the concentration, In is most likely incorporated in the given the low standard deviation values of the analyses (Table 4).

Figure 41. Plot of mean In concentrations of all analyses in the different localities. Data derived from LA-ICP- MS analyses. Numbers next to the locality names show location in Fig. 9.

49

5.3.7 Germanium

Sphalerite is currently also the major source of Ge, particularly from low-temperature, epigenetic and sediment-hosted deposits where it may be concentrated to up to 3000 ppm (Bernstein, 1985). Low- temperature (typically in MVT deposits), Fe-poor sphalerites are more Ge-enriched, especially if galena is absent from the ore mineral assemblage (e.g. Ye et al., 2011; Frenzel et al., 2015). The mechanism that allows Ge to be incorporated in sphalerite structure has been debated, because Ge occurs as both Ge2+ and Ge4+, and two main substitution mechanisms (2Ge2+ + Ga3+ + 2Cu2+ + Cu+ ↔ 6Zn2+ and Ge4+ + 2Cu+ + Cu2+ ↔ 4Zn2+) have been proposed (e.g. Johan, 1988; Carillo-Rosua et al., 2008; Cook et al., 2015). Belissont et al. (2015) showed that presence of monovalent elements (Cu, Ag, Tl) enhance the incorporation of Ge4+ in sphalerite via coupled substitutions such as Ge4+ + 2(Ag,Cu)+↔2Zn2+. LA-ICP-MS analyses of the sphalerites from western Bergslagen show insignificant Ge concentrations but nonetheless above detection limit (0.5-1 ppm).

5.3.8 Gallium

Sphalerite is the second most important source of Ga after bauxite deposits (e.g. European Commission,

2014). It is incorporated in sphalerite by solid solution of Ga2S3 and is usually present only as a trace component (Krämer et al., 1987). Low-temperature, Fe-poor sphalerites have been proved to contain increased Ga content (Cook et al., 2009; Frenzel et al., 2015). High-Ga sphalerites characteristically exhibit strong emerald-green internal reflections (Picot & Johan, 1977). The results from the LA-ICP- MS analyses show that among the studied localities, Ga occurs in trace concentrations with the highest concentration of 6.5 ppm in the Hasselhöjden sample (2002.0015).

5.3.9 Silver

Sphalerite can accommodate up to c. 100 ppm Ag in its structure, but it is more commonly present as micro- and nano-inclusions of Ag-rich phases (Cook et al., 2009 and references therein). Ag concentrations in the samples from westernmost Bergslagen exhibit a significant variation, from 1 ppm in the Alkvettern sample (1831.1033) to more than 250 ppm in Getberget (Getberget b). The majority of the samples (19 out of 26 samples) contain amounts in the 1-10 ppm range (Fig. 42).

50

Figure 42. Plot of mean Ag concentrations of all analyses in the different localities. Data from LA-ICP-MS analyses. Numbers next to the locality names show location in Fig. 9.

The standard deviation is high, and coupled with the observed peaks in the depth signal profiles, suggest that silver is not incorporated in the sphalerite lattice but it is present as nano or (sub-) micro- inclusions (Fig. 43).

Figure 43. A) Standard deviation values of Ag concentration, and B) Ag signal-profile from the LA-ICP-MS analyses showing presence of Ag-rich micro-inclusions. Numbers next to the locality names show location in Fig. 9.

5.3.10 Mercury

Sphalerite has been observed to contain up to 16 wt. % of Hg (Grammatikopoulos et al., 2006). It is suggested to be incorporated by a direct Hg2+ ↔ Zn2+ substitution, and the highest Hg concentrations are found in low Fe-sphalerites (Cook et al. 2009). Hg-rich sphalerites characteristically occur together with Hg-bearing tetrahedrite and (Cook et al. 2009). The mean Hg concentrations in the analyzed sphalerite samples are less than 100 ppm and they generally range between 4 and 90 ppm (Fig. 44). The medium to low standard deviations (Table 4) favors the direct substitution mechanism and lattice-bound mercury in these samples.

51

Figure 44. Plot of mean Hg concentrations of all analyses in the different localities. Data from LA-ICP-MS analyses. The Lahäll sample (LAH.001.6) yielded an Hg content below the detection limit. Numbers next to the locality names show location in Fig. 9.

5.3.11 Lead

The Pb concentrations in sphalerite can vary considerably, not only between samples from the same deposit, but also within the same crystal (e.g. Cook et al. 2009; Lockington et al. 2014). This is due to the presence of Pb-bearing (sub-)micro and nano-inclusions of galena or other Pb-sulphides that produce outliers that skew any real lattice-bound lead content (Lockington et al. 2014). Cook et al. (2009) interpreted the commonly limited Pb substitution into sphalerite as a result of the large ionic size difference between Zn2+ and Pb2+, with Pb partitioned mostly into the commonly coexisting galena.

Figure 45. Plot of mean Pb concentrations of all analyses in the different localities. Data from LA-ICP-MS analyses. Numbers next to the locality names show location in Fig. 9.

52

Measured Pb concentrations by LA-ICP-MS show a large variation between the different samples (Fig. 45). The lowest content (0.1 ppm) was in a sample from Nordmark (1919.1470b), and the highest yielded up to 7200 ppm, in a sample from Getberget (Getberget b). This high variation coupled with very high standard deviations between spots of the same samples and the peaked signal profiles (Fig. 46), clearly suggest the presence of inclusions of Pb-bearing minerals.

Figure 46. A) Standard deviation values of the Pb-analyses, B) a significant heterogeneity of the Pb distribution in sphalerite (Myssf.B1.1) as indicated by the LA-ICP-MS signal profile. Numbers next to the locality names show location in Fig. 9.

5.3.12 Bismuth

Bi is seemingly only found in sphalerites in the form of Bi-bearing inclusions (Cook et al. 2009; Lockington et al. 2014). The Bi concentrations in all but one sample from westernmost Bergslagen (from LA-ICP-MS analyses) are either below detection limit, or as minute traces. The only exception is one of the Getberget samples (Getberget b) which exhibits an elevated bismuth content of 220 ppm. The mean Bi-concentrations yield high standard deviation values (Table 4) indicating the presence of Bi-bearing phases.

5.3.13 Arsenic

Solidly confirmed As-bearing sphalerites have only been reported from black shale-deposits (e.g. Orberger et al., 2003), and in a pink, Fe-poor, sphalerite from the Alacran deposit in Chile (Clark, 1970). The latter author proposed a low-temperature (below 200oC), limited ZnAs ↔ ZnS solid solution (i.e. As2- ↔ S2- substitution) (up to 1.7±0.3 w.t. %) for these types of sphalerites (Clark, 1970). The As concentrations (from LA-ICP-MS) in the analyzed samples from westernmost Bergslagen were consistently below the detection limit in all the samples (Table 4).

53

5.3.14 Selenium

Se can be incorporated in sphalerite by solid solution between ZnS and ZnSe (stilleite) (i.e Se2- ↔ S2- substitution) (Pirri, 2002), and Se-bearing sphalerite (up to 1300 ppm Se) has been found in black shale deposits (Orberger et al., 2003). Most of the examined samples in this study (15 out of 26) have Se concentrations below the detection limit (from LA-ICP-MS). The highest concentration is found in one of the Gåsborn samples (Gås IIa), and in the Borns Koppargruva and Gruvåsen samples, which contain 37, 56, and 72 ppm Se respectively. The Långban sample (EJ-BhZ.Ib) is as high as 180 ppm. The standard deviation (Table 4) for all these samples is low, which suggests that Se is lattice-bound, i.e. incorporated by a solid solution mechanism as stated above.

5.3.15 Tin

Sn is present in sphalerite as discrete Sn-bearing inclusions or rarely incorporated in limited amounts through the sphalerite-stannite (Cu2FeSnS4) solid solution (Oen et al., 1980). Carillo-Rosua et al. (2008) and Murakami & Ishihara (2013) suggested the coupled substitution mechanism; Sn4+ + 2Cu2+ ↔ 3Zn2+ for minor amounts of Sn incorporated in the sphalerites from various deposits (e.g. from Spain, Bolivia, and China). Twenty three (out of 26) samples from westernmost Bergslagen yielded Sn-contents below detection limit (from LA-ICP-MS). Two samples, from Getberget and Borns Koppargruva (Getberget b and 57.4154 respectively), contain a few tens of ppm Sn, but have high standard deviation values indicating the presence of Sn-bearing micro-inclusions (Table 4).

5.3.16 Antimony

Sphalerite is not commonly reported as a Sb-carrier (Ramdohr, 1969), but Carillo-Rosua et al. (2008) found appreciable amounts of Sb in sphalerite from the Palai-Islica deposit and suggested the substitution mechanism Sb3+ + Cu+ + Cu2+ ↔ 3Zn2+. Black-shale sphalerites have been reported to contain up to 250 ppm Sb (Orberger et al., 2003). All analyses of Sb in this study showed concentrations (from LA-ICP-MS) below the detection limit (Table 4).

54

5.3.17 Gold

Sphalerite is generally not considered a host mineral for lattice-bound Au, but sphalerite formed by metamorphic remobilization can contain Au inclusions (e.g. Hurley & Crocket, 1985). Most of the analyzed samples contain traces of Au (~ 0.05 ppm) or Au below the detection limit (from LA-ICP- MS), with the highest concentrations reported in the Lahäll (LAH.001.2) and Näset (Näset I) samples with 0.19 and 0.38 ppm Au, respectively. The high standard deviation values however, indicate existence of (micro-) nano-inclusions of Au-bearing phases (Table 4).

5.3.18 Thallium

It has been suggested that sphalerite can be a major sink for Tl (Nriagu, 1998), but in most cases Tl occurs only in concentrations in the range of few tens of ppm. For the 24 of the 26 analyzed samples the Tl concentrations are below detection limit (from LA-ICP-MS) and the remaining sample (Gåsborn Gås NI And) contains 1.6 ppm.

5.3.19 Nickel

Ni is not common in sphalerite (Cook et al. 2009) but concentrations of up to 2000 ppm have been reported in sphalerites from VHMS deposits in Australia (Huston et al., 1995). Four of the samples in this study (from LA-ICP-MS), from Myssberget (MyB.001.1), Näset (Näset II), Långban (EJ-BhZ-Ib) and Silvhytte gruvor (57.4128), showed detectable Ni concentrations around c. 1-2 ppm (Table 4).

5.3.20 Molybdenum

Mo concentrations are usually very low in sphalerite, but contents up to 95 ppm of Mo were reported by Huston et al. (1995), who suggested that it possibly reflects Mo3+ substitution into the lattice. Orberger et al (2003) reported Mo concentrations up to 5000 ppm in black shale sphalerites. None of the analyzed sphalerites in this study contain detectable Mo (from LA-ICP-MS).

5.3.21 Tellurium

Te incorporation in sphalerite is rather limited but it has been suggested that some solid solution between ZnTe and ZnS (i.e. Te2- ↔ S2- substitution) can occur (Tomashic et al. 1978). None of the analyzed samples contains any detectable amounts of Te (from LA-ICP-MS).

55

6. Discussion

6.1 EMPA vs LA-ICP-MS analyses

Applying both EMPA and LA-ICP-MS techniques, the most commonly used microchemical in-situ- methods, gives the opportunity for a direct comparison of the two methods. Comparable studies on trace-element analyses in Fe-oxides (i.e. magnetite) have shown that the LA-ICP-MS method is better on the expense of the spatial resolution (e.g. Dupuis & Beaudoin, 2011; Makvandi et al., 2016), however a similar study for sphalerite has not been conducted. The analytical results of both methods are listed in Tables 7 and 8 in Appendixes A and B respectively, but an overview of the EMPA vs LA-ICP-MS comparison can be seen in Table 5. In total, 142 analyses were conducted on the same spot, providing a direct spot to spot comparison between the two methods.

Table 5. Overview table of the results from both EMPA and LA-ICP-MS analyses. Number of samples, spots analyzed as well as the detection limits of the minor and trace elements are noted (EMPA-left, LA-ICP-MS-right).

56

Figure 47. EMPA vs LA-ICP-MS concentration plots of S, Zn, Fe, Mn, Cd and Co. S, Zn and Fe contents are shown in %, and Mn, Cd and Co in ppm. Red line represents a 1:1 correlation between the methods.

Measurements of the major elements of sphalerite as well as for Fe and Mn that comprise the most abundant minor elements are presented (Fig. 47). Obviously, S and Zn concentrations are very well defined, showing very small scattering with almost all the analyses plotting on or along the 1:1 line.

57

Figure 48. EMPA vs LA-ICP-MS concentration plots of Cu, Hg, Pb, Bi, Se and Ag in ppm. Red line represents a 1:1 correlation between the methods.

Deviation between EMPA and LA-ICP-MS for these elements are as low as 4.2% for S and 2.5% for Zn. Fe shows a similar correlation (7.3% mean deviation), which is expected as the Fe content from EPMA analyses has been used as an internal standard for the LA-ICP-MS analysis. Mn contents range between 0.1-1% in both methods and beside a few outliers there is a close to 1:1 correlation between the two methods, with a deviation of about 20%. The results for Cd (Fig. 47) also show a good correlation (15% mean deviation). However, the correlation is more precise in the Cd-rich points. At concentrations close to the detection limit of the EPMA (i.e. 125 ppm), the correlation is noticeable lower. Cu concentrations by the LA-ICP-MS range

58 between 2 and 2000 ppm, while EMPA measurements are in the range of 150 to 1000 ppm, indicating a deviation of approximately 80% between the methods. Co concentrations are, for a majority of the points, on the same order of magnitude in both methods, and a ‘modest’ deviation of 35% is observed. Analyses of Pb and Bi record a striking feature. Both elements are measured from traces (0.05 ppm) to a few tens of ppm in the LA-ICP-MS analyses, while the EMPA analyses of the same spots yielded concentrations several orders of magnitude higher (Fig. 48). The same pattern is also seen for Se, Ag, and Hg, although to a lesser extent. Additionally, these elements provided much fewer points for the analytical comparison. For the majority of the EMPA analyses, indium is below detection limit, with a few exceptions with relatively high indium concentrations. In contrast all LA-ICP-MS analyses yield indium signals which reflect the much lower detection limits of this method compared to EMPA (0.007 vs 125 ppm for In). It is notable that even for In concentrations that (according to LA-ICP-MS) are higher than the detection limit-value of the EPMA, is not recorded by this method (Fig. 49). Only analyses with indium contents ˃250 ppm are detectable in both the methods, but then with surprisingly good correlation (18% mean deviation). This pattern indicates that the suggested EPMA detection limit of 125 ppm for In is underestimated and should be closer to 250 ppm.

Figure 49. Plot of EMPA and LA-ICP-MS point analyses of indium in sphalerite. Dashed line represents the detection limit of EMPA analysis (125 ppm).

The remaining analyzed elements i.e. Sn, Sb, As, Ga and Ge, were constantly below the detection limit of the EPMA (As, Ga, Ge, Sb) or for a few analyses (Sn) above did not show a good correlation with the LA-ICP-MS analyses. It is obvious that the precision of EMPA and LA-ICP-MS shows a reverse relation with the abundancy of the elements (Fig. 50). Main (S, Zn) or major elements (Fe) have good correlation (under 7% mean deviation), while for the most abundant minor elements (Co, Mn, and Cd) the measurement inaccuracy lies below 35%. For the less abundant elements like, Pb, Bi, Se, Hg,

59

Ag and Sn the deviation between EMPA and LA-ICP-MS analyses is high, often several orders of magnitude. Cu records moderate to high deviation of 85%. An exception among the trace elements is In, which matched well between the two methods when concentrations are ≥ 250 ppm (less than 20% mean deviation).

EMPA vs LA-ICP-MS 250

200

150

100 dev. in in % dev.

50

0 Zn S Fe Cd In Mn Co Cu Sn Hg Ag Se Pb Bi

Figure 50. Mean deviation values in the measurements of the two methods for each element separately, given in percent.

6.1.1 The Pb-Bi problem

The Pb and Bi analyses exhibit the highest deviation between the EMPA and the LA-ICP-MS methods. EMPA analyses show unrealistically high concentrations of these two elements (in the order of thousands of ppm) that should be in the order of a few ppm according to LA-ICP-MS analyses. The reason for this observation can, possibly, be explained by the background-hole phenomenon (Self et al., 1990; Remond et al., 2002). A false element-signal can be produced when the background, for some reason, creates a trough, a so called background-hole and the height distance between the trough and the rest of the background can mistakenly be measured as a peak by the instrument. A similar effect has been observed for Au analyses in arsenopyrite (Remond et al., 2002). One of the samples from Myssfallet (Myssf-B1-1) was selected for detailed background scanning in order to examine whether a background-hole phenomenon could explain the high Pb and Bi concentrations measured by the EPMA. The instrument was set to scan the background spectrum-range between 158-168 mm for 4000 sec (dwell time) using 15.0 kV acceleration current and a 5 μm circular beam.

60

The result of the background scanning shows that a high S-peak is the most prominent feature (Fig. 51a). This peak was measured at 161.1mm and disrupts the otherwise flat, background-signal on either side of the peak. The Pb-peak was measured at 162.470 mm (39 mm intensity) with the minus background measurement at 159.030 mm (39 mm) and the plus background measurement at 166.0.73 (19 mm). For Bi, the peak was measured at 163.807 mm (27 mm), minus background at 159.307 mm (29 mm) and plus background at 166.807 mm (11 mm) (Fig. 51b).

Figure 51. Background scan of a) the spectrum range 158-168 mm, and b) close up view of the 162-167 mm part.

61

Table 6. Peak and background analytical measurements for Pb and Bi. Peak (-) Bg (+) Bg

Pb 162.470 mm-39 mm 159.030 mm-39 mm 166.073 mm-19 mm

Bi 163.807 mm-27 mm 159.307 mm-29 mm 166.807 mm-11 mm

The (-) background measurements show equal values for the measured peaks for Pb and almost equal for Bi, whereas (+) background values are noticeably lower (Table 6), suggesting that both Pb and Bi were measured at the 162.470 mm and 163.807 mm part of the spectrum, respectively. However, a close up view of the spectrum range that includes Pb and Bi peaks and (+) background measurements shows that they are measured at the S-peak tail (Fig. 51b). The obtained concentrations of Pb and Bi are therefore only apparent. The existence of ‘unrealistic peaks’ producing false concentrations of Pb and Bi cannot be ruled out for the other samples that all show a similar pattern.

6.2 Substitution mechanisms and data trends

The extensive dataset acquired from both EMPA and LA-ICP-MS analyses provides an opportunity of recording correlation trends between elements as well as an opportunity to determine incorporation and substitution mechanisms that can occur in sphalerite. Several studies have suggested substitution mechanisms that allow a number of elements to be incorporated in the lattice (e.g. Johan, 1988; Carillo et al., 2008; Murakami & Ishihara, 2013; Julien et al., 2014; Belissont et al., 2014, 2015; Cook et al., 2015). Johan (1988) summarized the substitution mechanisms in sphalerites from hydrothermal veins in the following general equations: • M+ + M3+ ↔ 2Zn2+ • 2M+ + M2+ + M4+ ↔ 4Zn2+ • (x+2y)M+ + yM2+ + xM3+ + yM4+ ↔ (4-4y-2x)Zn2+

Where M+=Ag, Cu; M2+=Cu, Fe, Cd, Hg, Zn; M3+=In, Ga, Fe, Tl; M4+=Ge, Sn, Mo, W; x and y are atomic proportions of M+, M2+, M3+ and M4+ , substituting for Zn2+. Correlation plots of various sets of elements can reveal the substitution mechanisms in the studied sphalerites from western Bergslagen (Fig. 52 and Fig. 54). Correlation coefficient values (±R value) have been calculated for each correlation plot. The degree of correlation is: • R˂0.25 – no correlation, • 0.25˂R˂0.5 – weak correlation,

62

• 0.5˂R˂0.75 – moderate correlation, • 0.75˂R˂1 – strong to perfect correlation

Incorporation of Fe in sphalerite via the direct substitution Fe2+ ↔ Zn2+ is well established (e.g. Johan, 1988; Julien et al., 2014; Belissont et al., 2014, 2015) which is also apparent in the Bergslagen samples given by the correlation coefficient value R=-0.974. A coupled substitution with Cd2+ in addition to Fe2+ is suggested by the increased R value (R=-0.984) as Fe2+ + Cd2+ ↔ 2Zn2+ (e.g. Julien et al., 2014; Belissont et al., 2014, 2015). Mn is also possible to be part of the latter substitution mechanism i.e. Fe2+ + Cd2+ + Mn2+↔ 2Zn2+ given by the increased R value (R=-0.986) (Fig. 52a). When all Cu analyses are considered there is no correlation (R=0.073) between Cu and In. However, for In concentration higher than 10 ppm and excluding analyses with unrealistically high Cu content (i.e. >5000 ppm due to e.g. chalcopyrite disease) the R value is significantly higher (R= 0.49) (Fig. 52b). Subsequently, for these sphalerites the coupled substitution Cu++In3+↔2Zn2+ can be suggested (e.g. Johan, 1988; Murakami & Ishihara, 2013). The moderate degree of correlation can be due to the likelihood of other competing substitutions by which elements with 3+ and 4+ oxidation states entering sphalerite (Ye et al., 2011). It has also been suggested that the Ag content (as a monovalent ion) can be part of the latter substitution mechanism as (Cu+,Ag+)+In3+↔2Zn2+ (e.g. Murakami & Ishihara, 2013). The correlation plot between Cu+Ag vs In, (Fig. 52c) show a moderate correlation (R=0.52) which is higher than for the Cu vs In (0.52 vs 0.49), which implies that Ag favors the suggested substitution mechanism. However, most of the Ag in the sphalerite is associated with elevated Pb and is thus hosted in galena micro-inclusions (Figs. 43 and 46). This suggest that the strong Ag-Pb correlation of R=0.912 (Fig. 52d) is not related to sphalerite, but is attributed to these micro-, nano-inclusions. Galena can incorporate high concentrations of Ag due to similar ionic size between Ag+ and Pb2+, and the coupled substitution Ag+ + (Bi3+,Sb3+) ↔ 2Pb2+ can occur (e.g. Lockington et al., 2014; George et al., 2015 and references therein). Ag-rich galena in western Bergslagen has been known from a long time (e.g. Tegengren, 1924) and it has also been mined for silver in several localities. Ag enrichment can also occur within the lattice of low-temperature sphalerites that may be remobilized with Pb during metamorphism to form galena exsolutions (Lockington et al., 2014). The galena micro-inclusions are related with increased Cd concentrations in a number of samples (e.g. MyB.001.1, Getberget b, Gås NI And, 57.4154, 2000.0189 and HÄL.01.1) (Fig. 53) indicating that Cd is hosted in these inclusions. Galena can incorporate substantial amounts of Cd (Bethke & Barton, 1971), even though sphalerite is one of the most important sink and ore of this element (e.g. Cook et al., 2009). Due to the competitive behavior between Cd and Fe to enter the sphalerite structure, high Cd should be followed by low Fe concentrations which is not the case for these samples.

63

Figure 52. Correlation plots of a) (Fe + Mn + Cd) vs Zn, b) Cu vs In, c) (Cu + Ag) vs In, and d) Ag vs Pb. Red line represents 1:1 positive correlation between concentrations. In plots b) and c) only the analyses with In>10 ppm and Cu˂5000ppm are considered.

Although Mn and Fe are typically competing in substituting Zn in the sphalerite lattice (Mn2+, Fe2+↔Zn2+), this negative correlation is not reported in the analyzed samples. On the contrary, the samples from Långban (EJ-BhZ-Ib), Silvhyttegruvor (57.4128), Hasselhöjden (2002.0015) and Alkvettern (1831.1033) show low concentrations in both Fe and Mn. This observation can be related to the overall Mn budget of the area. There is a weak negative correlation in the studied samples between Hg and Cd (R= -0.403) and in low In samples there is no correlation between Mn-In, Cu-Ag, and Mn-Cd (Fig. 54).

64

Figure 53. Relationship between Cd, Ag and Pb throughout the study localities. MyB.001.1, Getberget b, Gås NI And, 57.4154, 2000.0189 and HÄL.01.1 have high Pb and Ag concentrations indicating galena micro- inclusions that are also the main Cd carrier. Numbers next to the locality names show location in Fig. 9.

Figure 54. Correlation plots of a) Hg vs Cd, b) Mn vs In, c) Cu vs Ag, and d) Mn vs Cd. Red ellipsoid represents reverse correlation.

65

6.3 Elemental patterns 6.3.1 Critical or ‘high-tech’ elements

Even though the number of sphalerite samples analyzed in this study is limited (1-4 for each deposit locality) the acquired data show a high variation in trace element concentrations within and between nearby mineralizations. This is not unexpected as high trace element variations are common in sphalerite and can reach an order of magnitude even within a simple crystal (Cook et al., 2009; Shimizu & Morishita, 2012). Ge and Ga are usually associated with low-T deposits (e.g. Cook et al., 2009; Ye et al., 2011; Frenzel et al., 2015) therefore concentrations below the detection limits in the western Bergslagen samples are not surprising. The In concentration varies between 0.1 to 400 ppm and there is notable that there is a positive relationship between Cu and In (Fig. 55) and a correlation that is corroborated with the coupled substitution (Cu+ + In3+)↔2Zn2+ (Cook et al., 2009; Shimizu & Morishita, 2012). Elevated In contents are also often accompanied by enrichment of Mn, which is most apparent in Hällefors (HÄL.01.1), Getberget (Getberget b) and Nordmark (1919.1470a and 1919.1470b) (Fig. 55a and b). This potentially suggests the substitution mechanism Cu++Mn2++In3+↔3Zn2+ for these sphalerites. In sphalerite a positive correlation between Fe and Mn has been observed, and to some degree between Fe and In for sphalerites from VMS deposits (Ye at al., 2011). With a few exceptions (Näset, Nordmark vein and Hasselhöjden) sphalerite with a In content > 20 ppm has a high Fe concentration and Fe-poor crystals are also low in In (Fig. 55c). The In-rich sphalerites (≥150 ppm In) are all from a rather restricted area but locations with significant In anomalies (≥ 30 ppm) are more widespread (Fig. 56). Sphalerites from mineralizations in supracrustal slivers within or at the boundary to the Filipstad granite and in veins (Skatviken, Silvhyttegruvor, Nordmark-vein, Limtjärn and Alkvettern) are In-poor (˂20 ppm In).

66

Figure 55. Indium concentration plots throughout the studied localities in relation to, a) Cu-In correlation corresponding to the coupled substitution Cu+ + In3+↔2Zn2+, b) most of the sphalerites show a correlation between Mn and In and c) correlation between Fe and In. Red lines show the trend that sphalerite crystals with low Fe content are also low in In. However there are exceptions to this trend (arrows). Data derived from LA-ICP-MS analyses. Numbers next to the locality names show location in Fig. 9.

67

Figure 56. Overview map of the study area with In-rich and In-poor sphalerite samples noted (modified from Stephens et al., 2009). Thick black line shows the occurrence of the Gåsborn granite. In anomalies in literature from Burke & Kieft (1980), Kieft & Damman (1990), Sundblad & Ahl (2008) and Jonsson et al. (2013).

68

6.3.2 The other elements

The variations of other trace elements such as Co and Cd, and to some degree Mn, are also large even between nearby deposits such as Lahäll, Myssberget and Myssfallet that are hosted in the same marble body within a few hundreds of meters to each other (Figs. 9 and 10). The Mn content varies from 0.15 wt. % to 1.2 wt. % between Myssfallet (Myssf.B3.1) and Lahäll (LAH.001.2). The Co content varies significantly as well, from 32 ppm in Myssfallet (Myssf.B3.1) to 570 ppm in Myssberget. The Myssf.B3.1 sample is pyrite-bearing and sphalerites occurring together with pyrite are known to be Co- poor due to the preferable incorporation of Co in the pyrite structure (Lockington et al., 2014), which could explain the low Co content in this sample. Cd concentrations range between 0.1 wt. % (Lahäll LAH.001.2) to 2.4 wt. % (Myssberget MyB.001.1). The highest Cd concentrations are in most cases hosted by galena micro-inclusions (Fig. 53). In addition to large variation in Co, sphalerites from the dolomite-hosted Getberget and Näset and the skarn-hosted Långban deposits, located within about a kilometer of each other (Figs. 9 and 10), also exhibit a wide range in Mn content. Sphalerites from Långban (EJ.BhZ.Ib) have 65 ppm Mn while the Mn concentrations in Getberget (Getberget b) and Näset (Näset I) are 1.1 wt. % and 0.5 wt. %, respectively. This variation is most likely related to the local Mn budget. Långban is a polymetallic Fe- Mn deposit with numerous different Mn-phases (e.g. Holtstam & Langhof, 1999) acting as efficient sinks for this element. In the Getberget and Näset deposits Mn minerals are insignificant or not at all present. Pyrite is known from the Getberget deposit (Zakrewski, 1982), even though it was not observed in the studied samples, and the sphalerite (i.e. from Getberget) is Co-poor (30 ppm). This indicates that pyrite has been the main Co carrier. Another set of deposits that occur in close vicinity to each other are the Hasselhöjden and Skatviken deposits (Fig. 9) with measured Co-concentrations of 3 and 200 ppm, respectively. The marble-hosted Hasselhöjden sample shows the lowest Co concentration between all the samples examined. Finally, for sphalerites that show significant enrichment in some elements (i.e. in Ag, Pb and Cu) it is most likely that they are hosted by inclusions rather than reflecting lattice bound concentrations. This applies specifically for the Getberget sample (Getberget b, Ag and Pb), the Hällefors sample (HÄL.01.1, Ag and Pb) and for the Gåsborn sample (Gås IIa, Cu).

6.4 Genetic considerations

The distribution of minor and trace elements in sphalerite have been used as discriminators between different mineralization types (e.g. Gottesmann & Kampe, 2007; Ye et al., 2011). It has been proposed that sphalerites in exoskarns are high in Co and Mn, sphalerites in massive sulphide deposits, both stratiform and stratabound are high in In, Sn and Ga, and sphalerites in Mississippi Valley Type (MVT)

69 deposits are high in Ge, Cd, Tl and As (Ye et al., 2011). Likewise, the Zn/Cd ratio has been used to differentiate between syngenetic submarine and epigenetic hydrothermal mineralizations (Gottesmann & Kampe, 2007). Most of the skarn and dolomite-dominated marble deposits from western Bergslagen plot in or close to the massive sulphide field (Fig. 57) as defined by Ye et al. (2011). The -dominated marble deposits and the Långban skarn sample are more scattered but fall outside the massive sulphide field in all plots (Fig. 57) and with the exception for the Fe vs Cd plot (Fig. 57e), none of the samples plot in the exoskarn field. The Zn/Cd ratio in skarn-hosted sphalerite is higher in submarine syngenetic compared to epigenetic and remobilized deposits (Gottesmann & Kampe, 2007). The syngenetic deposits have ratios >300 whereas the Zn/Cd ratios of the epigenetic ones are below 300. This systematic variation cannot be discerned in the sphalerite-bearing deposits in western Bergslagen, where e.g. epigenetic vein-hosted (Nordmark 2007.0304) as well as earlier formed sphalerite from the same deposit both plot in the syngenetic field (Fig. 58). In the carbonate-hosted sphalerite the Zn/Cd is <300, and the sphalerite from skarn deposits plot in both fields without any obvious systematic trends. The Zn/Cd ratio as a discriminator was established for modern ocean ridge deposits and applied to a Mesozoic zinc mineralization in Mongolia, but it is suggested to be applicable for sphalerite-bearing skarn deposits generally (Gottesmann & Kampe, 2007). However, the results from the Bergslagen deposits, essentially formed in a diversified, Palaeoproterozoic continental crust, show that the processes behind the Zn/Cd ratios in sphalerite are more complex than in ocean crust settings, and that the Zn/Cd ratio therefore cannot be universally used as a discriminator, at least not for deposits formed in a continental setting. Seemingly, the area around the Gåsborn granite (Cruden et al., 1999) in western Bergslagen (Fig 56) hosts several mineralizations with anomalously high In contents, carried by Cu-sulphides, sphalerite and roquesite (Burke & Kieft, 1980; Kieft & Damman, 1990; Sundblad & Ahl, 2008; Jonsson et al., 2013; Sundblad, 2016). It has been suggested that this anomaly is related to anorogenic, granite-derived systems comparable to rapakivi-related mineralizations in Finland (Sundblad & Ahl 2008; Cook et al., 2011; Valkama et al., 2016). This has been disputed based on textural relationships and mineral chemistry in the roquesite-bearing Lindbom’s prospect and observations in the nearby polymetallic deposit at Långban (Jonsson et al., 2013 and references therein), which indicate that the In-bearing assemblages represent an originally synvolcanic mineralization that was later modified through high temperature remobilization and recrystallization processes during Svecokarelian regional metamorphism (Jonsson et al., 2013). High Co and Mn content in the sphalerite advocate an epigenetic, intrusion-related origin (Ye et al. 2011). However, an originally syngenetic volcanic-hydrothermal origin is indicated by the distribution of minor and trace elements presented in the discrimination diagrams (Fig. 57).

70

Figure 57. Binary plots of a) In vs Fe, b) In vs Cu, c) Fe vs Mn, d) Cd/Fe vs In/Fe and e) Fe vs Cd, between sphalerites of different deposit types of western Bergslagen. Blue and red areas represent massive sulphide and exoskarn plot areas, respectively, according to Ye et al. (2011).

The In-rich polymetallic Toyoha deposit (Japan), formed by high temperature (300-400 °C), volcanic to sub-volcanic hydrothermal fluids (Shimizu & Morishita, 2012) and the massive sulphide deposits from the western part of the South China Terrane (Ye et al., 2011) are also rich in Sn or Sn, Cu and Ag. Several of the sampled deposits in western Bergslagen are Cu-rich, the sphalerites from Myssberget, Getberget, Gåsborn, Borns koppargruva and Hällefors are additionally Ag anomalous.

71

Figure 58. Zn/Cd ratios between the skarn deposits of western Bergslagen. In red color is shown the skarn-hosted sphalerite ore classification by Gottesmann & Kampe (2007).

Cassiterite and/or elevated Sn contents are known from the area and have been observed in Långban (Holtstam & Langhof, 1999), Hällefors (Sundius et al., 1966), Lahäll (Bergkvist & Jonsson, 2004), Gåsborn (Kieft & Damman, 1990), Lindbom’s Prospect (Jonsson et al., 2013) and Nordmark (E. Jonsson pers. comm.), which could be related to ‘’syngenetic’’ volcanic-hydrothermal fluids in a similar way as for the Japanese and Chinese mineralisations (Shimizu & Morishita, 2012; Ye et al. 2011). Supporting a volcanic-hydrothermal, ‘’syngenetic’’ origin as opposed to formation through epigenetic processes are occurrences of high-In sphalerite at some distance from the rather shallowly emplaced Gåsborn granite, which would be the closest potential source for post-Svecofennian overprinting fluids. Sphalerite with In >150 ppm is found in Nordmark c. 5 km to the west of the Gåsborn granite and 5 to 15 km to the south there are sphalerite deposits with elevated In contents (>30 ppm; Gruvåsen, Borns koppargruva and Björkskognäs). Even though both Nordmark and Björkskognäs are located close to the large Filipstad granite this intrusion is an unlikely source for In and other metals. Several of the sampled mineralizations along or within the Filipstad granite are essentially In-barren, which can be compared to the polymetallic Hornkullen deposit, located in a Svecofennian metavolcanic inlier within the Filipstad granite. This mineralization is likely to have been affected both by the Svecokarelian orogeny and the later TIB magmatism, but shows no apparent evidence for introduction of metals during this later stage (Andersson, 2014).

72

7. Conclusions

New sphalerite-bearing, skarn and carbonate deposits hosting the critical (or high-tech) element In have been identified in westernmost Bergslagen and the previously known In-anomalous area has been extended. Sphalerites with the highest In contents (>150 ppm) are found in the vicinity of the Gåsborn granite (Hällefors, Getberget, Näset, Gåsborn and Långban), but also to the west (Nordmark), at a significant distance from this intrusion, and to west of the already known In-enriched deposits. With the exception of the Nordmark sample, sphalerite occurrences along the contact to the Filipstad granite are In-poor (<10 ppm). Sphalerites from later veins are also low in In. The mean In contents in the In- enriched samples are higher than 30 ppm, with a highest concentration of c. 400 ppm (Hällefors). In most cases elevated In contents are accompanied by enrichment of Cu, Mn, and often also Ag. The contents of the other sought-after critical elements Ge and Ga are insignificant (i.e. ˂ 1 ppm in most samples), and at least for Ge this was expected, as it is characteristically associated with low-T deposits. The concentrations of other trace elements in the sphalerite vary significantly, even within a given deposit, and anomalously high contents of Pb, Ag, Cd and Cu are attributed to micro (or nano) inclusions of primarily galena (Ag, Pb and Cd) and chalcopyrite (Cu i.e. chalcopyrite ‘disease’), respectively. Elements like As, Mo and Te that that can be present in low concentrations in sphalerite were not detected, and Se, Sn, Sb, Ni, Tl and Au were found, but in very low quantities. Some of the minor and trace elements (Fe, Mn, Cd, Cu, In and Ag) are incorporated into the sphalerite lattice by substitution for Zn and follow the known substitution mechanisms In3++(Cu+,Ag+)↔2Zn2+, Fe2++Cd2++Mn2+↔3Zn2+, respectively. For the most In rich samples there is a positive correlation between Cu, In and Mn, and the following substitution mechanism Cu++Mn2++In3+↔3Zn2+ is suggested. Minor and trace elements have been used to test discrimination methods, and to potentially unravel whether the In-rich sphalerite was related to syngenetic, volcanic-hydrothermal, i.e. Svecofennian, or later, granite-related (epigenetic) processes. In most discrimination diagrams the skarn occurrences plot in the syngenetic massive sulphide field, whereas the carbonate-hosted sphalerites are scattered. Yet, they plot, with few exceptions, outside the epigenetic exoskarn field. Taken together, the trace element distribution and occurrences of In-enriched mineralizations distal to younger, shallowly emplaced intrusions like the Gåsborn granite and that most of the deposits in and along the boundary to the Filipstad granite are In-poor suggest that the In-anomalous sphalerite mineralizations were formed through Svecofennian volcanic-hydrothermal (syngenetic) processes later modified during the Svecokarelian orogeny. Overall, the findings confirm that westernmost Bergslagen is In anomalous but not extremely so. This coupled with the small size of the known deposits makes mining them unlikely to be economically profitable, at least in the near future.

73

A comparison between the two analytical methods used, EMPA and LA-ICP-MS, shows that the latter has significantly lower detection limits for trace elements of low concentrations, on the behalf of the spatial resolution.

74

8. Acknowledgements

Firstly my supervisors Karin Högdahl (UU) and Erik Jonsson (SGU/UU) for the support and the valuable comments during the period of the project. Professor Thomas Zack, the staff of the mineral geochemistry laboratory of the department of Earth Sciences in the University of Gothenburg as well as Dr. Jarek Majka are also thanked for the help during all the LA-ICP-MS and EMP-WDS analysis respectively. This study was supported by the Uppsala University, the Geological Survey of Sweden (SGU) and through funding from the Swedish science council (Vetenskapsrådet) to a project at Uppsala University focused on rare and critical metals in central Sweden. Finally, the sphalerite samples were provided by the Natural History museum in Stockholm, the Museum of Evolution at Uppsala University, in addition to samples that were collected in the field specifically for this project.

75

9. References

Agricola, G. (1546): De ortue t causiss ubterraneorum, lib.V. De naturae orumq ue effluuntext erra, lib. IV. De naturafossilium, lib. X. De ueteribusetn ouism etallis, lib.II. Bermannus, siue de re metallica dialogus.In terpretatio germanica uocum rei metallicae addito indice focecundissimo. Basileae: Per Hieronymvm Frobenium et Nic. Bischoff.

Åkerman, C. (1994): Ores and mineral deposits. In: C. Fredén (ed.): Geology. National Atlas of Sweden, SNA Publications, pp. 55-66.

Alfantazi, A. M. & Moskalyk, R. (2003): Processing of indium: a review. Minerals Engineering, 16, pp. 687-694.

Allen, R.L., Lundström, I., Ripa, M., Simeonov, A. & Christofferson, H. (1996): Facies analysis of a 1.9 Ga continental margin, back arc, felsic caldera province with diverse Zn-Pb-Ag-(Cu-Au) sulphide and Fe oxide deposits, Bergslagen region, Sweden. Economic Geology, 91, pp. 979-1008.

Andersson, S. (2014): Deformation, metamorphism and remobilization in the Hornkullen polymetallic deposit, Western Bergslagen, Sweden. Unpublished master’s thesis, Uppsala University, Department of Earth Sciences, 284, 112 pp.

Andersson, U. B. (1997): The late Svecofennian, high-grade contact and regional metamorphism in southwestern Bergslagen (central southern Sweden). SGU report, 03-819/93, pp. 36.

Andersson, U. B., Högdahl, K., Sjöström, H. & Bergman, S. (2006): Multistage growth and reworking of the Palaeoproterozoic crust in the Bergslagen area, southern Sweden: evidence from U-Pb geochronology. Geological Magazine, 143, pp. 679-697.

Anthony, J. W., Bideaux, R. A., Bladh, K. & Nichols, M. C. (ed.) (1990): Handbook of Mineralogy, Chantilly, VA: Mineralogical Society of America. http://www.handbookofmineralogy.org/ [12-8- 2015].

APS physics (2011): Energy Critical Elements: Securing Materials For Emerging Technologies. A report by the APS panel on public affairs & the materials research society. http://www.aps.org/publications/apsnews/201103/energycritical.cfm [12-8-2015].

Axelsson, M.D. & Rodushkin, I. (2001): Determination of major and trace elements in sphalerite using laser ablation double focusing sector field ICP-MS. Journal of Geochemical Exploration, 72, pp. 81- 89.

Barton, P. B. & Toulmin, P. (1966): Phase relations involving sphalerite in the Fe-Zn-S system. Economic Geology, 61, pp. 815-849.

Barton, P. B. & Bethke, P. M. (1987): Chalcopyrite disease in sphalerite: Pathology and epidemiology. American Mineralogist, 72, pp. 451-467.

Belissont, R., Boiron, M. C., Luais, B. & Cathelineau, M. (2014): LA-ICP-MS analyses of minor and trace elements and bulk Ge isotopes in zoned Ge-rich sphalerites from Noailhac-Saint-Salvy deposit (France): Insights into incorporation mechanisms and ore deposition processes. Geochimica et Cosmochimica Acta, 126, pp. 518-540.

Belissont, R., Boiron, M. C., Luais, B., Muchez, P., Oliveira, D. & Munoz, M. (2015): Germanium distribution and isotopic study in sulphides from MVT-related and VMS-remobilized ore deposits. In:

76

Andre-Mayer, A. S., Cathelineau, M., Muchez, P., Pirard, E. & Sindern, S. (ed.): Mineral resources in a sustainable world. Proceedings of the 13th SGA Biennial Meeting, Nancy France 24-27 August, 2, pp. 683-686.

Bergkvist, L. & Jonsson, E. (2004): The Lahäll Pb-Zn-(Ag-Fe-As-Cu-Sn) sulphide deposit, Långban Bergslagen-a metamorphosed Svecofennian mineralization? GFF, 126, pp. 147.

Bergman, T., Schöberg, H. & Sundblad, K. (1995): Geochemistry, age and origin of the Högberget granite, western Bergslagen, Sweden. GFF, 117, pp. 87-96.

Bernstein, L. R. (1985): Germanium geochemistry and mineralogy. Geochemica et Cosmochimica Acta, 49, pp. 2409-2422.

Bethke, P. M. & Barton, P. B. (1971): Sob-solidus relations in the system PbS-CdS. The American Mineralogist, 56, pp. 2034-2039.

Beunk, F. F., & Kuipers, G. (2012): The Bergslagen ore province, Sweden: Review and update of an accreted orocline 1.9-1.8 Ga BP. Precambrian Research, 216– 219, pp. 95–119.

Björk, L. (1986): Beskrivning till berggrundskartan 11E Filipstad NV. Sveriges Geologiska Undersökning, Serie Af, 147. 110 pp.

Burke, E., & Kieft, C. (1980): Roquesite and Cu-In bearing sphalerite from Långban, Bergslagen, Sweden. Canadian Mineralogist, 18, pp. 361-363.

Burke, E., & Zakrzewski, M. (1990): Herzenbergite and associated antimony minerals from Björkskogsnäs, Hällefors, Sweden. Geologiska Föreningen i Stockholm Förhandlingar, 112, pp. 85- 86.

Butcher, T. & Brown, T. (2014): Gallium. In: Gunn, G. (ed.) Critical metals handbook, John Wiley & Son Ltd., pp. 150-176.

Carillo-Rosua, J., Morales-Ruano, S., & Hach-Ali, P. F. (2008): Textural and chemical features of sphalerite from the Palai-Islica deposit (SE Spain): implications for ore genesis and color. Journal of Mineralogy and Geochemistry, 185, pp. 63-78.

Clark, A. H. (1970): Arsenian sphalerite from Mina Alcaran, Pampa Larga, Copiapo, Chile. American Mineralogist, 55, pp. 1794-1797.

Cook, N. J., Ciobanu, C. L., Pring, A., Skinner, W., Shimizu, M., Danyushevsky, L., Saini-Eidukat, B. & Melcher, F. (2009): Trace and minor elements in sphalerite: A LA-ICP-MS study. Geochimica et Cosmochimica Acta, 73, pp. 4761-4791.

Cook, N. J., Sundbled, K., Valkama, M., Nygård, R., Ciobanu, C. L. & Danyushevsky, L. (2011): Indium mineralization in A-type granites in southeastern Finland: Insights into mineralogy and partitioning between coexisting minerals. Chemical Geology, 284, pp. 62-73.

Cook, N. J. & Ciobanu, C. L. (2015): Mineral hosts for critical metals in hydrothermal ores. In: Andre- Mayer, A. S., Cathelineau, M., Muchez, P., Pirard, E. & Sindern, S. (ed.): Mineral resources in a sustainable world. Proceedings of the 13th SGA Biennial Meeting, Nancy France 24-27 August, 2, pp. 707-710.

Cook, N. J., Etschmann, B., Ciobanu, C. L., Geraki, K., Howard, D. L., Williams, T., Rae, N., Pring, A., Chen, G., Johannessen, B. & Brugger, J. (2015): Distribution and substitution mechanism of Ge in a Ge-(Fe)-bearing sphalerite. Minerals, 5(2), pp. 117-132.

77

Craig, J. R. & Vaughan, D. J. (1994): Ore microscopy and ore petrograpfy, 2nd edition. New York: John Wiley & Sons, 434 pp.

Cruden, A.R., Sjöström, H. & Aaro, S. (1999): Structure and geophysics of the Gåsborn granite, central Sweden: an example of fracture-fed asymmetric pluton emplacement. In: A. Castro, C. Fernández, & J.L. Vigneresse (eds.): Understanding granites: Integrating new and classical techniques. Geological Society of London, Special Publications 168, pp. 141–160.

Dahlin, P., Allen, R. & Sjöström, H. (2012): Palaeoproterozoic metavolcanic and metasedimentary succession hosting the Dannemora iron ore deposits, Bergslagen region, Sweden. GFF, 134, pp. 71-85.

Damman, A. H. (1988a): Hydrothermal subsilicic sodium gedrite from the Gåsborn area, West Bergslagen, central Sweden. Mineralogical Magazine, 52, pp. 193-200.

Di Benedetto, F., Bernardini, G. P., Costagliola, P., Plant, D. & Vaughan, D. J. (2005): Compositional zoning in sphalerite crystals. American Mineralogist, 90, pp. 1384-1392.

Dupuis, C. & Beaudoin, G. (2011): Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types. Minerallium Deposita, 46, pp. 319-335.

European Commission (2014): Critical Raw Materials for the EU. Report by the ad-hoc working group on defining critical raw materials. http://ec.europa.eu/growth/sectors/raw-materials/specific-interest/critical/index_en.htm [12-08-2015]

Frenzel, M., Hirsch, T & Gutzmer, J. (2015): Concentration of Ga, Ge, In and Fe in sphalerite as a function of deposit type-A meta-analysis. In: Andre-Mayer, A. S., Cathelineau, M., Muchez, P., Pirard, E. & Sindern, S. (ed.): Mineral resources in a sustainable world. Proceedings of the 13th SGA Biennial Meeting, Nancy France 24-27 August, 2, pp. 729-732.

Geijer, P. & Magnusson, N. H. (1944): De mellansvenska järnmalmernas geologi. Sveriges Geologiska Undersökning, Ca 35, 654 pp.

George, L., Cook, N. & Ciobanu, C. (2015): Trace element partitioning between co-existing sphalerite, galena and chalcopyrite. In: Andre-Mayer, A. S., Cathelineau, M., Muchez, P., Pirard, E. & Sindern, S. (eds.): Mineral resources in a sustainable world. Proceedings of the 13th SGA Biennial Meeting, Nancy France 24-27 August, 2, pp. 737-740.

Glocker, E. F. (1846): Honigstein in Mähren. Journal fṻr Praktische Chemie, 36, pp. 321-324.

Goldschmidt, V. M. (1954): Geochemistry. Soil Science, 78, 156 pp.

Gottesmann, W., Kampe, A. (2007): Zn/Cd ratios in calcsilicate-hosted sphalerite ores at Tumurtijn- ovoo, Mongolia. Chemie der Erde, 67, pp. 323-328.

Graeser, S. (1969): Minor elements in sphalerite and galena from Binnatal. Contributions to Mineralogy and Petrology, 24, pp. 156-163.

Grammatikopoulos, T. A., Valeyev, O. & Roth, T. (2006): Compositional variation in Hg-bearing sphalerite from the polymetallic Eskay Creek deposit, British Columbia, Canada. Chemie der Erde Geochemistry, 66, pp. 307-314.

Gribble, C. D. & Hall, A. J. (1992): Optical Mineralogy. Principles & Practice. London: UCL Press, 303 pp.

78

Griffin, W. L., Powell, W. J., Pearson, N. J. & O'Reilly, S. Y. (2008): GLITTER: data reduction software for laser ablation ICP-MS. Laser Ablation-ICP-MS in the earth sciences. Mineralogical association of Canada short course series, 40, pp. 204-207.

Hedström, P. (1984): Geological and genetic aspects of the Hällefors sulphide ores, Bergslagen, Sweden. Geologiska Föreningen i Stockholm Förhandlingar, 106, pp. 151-166.

Hedström, P., Simeonov, A. & Malmström, L. (1989): The Zinkgruvan ore deposit, south central Sweden; a Proterozoic, proximal Zn-Pb-Ag deposit in distal volcanic facies. Economic Geology, 84, pp. 1235-1261.

Hellingwerf, R. H. & Baker, J. H. (1985): Wall-rock alteration and tungsten and molybdenum mineralizations associated with older granites in western Bergslagen, Sweden. Economic Geology, 80, pp. 479-487.

Hellingwerf, R. H. (1987): Formation of sulphide deposits and its relation to sodic and potassic alteration of Proterozoic metabasites in the Saxå rift basin, Bergslagen, Sweden. Mineralium Deposita, 22, pp. 53-63.

Hellingwerf, R. H. & Raaphorst, J. G. (1988): Sulphur isotopes from the Gruvåsen skarn deposit, Bergslagen, Sweden. Mineralogy and Petrology, 38, pp. 161-170.

Hellingwerf, R. H. (1992): Trace element zonation is marbles hosting Cu-Zn-Pb-Fe-As sulphides at Gruvåsen, south central Sweden. Geologiska Föreningen i Stockholm Förhandlingar, 114, pp. 17-27. Henry, D. & Goodge, G. (2015): Geochemical instrumentation and analysis: wavelength-dispersive spectroscopy (WDS). http://serc.carleton.edu/research_education/geochemsheets/wds.html [12-09- 2015]. Hermansson, T., Stephens, M. B. & Page, L. M. (2008): Migratory tectonic switching, western Svecofennian orogeny, central Sweden: Constraints from U/Pb zircon and titanite geochronology. Precambrian Research, 161, pp. 250-278.

Holtstam, D. & Langhof, J., (eds.) (1999): Långban. The mines, their minerals, geology and explorers. Stockholm: Raster Förlag, 215 pp.

Holtstam, D. (2002): New occurrences of willemite-franklinite assemblages in Bergslagen, central Sweden. European Journal of Mineralogy, 14, pp. 621-626.

Högdahl, K. & Jonsson, E. (2004a): The Horrsjö complex in the Bergslagen ore province: a Palaeoproterozoic caldera with a mineralized rim? GFF, 126, p. 23.

Högdahl, K. & Jonsson, E. (2004b): U-Pb geochronology of Hyttjö granites in the Långban-Nordmark ore district, western Bergslagen. GFF, 126, pp. 23-24.

Högdahl, K., Andersson, U, B. & Eklund, O. (eds.) (2004): The Transscandinavian Igneous Belt (TIB) in Sweden: a review of its character and evolution. Geological Survey of Finland, Special Paper 37, 125 pp.

Högdahl, K., Jonsson, E. & Selbekk, R. S. (2007): Geological relations and U-Pb geochronology of Hyttsjö granites in the Långban-Nordmark area, western Bergslagen, Sweden. GFF, 129, pp. 43-54.

Högdahl, K., Sjöström, H. & Bergman, S. (2009): Ductile shear zones related to crustal shortening and domain boundary evolution in the central Fennoscandian Shield. Tectonics, 28, pp. 1-18.

79

Högdahl, K., Jonsson, E., Kritikos, A. & Sahlström, F. (2015): Turning yesterday’s waste into tomorrow’s treasure: Searching for base and critical metals in Central Sweden’s ancient mine dumps. In: Andre-Mayer, A. S., Cathelineau, M., Muchez, P., Pirard, E. & Sindern, S. (ed.): Mineral resources in a sustainable world. Proceedings of the 13th SGA Biennial Meeting, Nancy France 24-27 August, 2, pp. 757-761.

Höll, R., Kling, M. & Schroll, E. (2007): Metallogenesis of germanium-a review. Ore Geology Reviews, 30, pp. 145-180.

Hurley, T. D. & Crocket, J. H. (1985): A gold-sphalerite association in a volcanogenic base metal sulphide deposit near Tilt Cove, Newfoundland. Canadian Mineralogist, 23, pp. 423-430.

Huston, D. L., Sie, S. H., Suter, G. F., Cooke, D. R. & Both R. A. (1995): Trace elements in sulfide minerals from eastern Australian volcanic-hosted massive sulfide deposits: Part I, Proton microprobe analyses of pyrite, chalcopyrite and sphalerite and Part II, Selenium levels in pyrite: Comparison with delta 34S values and implications for the source of sulfur in volcanogenic hydrothermal systems. Economic Geology, 90, pp. 1167-1196.

Jansson, N. F. (2011): The origin of Iron ores in Bergslgan, Sweden, and their relationship with polymetallic sulphide ores. Doctoral Thesis, Luleå University of Technology, 292 pp.

Johan, Z. (1988): Indium and Germanium in the structure of sphalerite: an example of coupled substitution with copper. Mineralogy and Petrology, 39, pp. 211-229.

Jonsson, E. (2004): Fissure mineral formation and metallogenesis in the Långban Fe-Mn-(Ba-As-Pb- Sb) deposit, Bergslagen, Sweden. Meddelanden från Stockholms Universitets Institution för Geologi och geokemi, 318, pp. 22.

Jonsson, E. & Billström, K. (2009): Lead isotope systematics in the Långban deposit and adjacent sulphide mineralizations in western Bergslagen, Sweden. GFF, 131, pp. 215-227.

Jonsson, E., Nilsson, K., P., Hallberg, A. & Högdahl, K. (2010): The Palaeoproterozoic apatite-iron oxide deposits of the Grängesberg area: Kiruna-type deposits in central Sweden. In: H. A. Nakrem, A.O. Harstad, G. Haukdal, (eds.). NGF abstracts and proceedings 1, pp. 88-89.

Jonsson, E., Högdahl, K., Majka, J. & Lindeberg, T. (2013): Roquesite and associated indium-bearing sulphides from a Paleoproterozoic carbonate-hosted mineralization: Lindbom’s prospect, Bergslagen, Sweden. Canadian Mineralogist, 51, pp. 629-641.

Julien, B., Regime, M. R., Anne-Sylvie, A. M., Jean, C., & Laurent, B. (2014): Germanium Distribution in Sphalerite from North‐East America MVT Deposits: A Multiscale Study. Acta Geologica Sinica (English Edition), 88, pp. 437-439.

Kieft, C. & Damman, A. H. (1990): Indium-bearing chalcopyrite and sphalerite from the Gåsborn area, West Bergslagen, Central Sweden. Mineralogical Magazine, 54, pp. 109-112.

Krämer, V., Hirth, H., Hofherr, M. & Trah, H. (1987): Phase studies in the systems Ag2Te-Ga2Te3, ZnSe-In2Se3 and ZnS-Ga2S3. Thermochimica Acta, 112, pp. 89-94.

Lagerblad, B. & Gorbatschev, R. (1985): Hydrothermal alteration as a control of regional geochemistry and ore formation in the central Baltic Shield. Geologische Rundschau, 74, pp. 33-49.

Lahtinen, R., Korja, A., Nironen, M. & Heikkinen, P. (2009): Palaeoproterozoic accretionary processes in Fennoscandia. In: P. A. Cawood, & A. Kröner, (eds.): Earth Accretionary Systems in Space and Time. Geological Society of London Special Publications 318, pp. 237-256.

80

Lepetit, P., Bente, K., Doering, T. & Luckhaus, S. (2003): Crystal chemistry of Fe-containing sphalerites. Physics and Chemistry of Minerals, 30, pp. 185-191.

Lockington, A. J., Cook, N. J. & Ciobanu, C. L. (2014): Trace and minor elements in sphalerite from metamorphosed sulphide deposits. Mineralogy and Petrology, 108, pp. 873-890.

Lundström, I. (1995): Description to the map of solid rocks Filipstad NO, SO. Sveriges Geologiska Undersökning, Af 117, 185. 218 pp.

Lundh, J. & Rosen Å. (2011): Malmmikroskopi och framställning av polerprov. Bachelor thesis, Uppsala Universitet, Institutionen för geovetenskapen. 74 pp.

Magnusson, N.H. (1929): Nordmarks malmtrakt. Sveriges Geologiska Undersökning, Ca 13, 90 pp.

Magnusson, N.H. (1930): Långbans malmtrakt. Sveriges Geologiska Undersökning, Ca 23, 111 pp.

Makvandi, S., Ghasemzadeh-Barvarz, M., Beaudoin, G., Grunsky, E., McClenaghan, M. & Duchesne, C. (2016): Principal component analysis of magnetite composition from volcanogenic massive sulfide deposits: Case studies from the Izok Lake (Nunavut, Canada) and Halfmile Lake (New Brunswick, Canada) deposits. Ore Geology Reviews, 72, pp. 60-85.

Moore, P. B. (1970): Mineralogy and chemistry of Långban-type deposits in Bergslagen, Sweden. Mineralogical Record, 1, pp. 154-172.

Moskalyk, R. R. (2003): Gallium: the backbone of the electronics industry. Minerals Engineering, 16, pp. 921-929.

Murakami, H. & Ishihara, S. (2013): Trace elements of Indium-bearing sphalerite from tin-polymetallic deposits in Bolivia, China and Japan: A femto-second LA-ICPMS study. Ore Geology Reviews, 53, pp. 223-243.

Nriagu, J. O. (1998): History, production and uses of thallium. In: J.O. Nriagu, (eds.): Thallium in the Environment. New York: John Wiley and Sons, pp. 1-14.

Nysten, P., Holtstam, D. & Jonsson, E. (1999): The Långban minerals. In: Holtstam, D & Langhof, J. (eds.) Långban: The mines, their minerals, geology and explorers. Stockholm: Raster Förlag, 215 pp.

Oen, I.S., Kager, P. & Kieft, C. (1980): Oscillatory zoning of a discontinuous solid-solution series. American Mineralogist, 65, pp. 1220-1232.

Oen, I.S., Helmers, H., Verschure, R.H. & Wiklander, U. (1982): Ore deposition in a Proterozoic incipient rift zone environment: a tentative model for the Filipstad-Grythyttan-Hjulsjö, Bergslagen, Sweden. Geologische Rundschau, 71, pp. 182-194.

Ohta, E. (1989): Occurrence and chemistry of indium-containing minerals from the Toyoha mine, Hokkaido, Japan. Mining Geology, 36, pp. 355-372.

Orberger, B., Pasava, J., Gallien, J., Daudin, L. & Trocellier, P. (2003): Se, As, Mo, Ag, Cd, In, Sb, Pt, Au, Tl, Re traces in biogenic and abiogenic sulphides from Black Shales (Selwyn Basin, Yukon territories, Canada): a nuclear microprobe study. Nuclear Instruments and Methods in Physics Research section B. Beam interactions with Materials and Atoms, 210, pp. 441-448.

Pfaff, K., Koenig, A., Wenzel, T., Ridley, I., Hildenbrandt, L., Leach, D. & Markl, D. (2011): Trace and minor element variations and sulfur isotopes in crystalline and colloform ZnS: Incorporation mechanisms and implications for their genesis. Chemical Geology, 286, pp. 118-134.

81

Picot, P. & Johan, Z. (1977): Atlas de mineraux metallique. Memoires du BRGM, 90, 403 pp.

Pirri, I. V. (2002): On the occurrence of selenium in sulfides of the ore deposit of Baccu Locci (Gerrei, SE Sardinia). Neues Jahrbuch für Mineralogie Monatshefte, 2002.5, pp. 207-224.

Qian, Z. (1987): Trace elements in galena and sphalerite and their geochemical significance in distinguishing the genetic types of Pb-Zn ore deposits. Chinese Journal of Geochemistry, 6, pp. 177- 190.

Ramdohr, P. (1969): The ore minerals and their intergrowths. English Translation of the 3rd Edition. Oxford: Pergamon Press. 1174 pp.

Reed, S. J. B. (2005): Electron microprobe analysis and scanning electron microscopy in geology. 2th edition. Cambridge: University Press, 187 pp.

Remond, G., Myklebust, R., Fialin, M., Nockolds, C., Phillips, M. & Roques-Carnes, C. (2002): Decomposition of wavelength dispersive X-ray spectra. Journal of Reasearch of the National Institute of Standards and Technology, pp. 509-529.

Schwarz-Schampera, U. & Herzig, P. M., (eds) (2002): Indium: geology, mineralogy and economics. Heidelberg: Springer-Verlag, 257 pp.

Scott, S. D. & Barnes, H. L. (1971): Sphalerite geothermometry and geobarometry. Economic Geology, 66, pp. 653-669.

Scott, S. D. & Barnes, H. L. (1972): Sphalerite-wurtzite equilibria and stoichiometry. Geochemica et Cosmochimica Acta, 86, pp. 1275-1295.

Self, P. G, Norrish, K., Milnes, A. R., Graham, J. & Robinson, B. (1990): Holes in the background in XRS, X-Ray Spectrometry, 19, pp. 59-61.

Shimizu, T. & Morishita, Y. (2012): Petrography, chemistry and near-infrared microthermometry of indium-bearing sphalerite from the Toyoha polymetallic deposit, Japan. Economic Geology, 107, pp. 723-735.

Stephens, B. M., Ripa, M., Lundström, I., Pesson, L., Bergman, T., Ahl, M., Wahlgren, C. H., Persson, P-O. & Wickström, L. (2009): Synthesis of the bedrock geology in the Bergslagen region, Fennoscandian Shield, south-central Sweden. Geological Survey of Sweden, Ba 58, 260 pp.

Sundblad, K. (1994): A genetic reinterpretation of the Falun and Åmneberg ore types, Bergslagen, Sweden. Mineralium Deposita, 29, pp. 170-179.

Sundblad, K. (2016): 300 million years of indium-forming processes in A-type igneous environments in the Fennoscandian Shield. In: Staboulis, S., Karvonen, T. & Kujanpaa, A., (ed.): Bulletin of the Geological Society of Finland. Special Volume. Abstracts of the 32nd Nordic Geological Winter meeting, 13-15 January, Helsinki, Finland, pp. 111-112.

Sundius, N., Parwel, A. & Rajandi, B. (1966): The minerals of the silver mines of Hällefors. Sveriges Geologiska Undersökning, C 614, 20 pp.

Tegengren, F. (1924): Sveriges ädlare malmer och bergverk. Sveriges Geologiska Undersökning, Ca 17, 406 pp.

Thomas, R. (2001a): A beginner’s guide to ICP.MS, Part I. Spectroscopy, 16(4), pp. 40-42.

82

Thomas, R. (2001b): A beginner’s guide to ICP.MS, Part II: The Sample-Introduction System. Spectroscopy, 16(5), pp. 56-60.

Thomas, R. (2001c): A beginner’s guide to ICP.MS, Part III: The Plasma source. Spectroscopy, 16(6), pp. 26-30.

Thomas, R. (2001d): A beginner’s guide to ICP.MS, Part IV: The Interface Region. Spectroscopy, 16(7), pp. 26-34.

Thomas, R. (2001e): A beginner’s guide to ICP.MS, Part V: The Ion Focusing System. Spectroscopy, 16(9), pp. 38-44.

Thomas, R. (2001f): A beginner’s guide to ICP.MS, Part VI: The Mass Analyzer. Spectroscopy, 16(10), pp. 44-48.

Thomas, R. (2002a): A beginner’s guide to ICP.MS, Part VIII: Mass Analyzers: Time-of-Flight Technology. Spectroscopy, 17(1), pp. 36-41.

Thomas, R. (2002b): A beginner’s guide to ICP.MS, Part X: Detectors. Spectroscopy, 17(4), pp. 34-39.

Togari, K. (1978): Color of sphalerite. Journal of the Faculty of Science, Hokkaido University, 18, pp. 283-290.

Tomashic, V. N., Oleinik, G. S. & Mizetskaya, I. B. (1978): The ternary mutual system CdTe + ZnS = CdS + ZnTe. Inorganic Material, 14, pp. 1428.

Valkama, M., Sundblad, K., Nygård, R. & Cook, N.J. (2016): Mineralogy and geochemistry of indium- bearing polymetallic veins in the Sarvlaxviken area, Lovisa, Finland. Ore Geology Reviews, 75, pp. 206-209.

Vivallo, W. & Rickard, D (1990): Genesis of an early Proterozoic zinc deposit in high-grade metamorphic terrane, Saxberget, central Sweden. Economic Geology, 85, pp. 714-736.

Wagner, T., Jonsson, E. & Boyce, J. A. (2005): Metamorphic ore remobilization in the Hällefors district, Bergslagen, Sweden: constraints from mineralogical and small scale sulphur isotope studies. Mineralium Deposita, 40, pp. 100-114.

Weber, S.: VRML structure type gallery. http://jcrystal.com/steffenweber/gallery/StructureTypes/st2.html [01-09-2015]

Wilson, S. A., Ridley, W. I. & Koenig, A. E. (2002): Development of sulphide calibration standards for the laser ablation inductively-coupled plasma mass spectrometry technique. Journal of Analytical Atomic Spectrometry, 17, pp. 406-409.

Wright, K. & Julian, G. (2010): A first principles study of the distribution of iron in sphalerite. Geochimica et Cosmochimica Acta, 74, pp. 3514-3520.

Ye, L. & Tiegeng, L. (1999): Sphalerite chemistry, Niujiaotang Cd-rich zinc deposit, Guizhou, southwest China. Chinese Journal of Geochemistry, 18, pp. 62-68.

Ye, L., Cook, N., Ciobanu, C., Yuping, L., Qian, Z., Tiegeng, L., Wei, Gao., Yulong, Y. & Danyushevskiy, L. (2011): Trace and minor elements in sphalerite from base metal deposits in South China: A LA-ICP-MS study. Ore Geology Reviews, 39, pp. 188-217.

Zakrzewski, M. (1982): Geochemical facies model of ore formation in the Grythyttan-Hällefors area, Bergslagen, central Sweden. Geologische Rundschau, 71, pp. 195-205.

83

Zakrzewski, M., & Nugteren, H. (1984): Mineralogy and origin of the distal volcanosedimentary deposit at the Hällefors silver mine, Bergslagen, central Sweden. Canadian Mineralogist, 22, pp. 583- 593.

Zakrzewski, M. (1984): Ore minerals from the Getberget mine, Långban area, Sweden; the probable Co-analogue of nisbite. Neues Jahrbuch fur Mineralogie, Monatshefte, 4, pp. 145-154.

84

Appendix A: EMPA results No 20 39 21 40 22 41 23 42 24 43 25 44 26 45 27 10 28 11 29 12 30 13 31 14 32 15 33 16 34 17 35 18 36 19 37 38 1 2 3 4 5 6 7 8 9 Table EMPA7. Table sphalerite Ag Ag 0.012 0.005 0.014 0.009 0.011 0.001 0.002 0.003 0.019 0.027 0.005 0.013 0.011 0.007 0.018 0.025 0.001 0.004 0.011 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 As 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Bi Bi 0.114 0.076 0.069 0.206 0.138 0.127 0.133 0.052 0.042 0.053 0.103 0.016 0.208 0.188 0.054 0.135 0.108 0.094 0.091 0.013 0.028 0.129 0.052 0.129 0.049 0.135 0.143 0.075 0.128 0.108 0.066 0.142 0.103 0.196 0.089 0.126 0.104 0.132 0.165 0.09 0.14 0.03 0.11 0 0 Cd Cd 0.084 0.086 0.091 0.086 0.088 0.117 0.086 0.092 0.097 0.077 0.105 0.101 0.118 0.078 0.097 0.107 0.086 0.118 0.094 0.101 0.111 0.092 0.076 0.119 0.075 0.083 0.099 0.111 0.104 0.103 0.093 0.093 0.101 0.092 0.067 0.083 0.088 0.089 0.118 0.102 0.12 0.08 0.06 0.08 0.11 analyses raw data. All rawanalyses shown data. elements are percentage of in concentration. Co Co 0.027 0.027 0.022 0.032 0.023 0.034 0.025 0.022 0.024 0.026 0.023 0.022 0.012 0.027 0.026 0.031 0.029 0.036 0.031 0.038 0.025 0.005 0.022 0.024 0.019 0.012 0.035 0.031 0.024 0.033 0.036 0.033 0.017 0.006 0.029 0.022 0.045 0.043 0.025 0.025 0.032 0.008 0.03 0.02 0 Cu Cu 0.009 0.027 0.005 0.015 0.011 0.021 0.028 0.009 0.013 0.006 0.012 0.008 0.008 0.02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Fe Fe 0.329 0.344 0.361 0.376 0.376 0.335 0.336 0.383 0.363 0.348 0.403 0.347 0.336 0.339 0.366 0.353 0.375 0.343 0.335 0.372 0.343 0.349 0.392 0.341 0.324 0.378 0.322 0.381 0.325 0.398 0.322 0.389 0.325 0.355 0.344 0.376 0.343 0.373 0.323 0.368 0.335 0.356 0.365 0.36 0.37 Ga Ga 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ge Ge 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Hg Hg 0.059 0.068 0.037 0.178 0.071 0.018 0.061 0.012 0.012 0.026 0.023 0.223 0.109 0.146 0.132 0.001 0.086 0.012 0.061 0.021 0.007 0.047 0.008 0.056 0.085 0.09 0.02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 In In 0.001 0.004 0.002 0.003 0.002 0.004 0.001 0.011 0.003 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Mn Mn 0.104 0.096 0.114 0.081 0.107 0.107 0.135 0.107 0.167 0.127 0.097 0.158 0.149 0.034 0.107 0.122 0.168 0.066 0.129 0.113 0.147 0.148 0.138 0.127 0.115 0.088 0.116 0.133 0.072 0.151 0.107 0.204 0.157 0.106 0.114 0.094 0.104 0.143 0.138 0.139 0.083 0.148 0.134 0.15 0.2 Pb Pb 0.281 0.283 0.235 0.276 0.245 0.322 0.269 0.243 0.189 0.325 0.316 0.288 0.281 0.287 0.317 0.289 0.254 0.307 0.296 0.277 0.291 0.316 0.219 0.287 0.297 0.289 0.247 0.228 0.345 0.322 0.255 0.246 0.292 0.296 0.282 0.331 0.254 0.273 0.286 0.224 0.342 0.272 0.275 0.27 0.24 S 32.218 32.275 32.198 32.535 32.482 32.271 32.289 32.566 32.022 32.331 32.279 32.426 32.046 32.227 31.956 32.102 32.655 32.175 32.355 32.136 32.127 32.477 32.341 32.319 32.349 32.003 32.607 32.179 32.285 31.996 32.203 31.879 32.496 32.225 32.436 32.364 31.964 32.311 32.207 32.542 31.742 32.044 32.09 32.07 32.08 Sb Sb 0.011 0.024 0.026 0.034 0.001 0.016 0.003 0.001 0.009 0.032 0.032 0.011 0.013 0.016 0.015 0.032 0.007 0.013 0.01 0.02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Se Se 0.042 0.006 0.046 0.104 0.046 0.064 0.021 0.049 0.083 0.008 0.033 0.011 0.019 0.071 0.004 0.006 0.052 0.055 0.025 0.032 0.039 0.03 0.12 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Sn Sn 0.006 0.014 0.039 0.003 0.013 0.003 0.002 0.034 0.006 0.027 0.002 0.024 0.03 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Zn Zn 67.201 66.608 67.224 67.002 67.383 67.447 66.865 67.144 67.772 67.049 66.907 67.542 66.417 66.966 67.062 66.923 66.948 66.959 66.592 66.953 67.708 66.951 66.822 67.762 66.759 66.986 66.796 67.097 67.053 66.992 67.048 66.839 67.456 66.505 67.002 66.726 66.453 67.186 67.019 67.166 67.031 67.244 67.147 67.11 66.99 Total 100.567 100.397 100.807 100.457 100.882 101.037 100.469 100.193 101.204 100.377 100.335 100.656 100.253 100.105 100.761 100.273 100.235 100.479 100.274 100.869 100.413 100.269 100.239 100.439 100.315 100.963 100.374 100.218 100.329 100.263 100.704 100.104 100.378 99.833 99.401 99.974 99.971 101.02 99.987 99.982 100.12 99.788 99.761 99.932 99.855 Sample ID 1831.1033 1831.1033 1831.1033 1831.1033 1831.1033 1831.1033 1831.1033 1831.1033 1831.1033 1831.1033 1831.1033 1831.1033 1831.1033 1831.1033 1831.1033 1831.1033 1831.1033 1831.1033 1831.1033 1831.1033 1831.1033 1831.1033 1831.1033 1831.1033 1831.1033 1831.1033 1831.1033 57.4128 57.4128 57.4128 57.4128 57.4128 57.4128 57.4128 57.4128 57.4128 57.4128 57.4128 57.4128 57.4128 57.4128 57.4128 57.4128 57.4128 57.4128

85

No 84 46 65 85 47 66 48 86 67 49 68 87 50 69 88 51 70 89 52 71 90 53 72 54 73 55 74 56 75 57 76 58 77 59 78 60 79 61 80 62 81 63 82 64 83 Table 7. Continued 7. Table Ag Ag 0.006 0.013 0.003 0.001 0.002 0.006 0.027 0.002 0.021 0.019 0.014 0.017 0.009 0.006 0.005 0.005 0.008 0.003 0.005 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 As 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Bi Bi 0.042 0.098 0.033 0.067 0.126 0.066 0.145 0.106 0.077 0.188 0.184 0.125 0.032 0.058 0.071 0.138 0.049 0.048 0.098 0.087 0.073 0.134 0.028 0.046 0.088 0.078 0.008 0.022 0.118 0.137 0.033 0.037 0.027 0.068 0.162 0.089 0.095 0.003 0.141 0.108 0.2 0.1

0 0 0 Cd Cd 0.034 0.106 0.081 0.093 0.032 0.092 0.112 0.111 0.125 0.032 0.097 0.102 0.043 0.087 0.099 0.135 0.122 0.012 0.122 0.138 0.036 0.132 0.135 0.134 0.038 0.132 0.027 0.131 0.022 0.165 0.027 0.125 0.038 0.126 0.096 0.036 0.021 0.101 0.041 0.115 0.024 0.04 0.02 0.04 0.12 Co Co 0.015 0.038 0.031 0.025 0.064 0.021 0.031 0.024 0.029 0.022 0.035 0.031 0.012 0.037 0.052 0.018 0.055 0.048 0.007 0.021 0.043 0.003 0.043 0.035 0.015 0.013 0.039 0.014 0.032 0.007 0.048 0.022 0.026 0.056 0.069 0.034 0.005 0.032 0.012 0.04 0.04 0.01 0.02 0.02 0 Cu Cu 0.008 0.032 0.022 0.004 0.035 0.015 0.023 0.004 0.001 0.013 0.023 0.032 0.004 0.003 0.021 0.009 0.032 0.018 0.004 0.029 0.035 0.006 0.006 0.013 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Fe Fe 8.651 2.702 8.424 0.387 3.106 8.461 3.106 0.382 8.362 2.239 8.298 0.365 8.328 2.995 3.332 8.253 3.268 3.265 3.185 3.312 3.235 8.529 3.302 8.603 3.438 8.714 3.377 8.153 3.463 8.289 3.277 8.648 8.398 2.534 8.167 3.137 8.353 2.986 8.434 0.36 3.19 0.31 2.57 8.62 3.26 Ga Ga 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ge Ge 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Hg Hg 0.104 0.005 0.046 0.039 0.041 0.046 0.049 0.005 0.005 0.002 0.005 0.029 0.034 0.054 0.048 0.053 0.033 0.023 0.008 0.019 0.023 0.075 0.017 0.04 0.02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 In In 0.004 0.004 0.019 0.019 0.004 0.004 0.014 0.001 0.003 0.002 0.003 0.003 0.012 0.022 0.016 0.009 0.014 0.011 0.007 0.017 0.001 0.018 0.01 0.01 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Mn Mn 0.278 0.134 0.254 0.125 0.216 0.163 0.137 0.161 0.287 0.118 0.251 0.132 0.034 0.252 0.115 0.172 0.301 0.113 0.296 0.004 0.155 0.035 0.235 0.103 0.226 0.056 0.302 0.171 0.201 0.126 0.107 0.353 0.119 0.294 0.203 0.102 0.242 0.044 0.288 0.08 0.08 0.09 0.11 0.25 0.11 Pb Pb 0.221 0.281 0.201 0.194 0.216 0.222 0.226 0.191 0.296 0.195 0.285 0.278 0.264 0.238 0.294 0.255 0.254 0.253 0.273 0.299 0.323 0.202 0.295 0.258 0.247 0.193 0.261 0.204 0.319 0.274 0.249 0.242 0.282 0.246 0.211 0.249 0.288 0.257 0.24 0.28 0.23 0.29 0.28 0.27 0.25 30.924 S 32.399 30.949 31.885 32.328 31.796 32.138 32.036 32.505 31.004 32.157 32.266 30.326 32.221 32.186 30.458 32.513 32.381 30.733 32.435 32.345 30.951 32.516 32.375 32.468 31.297 32.258 30.799 32.748 32.306 30.804 32.635 30.484 32.648 31.077 32.311 30.837 32.243 30.425 32.558 30.559 32.107 31.253 30.95 31.42 Sb Sb 0.018 0.001 0.002 0.023 0.013 0.023 0.004 0.013 0.014 0.016 0.019 0.003 0.001 0.02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Se Se 0.003 0.039 0.023 0.007 0.056 0.001 0.034 0.015 0.026 0.075 0.046 0.015 0.025 0.051 0.121 0.075 0.091 0.018 0.057 0.069 0.014 0.044 0.025 0.067 0.094 0.002 0.03 0.02 0.01 0.05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Sn Sn 0.021 0.004 0.018 0.025 0.018 0.003 0.007 0.005 0.088 0.047 0.018 0.025 0.002 0.001 0.016 0.05 0.02 0.01 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Zn Zn 51.413 65.223 50.271 68.086 65.337 49.684 65.331 67.687 65.225 50.005 68.243 66.223 48.382 67.665 48.566 65.437 65.235 49.387 64.818 65.057 51.682 64.913 65.006 65.193 52.371 65.221 50.503 64.834 51.947 64.919 48.626 49.604 65.055 50.901 51.297 66.066 64.491 49.411 64.992 51.961 67.86 65.48 47.31 65.2 64.8 Total 101.026 101.435 100.684 101.155 100.735 101.796 101.462 101.445 100.817 100.809 101.717 101.627 101.233 101.247 101.445 101.649 101.485 101.676 101.277 101.574 100.955 101.675 100.729 100.784 91.629 90.415 100.81 89.795 90.169 87.755 87.981 89.067 101.28 91.946 92.975 90.746 88.289 101.95 89.175 91.379 91.239 88.894 92.409 92.79 86.6 1919.1470.a 1919.1470.a 1919.1470.a 1919.1470.a 1919.1470.a 1919.1470.a 1919.1470.a 1919.1470.a 1919.1470.a 1919.1470.a 1919.1470.a 1919.1470.a 1919.1470.a 1919.1470.a 1919.1470.a 1919.1470.a 1919.1470.a 1919.1470.a Sample ID 1831.1815 1831.1815 1831.1815 1831.1815 1831.1815 1831.1815 1831.1815 1831.1815 1831.1815 1831.1815 1831.1815 1831.1815 1831.1815 1831.1815 1831.1815 1831.1815 1831.1815 1831.1815 1831.1815 1831.1815 1831.1815 1831.1815 57.4128 57.4128 57.4128 57.4128 57.4128

86

110 129 111 130 112 131 113 132 114 133 115 134 116 135 117 118 119 100 120 101 121 102 122 103 123 104 124 105 125 106 126 107 127 108 128 109 No 91 92 93 94 95 96 97 98 99 Table 7. Continued 7. Table Ag Ag 0.006 0.007 0.005 0.002 0.018 0.009 0.007 0.024 0.005 0.004 0.002 0.014 0.019 0.014 0.003 0.017 0.003 0.004 0.003 0.02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 As 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Bi Bi 0.134 0.102 0.092 0.031 0.125 0.077 0.089 0.085 0.056 0.075 0.118 0.023 0.167 0.096 0.225 0.076 0.021 0.077 0.176 0.075 0.167 0.074 0.012 0.147 0.133 0.101 0.136 0.124 0.018 0.084 0.121 0.071 0.133 0.141 0.062 0.15 0.16

0.14 0.03 0.05 0.11 0 0 0 0 Cd Cd 0.037 0.218 0.096 0.244 0.167 0.209 0.198 0.216 0.167 0.239 0.229 0.138 0.188 0.235 0.151 0.216 0.218 0.163 0.246 0.212 0.251 0.231 0.216 0.187 0.244 0.202 0.184 0.201 0.247 0.257 0.239 0.211 0.241 0.233 0.241 0.217 0.219 0.248 0.164 0.196 0.02 0.14 0.13 0.19 0.23 Co Co 0.012 0.015 0.001 0.012 0.014 0.026 0.014 0.012 0.006 0.015 0.017 0.001 0.008 0.014 0.011 0.009 0.012 0.001 0.006 0.011 0.001 0.016 0.012 0.008 0.008 0.009 0.003 0.016 0.005 0.01 0.01 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 Cu Cu 0.007 0.005 0.002 0.013 0.006 0.002 0.008 0.001 0.002 0.012 0.017 0.028 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Fe Fe 8.438 1.359 5.768 8.582 0.909 5.727 5.835 0.456 5.794 1.471 0.765 5.756 1.447 0.763 5.769 1.522 0.478 0.402 5.842 0.989 1.291 1.912 0.964 1.735 1.365 0.639 1.916 1.154 1.553 1.247 1.305 1.244 0.986 1.609 1.216 1.471 1.272 1.337 0.36 1.39 5.87 1.66 1.96 1.57 5.64 Ga Ga 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ge Ge 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Hg Hg 0.008 0.011 0.037 0.085 0.013 0.002 0.094 0.012 0.031 0.027 0.081 0.113 0.002 0.052 0.086 0.057 0.05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 In In 0.013 0.003 0.007 0.002 0.002 0.002 0.001 0.003 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Mn Mn 0.247 0.502 0.026 0.237 0.314 0.023 0.186 0.498 0.295 0.024 0.488 0.018 0.511 0.231 0.064 0.179 0.481 0.019 0.369 0.518 0.441 0.565 0.415 0.518 0.501 0.466 0.351 0.552 0.449 0.499 0.435 0.469 0.426 0.553 0.441 0.507 0.494 0.066 0.505 0.33 0.36 0.01 0.51 0.33 0 Pb Pb 0.304 0.264 0.282 0.255 0.269 0.323 0.368 0.307 0.242 0.273 0.287 0.306 0.274 0.312 0.229 0.292 0.301 0.272 0.262 0.351 0.347 0.218 0.291 0.306 0.316 0.327 0.258 0.284 0.271 0.252 0.216 0.223 0.301 0.279 0.279 0.266 0.255 0.263 0.263 0.293 0.322 0.32 0.35 0.32 0.39 S 30.777 32.345 30.704 32.271 32.292 32.189 32.351 32.379 32.091 32.129 32.549 32.488 32.253 32.496 32.466 32.554 32.312 32.547 32.526 32.428 32.528 32.451 32.375 32.578 32.372 32.354 32.304 32.292 32.299 32.609 32.404 32.376 32.463 32.278 32.555 32.343 32.379 32.631 32.398 32.473 32.27 32.28 32.38 32.84 32.52 Sb Sb 0.027 0.054 0.006 0.011 0.007 0.005 0.021 0.013 0.015 0.02 0.03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Se Se 0.029 0.014 0.052 0.028 0.055 0.035 0.006 0.035 0.024 0.003 0.051 0.031 0.016 0.004 0.108 0.084 0.006 0.046 0.001 0.059 0.043 0.079 0.052 0.018 0.081 0.038 0.088 0.038 0.095 0.024 0.059 0.07 0.03 0 0 0 0 0 0 0 0 0 0 0 0 Sn Sn 0.024 0.028 0.008 0.017 0.005 0.003 0.009 0.034 0.013 0.003 0.006 0.007 0.042 0.013 0.019 0.026 0.04 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Zn Zn 50.521 65.203 58.901 66.088 58.971 66.152 58.917 65.175 66.538 58.604 64.823 66.238 58.768 64.974 66.402 59.114 64.783 67.068 59.397 67.165 64.687 59.071 66.309 64.476 65.517 66.176 65.114 64.817 66.587 65.857 64.655 66.228 65.102 66.269 65.725 65.738 65.882 65.392 58.722 65.296 50.87 64.62 65.31 65.98 64.7 Total 100.042 100.188 100.014 100.084 100.034 100.603 100.145 100.643 100.999 100.675 100.344 100.401 100.111 100.563 100.025 100.819 100.905 100.052 100.999 100.309 101.097 100.508 100.964 100.396 100.293 90.499 90.791 99.568 97.762 97.119 97.273 98.044 99.907 98.136 100.92 99.907 98.014 100.72 100.07 100.52 99.752 97.556 97.65 97.66 100.2 1919.1470.a 1919.1470.a Sample ID 1925.0621 2000.0189 1925.0621 2000.0189 1925.0621 2000.0189 1925.0621 1925.0621 2000.0189 1925.0621 1925.0621 2000.0189 1925.0621 1925.0621 2000.0189 1925.0621 1925.0621 2000.0189 1925.0621 1925.0621 2000.0189 1925.0621 1925.0621 1925.0621 1925.0621 1925.0621 1925.0621 1925.0621 1925.0621 1925.0621 1925.0621 1925.0621 1925.0621 1925.0621 1925.0621 1925.0621 1925.0621 1925.0621 1925.0621 1925.0621 1925.0621 2000.0189 1925.0621

87

136 174 155 137 175 156 138 176 157 139 177 158 140 178 159 141 179 142 160 180 143 161 162 144 163 145 164 146 165 147 166 148 167 149 168 150 169 151 170 152 171 153 172 154 173 No Table 7. Continued 7. Table Ag Ag 0.013 0.012 0.014 0.007 0.007 0.002 0.013 0.008 0.001 0.005 0.013 0.002 0.006 0.007 0.013 0.016 0.003 0.013 0.015 0.016 0.002 0.025 0.014 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 As 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Bi Bi 0.179 0.093 0.055 0.039 0.149 0.173 0.074 0.187 0.027 0.052 0.051 0.101 0.118 0.082 0.099 0.157 0.131 0.047 0.103 0.088 0.177 0.097 0.093 0.184 0.141 0.072 0.194 0.129 0.092 0.115 0.099 0.113 0.049 0.064 0.165 0.076 0.095 0.011 0.022 0.171 0.013

0 0 0 0 Cd Cd 0.193 0.116 0.071 0.234 0.141 0.081 0.217 0.119 0.064 0.202 0.123 0.026 0.226 0.121 0.209 0.129 0.059 0.169 0.203 0.053 0.161 0.172 0.128 0.226 0.146 0.217 0.169 0.196 0.149 0.207 0.159 0.219 0.128 0.234 0.152 0.163 0.243 0.232 0.247 0.231 0.215 0.15 0.08 0.22 0.22 Co Co 0.008 0.019 0.004 0.006 0.016 0.005 0.001 0.001 0.012 0.023 0.028 0.006 0.009 0.004 0.006 0.001 0.018 0.004 0.028 0.016 0.033 0.026 0.028 0.005 0.024 0.009 0.002 0.02 0.01 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Cu Cu 0.009 0.001 0.005 0.015 0.023 0.032 0.005 0.006 0.002 0.014 0.013 0.023 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Fe Fe 0.029 8.373 0.024 5.977 8.236 8.314 0.024 5.865 8.307 0.016 5.857 8.303 0.017 5.835 8.128 5.845 0.016 8.276 5.862 0.333 0.008 5.794 0.011 5.625 0.019 5.886 5.813 0.009 5.884 0.017 5.875 0.014 5.746 0.014 5.773 0.059 0.015 0.073 0.001 0.023 5.74 5.9 0 0 0 Ga Ga 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ge Ge 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Hg Hg 0.032 0.001 0.032 0.012 0.064 0.088 0.027 0.028 0.009 0.008 0.103 0.093 0.019 0.022 0.045 0.097 0.011 0.069 0.006 0.036 0.114 0.043 0.038 0.052 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 In In 0.001 0.009 0.008 0.004 0.001 0.002 0.005 0.007 0.004 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Mn Mn 0.039 0.017 0.036 0.187 0.015 0.076 0.086 0.001 0.044 0.085 0.181 0.007 0.134 0.022 0.024 0.008 0.034 0.021 0.022 0.019 0.052 0.024 0.023 0.029 0.001 0.15 0.08 0.01 0.02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Pb Pb 0.286 0.223 0.324 0.288 0.283 0.289 0.282 0.334 0.267 0.298 0.259 0.241 0.228 0.236 0.346 0.283 0.329 0.242 0.236 0.331 0.292 0.324 0.298 0.267 0.312 0.325 0.285 0.265 0.226 0.273 0.258 0.213 0.276 0.262 0.303 0.237 0.305 0.236 0.278 0.294 0.297 0.23 0.26 0.35 0.28 S 32.757 32.343 32.448 33.003 32.847 32.404 32.723 32.579 32.734 32.436 32.411 32.347 32.712 32.411 32.477 32.755 32.511 32.723 32.279 32.561 32.579 32.264 32.562 32.827 32.523 32.431 32.448 32.658 32.591 32.223 32.703 32.243 32.712 32.289 32.605 32.261 31.914 32.448 32.426 32.668 32.841 31.78 32.35 32.62 32.25 Sb Sb 0.007 0.002 0.007 0.024 0.026 0.007 0.026 0.007 0.009 0.016 0.012 0.013 0.007 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Se Se 0.012 0.029 0.037 0.008 0.092 0.087 0.057 0.055 0.019 0.052 0.049 0.022 0.015 0.023 0.009 0.037 0.048 0.039 0.003 0.013 0.026 0.015 0.006 0.096 0.003 0.062 0.053 0.05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Sn Sn 0.015 0.013 0.006 0.001 0.016 0.029 0.006 0.021 0.003 0.024 0.024 0.042 0.017 0.029 0.033 0.028 0.005 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Zn Zn 68.859 68.788 59.188 60.044 69.026 58.906 59.679 68.966 59.997 68.642 59.312 59.809 68.794 59.365 60.335 59.269 68.422 60.153 59.694 69.107 59.131 68.826 59.431 68.917 59.268 69.001 59.584 68.657 69.325 59.069 68.787 59.409 68.339 59.571 68.437 60.004 68.496 68.484 69.164 68.301 59.33 59.09 68.94 59.57 68.79 Total 102.199 101.752 102.498 102.493 101.556 101.723 101.223 101.826 101.995 100.948 101.749 101.146 102.419 102.038 102.617 102.256 101.726 102.536 102.122 101.661 101.272 101.748 101.539 102.684 101.775 97.959 102.03 97.928 101.25 98.087 98.237 97.859 102.02 98.018 98.442 97.786 98.621 98.623 98.141 98.218 98.703 98.36 98.34 97.92 101.8 Sample ID 2002.0015 2002.0015 2000.0189 2007.0304 2002.0015 2000.0189 2007.0304 2002.0015 2000.0189 2007.0304 2002.0015 2000.0189 2007.0304 2002.0015 2000.0189 2007.0304 2000.0189 2002.0015 2007.0304 2000.0189 2002.0015 2007.0304 2002.0015 2000.0189 2002.0015 2000.0189 2002.0015 2000.0189 2002.0015 2000.0189 2002.0015 2000.0189 2002.0015 2000.0189 2002.0015 2000.0189 2002.0015 2000.0189 2002.0015 2000.0189 2002.0015 2002.0015 2002.0015 2002.0015 2002.0015

88

181 219 200 220 182 201 221 183 202 222 184 203 223 185 204 186 224 205 187 225 206 188 207 189 208 190 191 209 192 210 193 211 194 212 195 213 196 214 197 215 198 216 199 217 218 No Table 7. Continued 7. Table Ag Ag 0.005 0.001 0.026 0.008 0.014 0.003 0.002 0.007 0.008 0.017 0.006 0.026 0.003 0.012 0.006 0.007 0.009 0.014 0.01 0.01 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 As 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Bi Bi 0.142 0.032 0.111 0.031 0.158 0.052 0.085 0.104 0.214 0.105 0.142 0.244 0.088 0.055 0.054 0.045 0.153 0.013 0.036 0.027 0.101 0.049 0.063 0.156 0.124 0.075 0.012 0.233 0.182 0.065 0.076 0.176 0.088 0.072 0.093 0.131 0.024 0.054 0.01 0.03 0.05

0 0 0 0 Cd Cd 0.082 0.107 0.037 0.086 0.054 0.112 0.109 0.065 0.105 0.103 0.042 0.085 0.096 0.016 0.094 0.077 0.084 0.084 0.098 0.086 0.047 0.078 0.063 0.045 0.061 0.098 0.075 0.062 0.027 0.094 0.068 0.114 0.061 0.086 0.089 0.085 0.077 0.084 0.09 0.06 0.07 0.06 0.08 0.06 0.1 Co Co 0.043 0.028 0.035 0.043 0.022 0.016 0.027 0.003 0.018 0.014 0.001 0.039 0.001 0.003 0.023 0.006 0.012 0.002 0.039 0.017 0.012 0.023 0.026 0.014 0.014 0.034 0.032 0.019 0.026 0.011 0.028 0.015 0.015 0.039 0.029 0.031 0 0 0 0 0 0 0 0 0 Cu Cu 0.007 0.018 0.003 0.014 0.012 0.001 0.015 0.007 0.006 0.004 0.004 0.006 0.016 0.016 0.01 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Fe Fe 0.365 0.341 8.424 0.421 0.357 0.362 8.211 0.419 8.298 0.369 0.399 8.122 0.328 0.336 0.366 8.315 0.352 0.358 8.034 0.369 0.393 8.336 0.397 8.232 0.409 8.242 8.246 0.282 8.176 0.351 8.425 0.313 8.333 0.324 8.145 0.387 0.393 8.271 0.393 0.369 0.348 0.322 0.37 8.24 8.3 Ga Ga 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ge Ge 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Hg Hg 0.025 0.102 0.007 0.008 0.087 0.004 0.003 0.063 0.122 0.008 0.004 0.003 0.018 0.037 0.015 0.013 0.027 0.028 0.031 0.078 0.025 0.14 0.08 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 In In 0.002 0.006 0.005 0.005 0.005 0.007 0.002 0.005 0.002 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Mn Mn 0.092 0.164 0.095 0.164 0.175 0.171 0.203 0.054 0.131 0.104 0.144 0.123 0.128 0.214 0.087 0.146 0.096 0.196 0.071 0.223 0.154 0.185 0.089 0.136 0.125 0.121 0.102 0.085 0.115 0.173 0.163 0.165 0.086 0.173 0.076 0.219 0.093 0.11 0.12 0.11 0.11 0.12 0.15 0.12 0.2 Pb Pb 0.326 0.269 0.356 0.237 0.297 0.181 0.224 0.204 0.223 0.326 0.266 0.271 0.257 0.261 0.271 0.253 0.263 0.223 0.258 0.242 0.301 0.204 0.305 0.252 0.314 0.256 0.293 0.271 0.255 0.282 0.274 0.203 0.292 0.302 0.281 0.246 0.304 0.333 0.226 0.228 0.232 0.258 0.233 0.24 0.33 S 32.119 31.811 32.278 32.686 32.282 32.362 32.706 32.251 32.838 32.165 32.137 32.742 32.314 32.777 32.316 31.346 32.405 32.174 32.309 32.204 32.353 32.505 33.058 32.024 32.239 32.778 32.919 33.394 32.931 32.285 32.832 32.703 32.222 32.767 32.476 32.394 32.697 32.381 32.297 32.083 32.057 32.11 32.15 32.58 32.3 Sb Sb 0.012 0.016 0.021 0.005 0.011 0.029 0.021 0.009 0.006 0.036 0.015 0.007 0.008 0.012 0.033 0.019 0.01 0.01 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Se Se 0.058 0.023 0.053 0.059 0.059 0.043 0.017 0.091 0.076 0.001 0.078 0.042 0.098 0.056 0.051 0.168 0.076 0.058 0.025 0.078 0.092 0.016 0.009 0.053 0.06 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Sn Sn 0.006 0.001 0.037 0.024 0.031 0.022 0.038 0.012 0.003 0.011 0.003 0.016 0.003 0.016 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Zn Zn 66.959 67.072 66.808 59.883 67.332 66.724 59.823 67.318 66.732 60.155 67.229 66.892 59.769 67.178 60.291 67.043 66.609 59.318 66.812 66.738 59.529 67.221 59.667 66.686 59.615 59.962 66.983 59.181 66.311 60.419 66.708 59.905 66.685 59.909 66.947 60.129 66.513 60.088 66.474 60.255 66.631 67.507 66.851 66.788 66.76 Total 100.231 100.172 101.597 100.612 100.185 100.682 100.216 101.835 100.573 100.189 101.139 100.508 100.461 100.461 100.134 100.705 101.736 100.776 101.805 100.102 100.692 102.032 100.025 101.779 101.523 100.174 101.692 100.127 101.379 101.725 100.698 99.933 101.32 100.45 101.96 99.939 99.819 101.18 99.758 99.991 99.955 99.964 99.763 99.86 99.1 Sample ID 2007.0304 2007.0304 2007.0304 2007.0304 2007.0304 2007.0304 2007.0304 2007.0304 2007.0304 2007.0304 2007.0304 2007.0304 2007.0304 2007.0304 2007.0304 2007.0304 2007.0304 940069 940069 940069 940069 940069 940069 940069 940069 940069 940069 940069 940069 940069 940069 940069 940069 940069 940069 940069 940069 940069 940069 940069 940069 940069 940069 940069 940069

89

227 226 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 248 247 262 249 261 260 254 251 250 255 253 252 259 258 263 257 256 264 265 266 267 268 269 270 No Table 7. Continued 7. Table Ag Ag 0.019 0.019 0.001 0.002 0.006 0.007 0.009 0.005 0.014 0.009 0.015 0.011 0.008 0.008 0.008 0.004 0.002 0.004 0.004 0.009 0.001 0.013 0.01 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 As 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Bi Bi 0.161 0.108 0.062 0.014 0.088 0.056 0.025 0.102 0.115 0.219 0.116 0.057 0.123 0.153 0.113 0.056 0.095 0.114 0.156 0.169 0.222 0.232 0.092 0.036 0.172 0.129 0.151 0.221 0.028 0.124 0.032 0.125 0.108 0.069 0.149 0.065 0.01 0.14 0.03 0.2 0 0 0 0 0

Cd Cd 0.096 0.103 0.065 0.084 0.107 1.053 1.037 1.113 1.092 1.085 1.074 1.057 1.073 1.069 0.699 0.717 0.743 0.687 0.713 0.703 0.709 0.747 0.705 0.443 0.635 0.693 0.645 0.706 0.669 0.696 0.747 0.684 0.679 0.711 0.731 0.679 0.671 0.264 0.294 0.295 0.295 0.63 0.68 0.29 1.1 Co Co 0.027 0.039 0.027 0.071 0.089 0.067 0.077 0.061 0.081 0.076 0.053 0.055 0.091 0.106 0.086 0.129 0.097 0.095 0.098 0.106 0.106 0.108 0.078 0.112 0.105 0.112 0.112 0.079 0.101 0.117 0.111 0.086 0.113 0.047 0.035 0.064 0.046 0.04 0.02 0.09 0.09 0.11 0.05 0.1 0.1 Cu Cu 0.007 0.011 0.249 0.063 0.504 0.496 0.274 0.269 0.578 0.005 0.046 0.014 0.006 0.015 0.011 0.013 0.007 0.006 0.008 1.595 0.309 0.013 0.033 0.033 0.005 0.343 4.552 0.357 0.292 0.44 0.55 1.03 0.01 0.01 0.98 0 0 0 0 0 0 0 0 0 0 Fe Fe 10.143 0.342 0.355 0.337 0.306 0.347 0.455 0.489 0.172 0.704 1.574 0.461 0.487 0.834 0.594 0.516 0.442 0.469 0.617 0.582 0.454 0.527 0.449 0.516 0.472 0.433 0.412 0.462 0.535 0.806 0.411 0.535 0.481 0.481 0.493 9.053 9.265 9.599 0.64 0.77 0.44 0.57 0.56 0.1 9.1 Ga Ga 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ge Ge 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Hg Hg 0.013 0.004 0.005 0.013 0.002 0.061 0.101 0.009 0.078 0.065 0.025 0.017 0.061 0.022 0.073 0.05 0.04 0.04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 In In 0.001 0.001 0.003 0.005 0.014 0.007 0.002 0.002 0.006 0.007 0.018 0.009 0.014 0.009 0.012 0.016 0.015 0.022 0.009 0.015 0.008 0.011 0.004 0.008 0.005 0.008 0.001 0.005 0.002 0.01 0.01 0.01 0.01 0 0 0 0 0 0 0 0 0 0 0 0 Mn Mn 0.082 0.058 0.101 0.127 0.126 0.009 0.043 0.018 0.044 0.003 0.002 0.006 0.016 0.002 0.063 0.041 0.019 0.075 0.041 0.068 0.053 0.041 0.03 0.06 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Pb Pb 0.311 0.256 0.211 0.269 0.279 0.303 0.228 0.314 0.226 0.292 0.318 0.281 0.215 0.283 0.239 0.267 0.297 0.298 0.237 0.313 0.304 0.271 0.281 0.242 0.232 0.244 0.304 0.221 0.274 0.273 0.239 0.266 0.254 0.266 0.271 0.291 0.272 0.287 0.19 0.29 0.33 0.27 0.24 0.29 0.3 32.253 S 32.144 32.175 32.404 32.201 31.636 31.477 31.768 31.715 31.222 31.799 31.862 31.499 31.163 32.218 32.401 32.356 32.363 31.758 32.395 32.116 32.017 32.457 32.292 32.235 32.427 32.442 32.179 32.151 31.993 31.982 32.166 32.107 32.552 32.417 32.001 32.377 32.894 32.826 32.735 32.647 31.63 32.33 32.32 32.83 Sb Sb 0.012 0.013 0.003 0.038 0.001 0.012 0.011 0.037 0.003 0.038 0.01 0.02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Se Se 0.045 0.053 0.034 0.014 0.096 0.028 0.019 0.019 0.012 0.021 0.003 0.033 0.116 0.002 0.012 0.017 0.024 0.024 0.009 0.046 0.046 0.002 0.045 0.002 0.073 0.04 0.08 0.06 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Sn Sn 0.018 0.001 0.013 0.001 0.016 0.013 0.021 0.013 0.031 0.017 0.016 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Zn Zn 65.917 66.713 66.721 67.112 66.527 63.257 63.105 62.989 62.435 63.414 62.412 62.196 62.684 66.222 65.887 66.593 66.185 66.814 66.682 66.868 66.513 66.694 66.894 64.818 66.681 66.498 66.848 66.795 66.579 66.954 65.812 66.747 66.684 66.566 58.095 53.462 57.725 57.663 64.16 62.97 66.44 66.26 67.32 66.65 57.6 Total 100.395 100.303 100.596 100.418 100.951 100.836 100.689 100.393 100.514 100.928 100.725 100.575 100.815 100.521 100.684 101.133 100.717 100.768 100.872 100.289 100.563 101.844 100.982 101.156 101.309 99.233 99.887 99.721 97.192 96.814 97.534 96.394 98.031 98.653 96.646 97.301 99.982 99.961 100.17 99.746 100.99 101.21 99.77 97.62 95.82 EJ-MH11-2a EJ-MH11-2a EJ-MH11-2a EJ-MH11-2a EJ-MH11-2a EJ-MH11-2a EJ-MH11-2a EJ-MH11-2a EJ-MH11-2a EJ-MH11-2a EJ-MH11-2a EJ-MH11-2a EJ-MH11-2a EJ-MH11-2a EJ-MH11-2a EJ-MH11-2a EJ-MH11-2a EJ-MH11-2a EJ-MH11-2a EJ-MH11-2a EJ-MH11-2a EJ-MH11-2a EJ-MH11-2a EJ-MH11-2a EJ-MH11-2a Sample ID Ej-BhZ-Ib Ej-BhZ-Ib Ej-BhZ-Ib Ej-BhZ-Ib Ej-BhZ-Ib Ej-BhZ-Ib Ej-BhZ-Ib Ej-BhZ-Ib Ej-BhZ-Ib Ej-BhZ-Ib 940069 940069 940069 940069 940069 Gås IIa Gås IIa Gås IIa Gås IIa Gås IIa

90

271 272 290 291 273 309 292 274 310 293 275 311 294 276 312 295 277 313 278 296 279 314 297 280 315 298 281 282 299 283 300 284 285 301 286 302 287 288 303 289 304 305 306 307 308 No Table 7. Continued 7. Table Ag Ag 0.002 0.004 0.005 0.002 0.005 0.001 0.029 0.019 0.006 0.004 0.005 0.006 0.008 0.012 0.006 0.011 0.01 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 As 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Bi Bi 0.126 0.111 0.127 0.182 0.056 0.142 0.151 0.043 0.196 0.242 0.032 0.076 0.107 0.079 0.015 0.086 0.185 0.143 0.016 0.182 0.127 0.049 0.119 0.133 0.104 0.143 0.063 0.103 0.013 0.153 0.076 0.029 0.069 0.046 0.064 0.087 0.13 0.02 0.11 0.12 0.02 0 0 0 0

Cd Cd 0.315 0.545 0.064 0.533 0.538 0.281 0.076 0.553 0.293 0.073 0.036 0.284 0.084 0.061 0.256 0.056 0.026 0.285 0.036 0.274 0.084 0.277 0.091 0.513 0.077 0.061 0.714 0.075 0.552 0.048 0.557 0.547 0.065 0.565 0.079 0.551 0.539 0.046 0.086 0.036 0.036 0.31 0.51 0.09 0 Co Co 0.019 0.005 0.051 0.009 0.014 0.036 0.004 0.055 0.018 0.014 0.035 0.013 0.068 0.015 0.016 0.066 0.023 0.048 0.011 0.057 0.003 0.016 0.039 0.011 0.016 0.031 0.016 0.005 0.027 0.017 0.001 0.007 0.024 0.022 0.014 0.006 0.024 0.004 0.017 0.014 0.025 0.036 0.07 0.02 0 Cu Cu 0.651 0.012 0.014 0.144 0.046 1.025 0.585 1.275 0.011 0.469 0.353 0.009 0.401 0.493 0.056 0.003 0.006 0.559 0.206 0.111 0.032 0.027 0.064 0.014 0.029 0.015 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Fe Fe 10.602 10.363 10.464 10.682 10.386 10.654 11.085 10.866 10.697 10.976 10.283 10.476 9.079 9.512 8.196 8.692 9.308 9.542 9.328 9.799 9.328 9.649 9.665 9.389 9.543 9.582 9.963 9.596 9.427 9.775 9.583 9.656 10.69 9.334 9.627 9.555 9.463 9.607 9.558 9.417 9.327 9.551 9.379 9.407 9.46 Ga Ga 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ge Ge 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Hg Hg 0.048 0.086 0.073 0.031 0.045 0.087 0.006 0.129 0.006 0.016 0.006 0.088 0.131 0.058 0.056 0.027 0.003 0.029 0.158 0.02 0.11 0.04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 In In 0.001 0.007 0.034 0.001 0.005 0.003 0.001 0.006 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Mn Mn 0.053 0.051 1.089 0.029 0.112 0.022 0.081 1.223 0.114 0.047 1.059 1.249 0.053 1.091 1.121 0.056 1.002 1.039 0.152 1.116 0.111 1.079 0.078 1.192 1.015 0.083 1.027 0.014 0.122 1.109 0.014 0.071 1.061 0.075 0.953 0.057 0.032 1.147 0.079 1.072 1.165 1.079 1.116 1.24 1.12 Pb Pb 0.232 0.299 0.336 0.231 0.308 0.272 0.277 0.237 0.307 0.268 0.219 0.243 0.212 0.283 0.279 0.261 0.231 0.314 0.283 0.309 0.265 0.346 0.236 0.307 0.275 0.238 0.209 0.246 0.268 0.252 0.269 0.271 0.315 0.235 0.302 0.273 0.232 0.319 0.27 0.28 0.29 0.34 0.24 0.23 0.29 S 32.619 31.708 32.979 32.095 32.626 31.959 32.832 32.994 31.989 32.513 32.712 33.075 32.719 33.048 32.869 33.043 32.674 32.883 32.938 33.007 32.987 32.975 32.883 33.044 32.308 32.949 32.829 32.248 32.131 33.457 31.759 32.673 31.847 32.726 32.265 32.495 32.592 32.028 33.019 32.767 32.926 32.958 32.87 31.77 32.56 Sb Sb 0.017 0.003 0.012 0.002 0.016 0.038 0.021 0.005 0.001 0.005 0.006 0.02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Se Se 0.052 0.016 0.029 0.046 0.026 0.051 0.044 0.013 0.035 0.091 0.019 0.044 0.142 0.073 0.006 0.022 0.014 0.037 0.067 0.097 0.034 0.078 0.094 0.042 0.005 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Sn Sn 0.028 0.018 0.012 0.016 0.039 0.013 0.036 0.019 0.013 0.003 0.017 0.06 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Zn Zn 57.457 52.917 55.998 53.084 52.592 58.304 55.708 52.102 57.497 55.902 56.906 57.885 55.334 56.805 57.677 55.653 57.105 57.845 55.317 56.781 57.858 54.926 56.777 53.123 55.806 56.707 52.246 52.958 52.629 53.008 53.173 56.631 52.956 53.846 56.656 53.543 56.011 55.263 55.604 55.508 58.45 58.31 56.56 56.82 56.43 Total 100.654 100.044 100.354 101.627 101.469 102.016 100.928 101.415 100.996 101.506 100.758 101.926 101.001 100.652 101.329 100.471 100.289 100.408 96.311 96.548 96.087 95.934 101.05 99.477 99.754 99.302 99.977 101.99 99.163 97.361 99.933 96.599 97.104 96.702 96.587 96.713 97.401 97.139 100.48 99.672 99.343 99.118 99.596 99.59 97.8 Gås NI And Gås NI And Gås NI And Gås NI And Gås NI And Gås NI And Gås NI And Gås NI And Gås NI And Gås NI And Gås NI And Gås NI And Gås NI And Sample ID LAH-001-2 LAH-001-2 LAH-001-2 LAH-001-2 LAH-001-2 LAH-001-2 LAH-001-2 LAH-001-2 LAH-001-2 LAH-001-2 LAH-001-2 LAH-001-2 LAH-001-2 LAH-001-2 LAH-001-2 LAH-001-2 LAH-001-2 LAH-001-2 LAH-001-2 LAH-001-2 LAH-001-2 LAH-001-2 LAH-001-2 Gås IIa Gås IIa Gås IIa Gås IIa Gås IIa Gås IIa Gås IIa Gås IIa Gås IIa

91

354 316 335 355 317 356 336 318 357 337 319 358 338 320 359 339 321 340 322 341 323 342 324 343 325 344 326 345 327 346 328 347 329 348 330 349 331 350 332 351 333 334 352 353 No Table 7. Continued 7. Table Ag Ag 0.005 0.009 0.013 0.016 0.006 0.001 0.013 0.002 0.001 0.008 0.002 0.001 0.012 0.006 0.012 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 As 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Bi Bi 0.083 0.204 0.101 0.023 0.046 0.103 0.241 0.101 0.119 0.141 0.131 0.048 0.035 0.078 0.182 0.047 0.112 0.159 0.087 0.097 0.123 0.102 0.137 0.059 0.024 0.208 0.008 0.162 0.024 0.189 0.136 0.027 0.139 0.088 0.128 0.117 0.075 0.083 0.103 0.12 0.12 0.08 0.05

0 Cd Cd 0.203 0.218 0.205 0.209 0.173 0.248 0.221 0.138 0.221 0.204 0.234 0.219 0.201 0.192 0.222 0.214 0.205 0.208 0.218 0.199 0.209 0.203 0.246 0.207 0.189 0.214 0.223 0.236 0.209 0.158 0.202 0.214 0.155 0.201 0.216 0.224 0.19 0.15 0.21 0.19 0.25 0.19 0.22 0.2 Co Co 0.004 0.009 0.006 0.005 0.016 0.004 0.003 0.011 0.023 0.012 0.003 0.004 0.006 0.013 0.007 0.002 0.008 0.023 0.002 0.008 0.009 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Cu Cu 0.021 0.009 0.012 0.003 0.027 0.003 0.003 0.014 0.013 0.001 0.008 0.006 0.106 0.012 0.012 0.036 0.012 0.002 0.011 0.017 0.036 0.01 0.02 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Fe Fe 8.855 8.817 8.767 8.517 8.634 8.732 8.825 8.691 8.656 8.612 9.058 9.066 8.393 8.815 8.806 8.815 8.997 8.624 8.812 8.707 8.294 8.872 8.393 8.878 8.896 8.895 9.145 8.971 8.934 8.948 8.785 8.893 8.771 8.892 8.454 8.919 8.903 8.992 8.812 8.167 8.639 9.042 8.666 8.6 Ga Ga 0.006 0.001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ge Ge 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Hg Hg 0.144 0.054 0.124 0.039 0.096 0.017 0.019 0.053 0.033 0.095 0.121 0.046 0.024 0.026 0.016 0.029 0.047 0.026 0.094 0.041 0.02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 In In 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Mn Mn 0.114 0.188 0.114 0.173 0.186 0.121 0.201 0.107 0.202 0.203 0.089 0.127 0.222 0.109 0.171 0.099 0.138 0.187 0.102 0.176 0.109 0.148 0.117 0.212 0.186 0.138 0.199 0.128 0.184 0.153 0.232 0.156 0.166 0.113 0.124 0.145 0.137 0.123 0.158 0.141 0.151 0.19 0.11 0.17 Pb Pb 0.373 0.235 0.279 0.262 0.257 0.252 0.226 0.289 0.282 0.238 0.224 0.303 0.306 0.273 0.165 0.273 0.252 0.278 0.261 0.247 0.214 0.261 0.247 0.236 0.244 0.289 0.254 0.263 0.247 0.284 0.198 0.246 0.314 0.233 0.266 0.289 0.176 0.272 0.384 0.273 0.215 0.198 0.23 0.3 32.767 S 32.647 33.022 32.723 32.655 32.907 32.675 32.695 32.793 33.091 32.611 32.704 32.764 32.817 32.974 32.691 32.625 32.687 32.562 32.533 32.466 32.814 32.715 32.473 32.753 32.713 32.608 33.075 32.671 32.667 32.594 32.691 32.573 32.579 32.857 32.814 32.725 32.767 32.883 32.748 32.66 32.74 32.84 22.04 Sb Sb 0.014 0.017 0.004 0.048 0.001 0.017 0.002 0.005 0.009 0.002 0.039 0.005 0.002 0.02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Se Se 0.062 0.002 0.013 0.011 0.082 0.043 0.018 0.054 0.055 0.021 0.121 0.009 0.012 0.032 0.032 0.098 0.069 0.024 0.026 0.079 0.102 0.041 0.036 0.001 0.013 0.009 0.035 0.046 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Sn Sn 0.037 0.011 0.017 0.002 0.003 0.038 0.015 0.009 0.006 0.02 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Zn Zn 58.805 59.122 58.872 58.135 59.118 58.215 58.987 59.001 58.178 58.478 58.568 57.612 58.457 58.757 58.147 59.113 58.997 58.059 58.476 58.359 58.658 58.453 58.548 58.188 58.954 57.925 58.465 58.334 58.546 58.284 58.843 58.375 58.644 58.851 58.545 58.309 57.999 58.553 59.358 58.475 58.91 59.11 58.74 59.07 101.374 Total 101.592 101.039 100.484 101.055 101.319 100.534 101.211 101.108 101.483 100.912 101.013 100.519 101.754 101.028 100.358 100.643 100.072 100.751 101.009 100.566 100.676 100.561 101.411 100.479 101.306 100.667 101.127 100.665 101.566 100.769 100.961 101.098 101.393 101.246 101.43 100.32 99.489 100.07 100.99 100.98 89.278 101.03 100.62 Mysst-B3-1 Mysst-B1-1 Mysst-B3-1 Mysst-B1-1 Mysst-B3-1 Mysst-B1-1 Mysst-B1-1 Mysst-B3-1 Mysst-B1-1 Mysst-B1-1 Mysst-B3-1 Mysst-B3-1 Mysst-B1-1 Mysst-B3-1 Mysst-B3-1 Mysst-B1-1 Mysst-B3-1 Mysst-B3-1 Mysst-B1-1 Mysst-B3-1 Mysst-B1-1 Mysst-B3-1 Mysst-B1-1 Mysst-B3-1 Mysst-B1-1 Mysst-B3-1 Mysst-B1-1 Mysst-B3-1 Mysst-B1-1 Mysst-B3-1 Mysst-B1-1 Mysst-B3-1 Mysst-B1-1 Mysst-B3-1 Mysst-B1-1 Mysst-B3-1 Mysst-B1-1 Mysst-B3-1 Mysst-B1-1 Mysst-B3-1 Mysst-B1-1 Mysst-B1-1 Mysst-B3-1 Mysst-B3-1 Sample ID

92

360 398 379 361 399 362 380 363 400 381 364 401 382 365 383 402 366 384 367 403 368 385 404 369 386 405 370 387 371 388 372 389 373 390 374 391 375 392 376 377 393 378 394 395 396 397 No Table 7. Continued 7. Table Ag Ag 0.001 0.011 0.014 0.003 0.004 0.003 0.012 0.025 0.004 0.006 0.008 0.001 0.016 0.014 0.024 0.001 0.006 0.014 0.007 0.022 0.009 0.02 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 As 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Bi Bi 0.166 0.038 0.068 0.194 0.233 0.112 0.037 0.161 0.095 0.145 0.221 0.078 0.074 0.037 0.041 0.114 0.051 0.155 0.199 0.123 0.251 0.039 0.182 0.125 0.101 0.043 0.111 0.122 0.094 0.137 0.073 0.035 0.129 0.017 0.137 0.062 0.051 0.014 0.051 0.005 0.01 0.13 0.07 0.06

0 0 Cd Cd 0.787 0.657 0.788 0.547 0.639 0.718 0.537 0.624 0.886 0.587 0.547 0.764 0.583 0.712 0.733 0.624 0.535 0.737 0.606 0.703 0.549 0.671 0.723 0.544 0.691 0.841 0.563 0.647 0.841 0.699 0.697 0.832 0.653 0.793 0.619 0.671 0.632 0.952 0.663 0.673 0.732 0.809 0.87 0.64 0.84 0.9 Co Co 0.042 0.083 0.134 0.087 0.038 0.151 0.063 0.034 0.079 0.033 0.073 0.111 0.064 0.014 0.086 0.058 0.082 0.032 0.049 0.022 0.069 0.063 0.009 0.067 0.054 0.057 0.062 0.065 0.073 0.044 0.078 0.069 0.103 0.056 0.066 0.063 0.052 0.055 0.033 0.038 0.04 0.06 0.14 0.07 0.09 0.05 Cu Cu 0.023 1.638 0.016 0.099 0.184 0.617 0.005 0.074 0.011 0.021 0.034 0.041 0.014 0.086 4.063 0.031 0.009 0.042 0.037 0.007 0.017 0.029 0.036 0.005 0.013 0.007 0.013 0.033 0.055 0.033 0.022 0.027 0.02 0 0 0 0 0 0 0 0 0 0 0 0 0 Fe Fe 11.461 11.452 11.068 11.605 10.512 11.498 10.038 11.251 10.741 11.199 10.931 10.062 10.084 10.605 9.921 8.545 9.888 11.64 8.583 8.661 9.423 8.594 8.388 8.404 8.367 9.801 8.477 9.784 9.904 9.718 9.918 9.787 9.771 9.543 9.597 9.374 9.803 9.739 9.014 8.976 9.14 9.66 9.84 9.52 9.96 9.7 Ga Ga 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ge Ge 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Hg Hg 0.068 0.107 0.006 0.091 0.042 0.115 0.063 0.089 0.081 0.045 0.175 0.077 0.086 0.002 0.035 0.129 0.013 0.079 0.028 0.079 0.059 0.035 0.043 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 In In 0.121 0.007 0.005 0.004 0.002 0.007 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Mn Mn 0.377 0.339 0.529 0.289 0.608 0.592 0.313 0.431 0.586 0.228 0.587 0.389 0.524 0.265 0.558 0.465 0.529 0.304 0.577 0.451 0.248 0.409 0.449 0.282 0.446 0.508 0.263 0.522 0.564 0.457 0.427 0.499 0.493 0.406 0.539 0.367 0.354 0.487 0.467 0.576 0.458 0.433 0.315 0.393 0.431 0.49 Pb Pb 0.275 0.254 0.218 0.242 0.331 0.261 0.328 0.251 0.244 0.304 0.304 0.271 0.241 0.314 0.251 0.274 0.306 0.309 0.268 0.286 0.252 0.291 0.295 0.265 0.273 0.305 0.288 0.401 0.239 0.313 0.705 0.231 0.264 0.294 0.317 0.345 0.296 0.319 0.344 0.343 0.276 0.28 0.31 0.25 0.27 0.3 S 32.872 32.963 32.693 32.633 32.551 32.737 33.129 32.829 32.711 32.765 32.964 32.965 33.137 32.985 32.902 32.819 32.974 32.597 33.098 32.581 33.049 32.998 32.927 32.869 32.958 32.577 33.007 32.598 32.857 32.688 33.112 31.446 32.854 33.035 33.003 32.798 32.792 33.007 32.611 32.589 32.609 33.087 32.46 32.84 33.02 32.67 Sb Sb 0.013 0.022 0.025 0.011 0.002 0.004 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Se Se 0.001 0.111 0.029 0.058 0.103 0.053 0.002 0.021 0.088 0.046 0.049 0.045 0.048 0.032 0.033 0.074 0.016 0.057 0.083 0.047 0.009 0.03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Sn Sn 0.026 0.006 0.001 0.027 0.017 0.015 0.006 0.006 0.017 0.006 0.033 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Zn Zn 57.575 56.567 52.381 58.083 53.814 56.398 53.862 57.626 53.598 57.717 57.105 53.664 55.835 57.945 54.267 56.538 54.398 57.755 54.907 56.944 50.371 55.318 57.855 55.677 56.854 57.204 56.344 56.112 56.772 55.925 56.758 56.906 54.941 56.975 56.149 56.474 55.921 56.871 56.478 56.644 58.005 57.605 56.98 57.72 56.25 56.86 Total 101.326 100.835 100.469 100.054 100.688 100.318 100.319 101.198 100.364 100.405 100.918 100.393 100.941 100.935 100.624 101.169 100.327 100.421 100.404 100.878 100.595 100.663 100.309 101.316 100.733 100.411 100.643 100.364 101.191 101.059 100.893 100.589 101.269 101.241 100.862 100.576 100.727 101.334 101.313 99.949 99.926 99.831 101.09 98.276 100.93 101 Sample ID Näset II Näset 57-4154 57-4154 57-4154 57-4154 57-4154 57-4154 57-4154 Näset II Näset 57-4154 Näset II Näset Näset II Näset Näset II Näset Näset II Näset Näset II Näset Näset II Näset Näset II Näset Näset II Näset Näset II Näset Näset II Näset Näset I Näset Näset I Näset Näset I Näset Näset I Näset Näset I Näset Näset I Näset Näset I Näset Näset I Näset Näset I Näset Näset I Näset Näset I Näset Näset I Näset Näset I Näset Näset I Näset Näset I Näset Näset I Näset Näset I Näset Näset I Näset Näset I Näset Näset I Näset Näset I Näset Näset I Näset Näset I Näset Näset I Näset Näset I Näset Näset I Näset

93

406 444 425 407 445 426 408 446 427 409 428 447 410 429 448 411 430 449 412 450 431 413 432 414 433 415 434 416 435 417 436 418 437 419 438 420 439 421 440 422 441 423 442 424 443 No Table 7. Continued 7. Table Ag Ag 0.019 0.031 0.015 0.005 0.018 0.014 0.017 0.031 0.002 0.019 0.005 0.006 0.011 0.013 0.013 0.004 0.003 0.008 0.002 0.014 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 As 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Bi Bi 0.164 0.128 0.126 0.023 0.102 0.188 0.125 0.063 0.054 0.152 0.251 0.099 0.215 0.104 0.019 0.112 0.106 0.018 0.058 0.161 0.086 0.132 0.035 0.039 0.082 0.193 0.186 0.001 0.095 0.084 0.018 0.141 0.061 0.114 0.179 0.154 0.054 0.105 0.066 0.034 0.098 0.08 0.04 0 0

Cd Cd 0.165 0.555 0.164 0.604 0.171 0.621 0.681 0.189 0.646 0.618 0.166 0.687 0.627 0.717 0.656 0.184 0.674 0.777 0.683 0.821 0.684 0.724 0.695 0.749 0.732 0.173 0.738 0.196 0.621 0.184 0.619 0.156 0.626 0.183 0.662 0.173 0.581 0.187 0.64 0.55 0.68 0.65 0.17 0.17 0.74 Co Co 0.009 0.026 0.038 0.036 0.044 0.032 0.039 0.035 0.028 0.018 0.002 0.035 0.061 0.009 0.042 0.032 0.028 0.066 0.036 0.095 0.049 0.038 0.054 0.032 0.026 0.014 0.026 0.012 0.031 0.008 0.049 0.002 0.007 0.038 0.013 0.03 0.04 0.01 0.04 0.06 0.02 0.02 0 0 0 Cu Cu 0.007 0.031 1.945 0.004 0.007 0.052 0.013 0.006 0.002 0.017 0.009 0.059 0.004 0.026 0.636 0.002 0.103 0.184 0.007 0.149 0.131 0.063 0.076 0.064 0.111 0.105 0.007 0.228 0.006 0.102 0.004 0.021 0.016 0.033 0.001 0 0 0 0 0 0 0 0 0 0 Fe Fe 10.055 2.406 8.863 8.416 2.237 8.279 2.451 9.112 9.667 2.459 9.572 9.626 9.254 1.985 9.583 9.624 2.284 9.274 9.723 2.243 9.647 2.178 8.848 8.639 8.062 9.453 8.975 7.505 9.705 9.083 2.183 8.961 2.347 9.107 2.343 8.162 2.411 9.003 2.369 8.937 2.454 9.014 2.392 9.65 9.64 Ga Ga 0.003 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ge Ge 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Hg Hg 0.045 0.048 0.045 0.028 0.014 0.064 0.023 0.117 0.105 0.121 0.048 0.051 0.037 0.101 0.084 0.097 0.008 0.049 0.251 0.004 0.003 0.09 0.06 0.04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 In In 0.003 0.005 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Mn Mn 0.248 0.276 0.295 0.004 0.237 0.397 0.033 0.339 0.019 0.341 0.336 0.315 0.024 0.403 0.042 0.344 0.387 0.361 0.157 0.323 0.409 0.409 0.325 0.377 0.342 0.369 0.305 0.152 0.006 0.373 0.026 0.192 0.034 0.25 0.33 0.35 0.31 0.01 0.04 0.01 0.28 0 0 0 0 Pb Pb 0.289 0.309 0.274 0.246 0.296 0.226 0.325 0.266 0.271 0.248 0.307 0.304 0.237 0.189 0.313 0.367 0.335 0.278 0.219 0.287 0.364 0.234 0.271 0.264 0.267 0.303 0.379 0.281 0.296 0.267 0.255 0.272 0.262 0.232 0.185 0.221 0.257 0.357 0.302 0.247 0.26 0.24 0.31 0.33 0.29 S 33.106 33.106 32.716 33.134 32.227 32.592 33.023 33.188 32.983 33.056 33.039 32.819 33.047 32.775 33.228 32.706 33.111 32.798 33.087 33.071 32.917 32.867 32.892 32.901 32.829 32.858 32.882 33.518 32.977 32.922 32.459 33.336 32.954 32.431 33.132 31.402 32.824 32.832 32.43 33.32 32.68 32.95 32.93 33.06 32.6 Sb Sb 0.001 0.009 0.004 0.016 0.007 0.038 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Se Se 0.069 0.101 0.073 0.053 0.081 0.016 0.065 0.036 0.041 0.075 0.018 0.026 0.006 0.055 0.019 0.081 0.015 0.039 0.071 0.057 0.009 0.054 0.059 0.051 0.036 0.031 0.047 0.06 0.11 0.07 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Sn Sn 0.005 0.008 0.035 0.011 0.032 0.047 0.014 0.038 0.095 0.006 0.022 0.03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Zn Zn 66.502 56.958 57.365 66.472 53.534 66.458 55.968 55.778 56.581 66.456 56.196 55.955 67.383 56.011 56.353 66.561 55.783 66.222 55.756 55.278 66.773 56.044 56.044 56.336 56.961 56.259 55.446 56.313 55.963 56.102 55.487 65.666 55.719 66.243 56.394 66.498 57.188 66.307 56.915 66.754 56.877 65.248 56.978 66.537 57.74 Total 101.946 100.356 102.068 100.161 101.827 100.001 100.799 102.156 100.579 100.585 102.299 101.842 100.194 102.272 100.561 100.069 100.546 100.445 102.023 101.828 101.895 100.112 102.265 103.012 100.099 102.391 100.31 100.44 99.157 99.748 103.13 99.848 99.751 99.939 99.753 99.671 99.497 98.936 98.228 99.049 99.409 99.874 99.808 100.24 99.792 Sample ID 66-0010 57-4154 57-4154 66-0010 57-4154 57-4154 66-0010 57-4154 57-4154 57-4154 66-0010 57-4154 57-4154 66-0010 57-4154 57-4154 66-0010 57-4154 66-0010 57-4154 57-4154 66-0010 57-4154 57-4154 57-4154 57-4154 57-4154 57-4154 57-4154 57-4154 57-4154 57-4154 66-0010 57-4154 66-0010 57-4154 66-0010 57-4154 66-0010 57-4154 66-0010 57-4154 66-0010 57-4154 66-0010

94

495 494 493 492 491 490 489 488 487 486 485 484 483 482 481 480 479 478 477 476 475 474 473 472 471 470 469 468 466 467 465 464 463 462 461 460 459 458 457 456 455 454 453 452 451 No Table 7. Continued 7. Table Ag Ag 0.025 0.019 0.004 0.018 0.016 0.007 0.005 0.021 0.009 0.016 0.055 0.007 0.035 0.023 0.003 0.003 0.027 0.035 0.005 0.007 0.018 0.02 0.02 0.03 0.01 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 As 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Bi Bi 0.149 0.104 0.163 0.059 0.031 0.089 0.035 0.077 0.162 0.072 0.187 0.135 0.019 0.178 0.025 0.026 0.029 0.007 0.084 0.188 0.069 0.221 0.175 0.109 0.051 0.016 0.106 0.069 0.046 0.269 0.029 0.075 0.136 0.199 0.147 0.147 0.105 0.026 0.196 0.08 0.01 0.2 0.1 0 0

Cd Cd 0.271 0.266 0.277 0.273 0.265 0.245 0.266 0.429 0.457 0.469 0.478 0.487 0.475 0.464 0.462 0.467 0.478 0.503 0.448 0.476 0.475 0.514 0.473 0.472 0.431 0.459 0.479 0.464 0.456 0.476 0.463 0.488 0.454 0.436 0.279 0.278 0.304 0.161 0.201 0.205 0.157 0.27 0.45 0.49 0.46 Co Co 0.022 0.001 0.013 0.016 0.018 0.008 0.017 0.008 0.006 0.002 0.011 0.025 0.003 0.007 0.011 0.002 0.004 0.011 0.051 0.028 0.028 0.006 0.013 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Cu Cu 0.017 0.028 0.031 0.034 0.002 0.028 0.023 0.006 0.022 0.013 0.006 0.034 0.048 0.021 0.026 0.008 0.043 0.045 0.026 0.044 0.015 0.126 0.016 0.021 0.005 0.409 0.534 1.137 0.013 0.006 0.006 0.02 0.02 0.02 0 0 0 0 0 0 0 0 0 0 0 Fe Fe 9.243 9.195 9.733 9.187 9.191 8.761 6.309 6.109 6.458 6.483 6.118 6.802 6.848 5.745 6.182 6.807 6.213 6.209 6.266 6.304 6.407 6.084 6.566 5.855 6.353 6.752 6.217 5.913 5.805 6.249 6.669 5.922 6.514 7.588 9.447 9.375 2.397 2.438 2.315 9.18 9.21 5.84 6.56 6.55 2.46 Ga Ga 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ge Ge 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Hg Hg 0.002 0.062 0.024 0.022 0.108 0.004 0.039 0.134 0.078 0.026 0.025 0.038 0.056 0.103 0.014 0.102 0.084 0.096 0.093 0.026 0.032 0.09 0.02 0.03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 In In 0.023 0.027 0.029 0.027 0.034 0.005 0.029 0.039 0.027 0.032 0.019 0.032 0.023 0.026 0.035 0.023 0.005 0.025 0.036 0.047 0.016 0.026 0.021 0.033 0.023 0.034 0.032 0.016 0.011 0.003 0.04 0.02 0 0 0 0 0 0 0 0 0 0 0 0 0 Mn Mn 0.908 0.849 0.956 0.921 0.948 1.016 0.984 1.002 0.073 0.102 0.093 0.104 0.039 0.083 0.063 0.335 0.003 0.004 0.098 0.031 0.063 0.088 0.099 0.085 0.062 0.071 0.077 0.095 0.133 0.198 0.122 0.078 0.035 0.093 0.078 0.089 0.044 0.099 0.116 0.067 0.079 0.012 0.037 0 0 Pb Pb 0.249 0.287 0.258 0.215 0.264 0.255 0.248 0.427 0.176 0.353 0.326 0.364 0.339 0.266 0.322 0.326 0.292 0.373 0.262 0.301 0.272 0.348 0.277 0.314 0.355 0.282 0.301 0.237 0.289 0.396 0.365 0.311 0.335 0.212 0.253 0.283 0.331 0.276 0.257 0.296 0.26 0.24 0.29 0.28 0.3 32.632 33.012 32.954 33.108 33.195 33.119 33.253 33.136 32.934 33.135 33.107 33.188 33.105 33.035 32.905 33.018 33.033 32.963 33.015 32.902 33.086 32.935 33.028 33.036 33.296 32.623 33.173 33.089 33.051 33.142 33.038 33.052 32.734 33.507 32.919 32.695 32.743 33.022 32.908 S 32.95 33.14 33.11 32.32 32.9 33 Sb Sb 0.025 0.009 0.011 0.002 0.014 0.007 0.003 0.016 0.051 0.002 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Se Se 0.056 0.001 0.087 0.048 0.018 0.049 0.014 0.017 0.064 0.003 0.008 0.015 0.021 0.006 0.037 0.028 0.024 0.055 0.015 0.017 0.001 0.06 0.07 0.05 0.04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Sn Sn 0.017 0.024 0.007 0.017 0.012 0.029 0.005 0.018 0.039 0.013 0.021 0.01 0.03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Zn Zn 56.912 55.834 56.867 56.714 57.121 55.682 56.455 61.781 60.988 61.248 60.608 60.386 60.767 60.038 59.874 61.321 61.198 60.004 59.693 60.629 60.488 59.831 59.721 59.883 60.114 59.993 59.783 58.291 59.777 60.102 60.493 59.988 59.319 60.578 59.681 56.919 56.361 56.051 66.325 66.305 66.206 66.783 56.93 60.68 60.42 100.405 100.742 100.283 100.592 101.115 100.223 101.701 101.158 101.664 101.367 101.119 101.073 101.204 101.043 100.997 101.345 100.722 100.812 100.711 100.053 101.016 100.977 100.146 100.173 100.551 100.442 100.851 100.213 100.608 100.437 100.246 100.588 100.655 100.398 102.081 102.072 102.423 102.609 Total 100.65 99.665 99.899 98.596 100.34 98.492 99.63 Sample ID LAH-001-1 LAH-001-1 LAH-001-1 LAH-001-1 LAH-001-1 LAH-001-1 LAH-001-1 LAH-001-1 HÄL-01-1 HÄL-01-1 HÄL-01-1 HÄL-01-1 HÄL-01-1 HÄL-01-1 HÄL-01-1 HÄL-01-1 HÄL-01-1 HÄL-01-1 HÄL-01-1 HÄL-01-1 HÄL-01-1 HÄL-01-1 HÄL-01-1 HÄL-01-1 HÄL-01-1 HÄL-01-1 HÄL-01-1 HÄL-01-1 HÄL-01-1 HÄL-01-1 HÄL-01-1 HÄL-01-1 HÄL-01-1 HÄL-01-1 HÄL-01-1 HÄL-01-1 HÄL-01-1 HÄL-01-1 66-0010 66-0010 66-0010 66-0010 Gås IIb Gås IIb Gås IIb

95

534 496 515 535 497 516 536 498 537 517 499 538 518 500 539 519 501 540 520 502 521 503 522 504 523 505 524 506 525 507 526 508 527 509 528 510 529 511 530 512 531 513 532 514 533 No Table 7. Continued 7. Table Ag Ag 0.015 0.015 0.037 0.014 0.011 0.021 0.006 0.024 0.014 0.007 0.004 0.001 0.01 0.01 0.02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 As 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Bi Bi 0.052 0.121 0.175 0.131 0.094 0.144 0.043 0.131 0.109 0.111 0.041 0.034 0.091 0.116 0.102 0.145 0.079 0.086 0.148 0.074 0.098 0.209 0.148 0.109 0.186 0.185 0.075 0.102 0.057 0.156 0.228 0.113 0.087 0.172 0.055 0.104 0.095 0.089 0.179 0.17 0.12 0.07 0.06 0.2 0

Cd Cd 0.259 0.263 0.265 0.258 0.236 0.271 0.269 0.259 0.261 0.244 0.274 0.277 0.237 0.264 0.241 0.264 0.284 0.239 0.241 0.268 0.242 1.227 0.262 1.007 0.257 0.954 0.257 1.439 0.254 0.911 0.249 0.993 0.244 0.254 0.264 0.239 0.253 0.255 0.243 0.252 0.235 0.278 0.29 0.25 0.24 Co Co 0.007 0.006 0.001 0.005 0.008 0.029 0.013 0.001 0.001 0.009 0.006 0.011 0.007 0.002 0.011 0.006 0.007 0.006 0.019 0.011 0.027 0.028 0.005 0.008 0.017 0.007 0.018 0.015 0.019 0.013 0.018 0.004 0.025 0.02 0.01 0.02 0.02 0.02 0 0 0 0 0 0 0 Cu Cu 0.007 0.005 0.029 0.017 0.016 0.005 0.007 0.019 0.017 0.005 0.007 0.013 0.015 0.001 0.01 0.02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Fe Fe 9.446 8.763 9.388 8.788 9.502 9.012 8.724 9.335 8.816 8.829 8.652 8.991 9.369 8.481 9.099 9.289 8.642 9.193 8.804 8.642 8.565 8.961 8.752 8.752 8.407 8.655 8.852 8.594 9.491 8.493 9.382 8.753 9.236 8.636 9.434 8.769 9.219 8.89 8.73 9.36 8.86 8.67 8.53 8.62 8.71 Ga Ga 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ge Ge 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Hg Hg 0.095 0.048 0.081 0.061 0.047 0.027 0.089 0.021 0.006 0.085 0.068 0.047 0.055 0.131 0.071 0.057 0.043 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 In In 0.001 0.001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Mn Mn 0.656 0.976 0.558 0.951 0.595 0.932 0.904 0.609 0.928 0.625 0.956 0.925 0.583 0.867 0.862 0.548 0.921 0.902 0.551 0.935 1.019 0.944 0.904 0.219 0.224 0.304 0.895 0.224 0.264 0.867 0.259 0.933 0.622 0.827 0.597 0.887 0.583 0.878 0.488 0.901 0.604 0.86 0.94 0.92 0.97 Pb Pb 0.255 0.331 0.293 0.246 0.365 0.254 0.353 0.209 0.222 0.309 0.348 0.283 0.272 0.276 0.374 0.384 0.249 0.228 0.276 0.283 0.279 0.414 0.522 0.322 0.508 0.316 0.702 0.384 0.393 0.296 0.519 0.485 0.322 0.267 0.339 0.205 0.224 0.434 0.294 0.303 0.265 0.32 0.35 0.34 0.26 32.854 S 33.218 32.864 32.857 33.176 33.645 33.113 33.108 33.638 32.731 33.015 32.853 33.428 32.999 33.005 33.054 33.077 33.682 33.219 33.275 32.681 33.189 32.534 32.825 32.472 33.281 32.236 32.912 32.189 33.272 32.737 32.995 32.312 33.098 33.144 32.925 32.738 33.088 32.936 32.952 32.991 32.724 33.18 33.14 33.05 Sb Sb 0.005 0.009 0.024 0.019 0.016 0.001 0.018 0.003 0.004 0.02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Se Se 0.001 0.039 0.026 0.012 0.053 0.024 0.042 0.023 0.043 0.008 0.021 0.051 0.008 0.041 0.106 0.048 0.042 0.011 0.003 0.101 0.042 0.048 0.047 0.026 0.03 0.04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Sn Sn 0.012 0.001 0.044 0.011 0.005 0.004 0.034 0.009 0.006 0.008 0.029 0.017 0.02 0.02 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Zn Zn 56.496 57.903 56.198 57.772 57.302 57.499 56.853 57.025 57.414 56.446 57.622 57.857 56.776 57.583 57.411 56.392 57.149 57.383 56.347 57.126 56.372 56.837 55.627 57.548 57.609 55.459 56.168 56.024 55.879 55.971 56.693 56.659 57.901 55.767 57.956 56.483 58.042 56.498 57.946 56.373 57.818 57.58 57.07 55.94 55.83 101.146 Total 101.476 100.346 102.176 100.741 101.343 100.616 101.172 101.154 100.405 101.071 101.185 100.829 101.642 101.271 100.357 101.197 101.363 100.029 100.145 102.039 101.369 101.473 101.604 101.481 100.21 99.917 100.88 100.09 100.87 99.703 99.876 99.009 98.389 99.454 98.876 99.471 99.458 98.572 98.814 99.932 99.739 99.45 98.93 99.42 Sample ID LAH-001-6 LAH-001-1 LAH-001-6 LAH-001-1 LAH-001-1 LAH-001-6 LAH-001-1 LAH-001-6 LAH-001-1 LAH-001-1 LAH-001-6 LAH-001-1 LAH-001-1 LAH-001-6 LAH-001-1 LAH-001-1 LAH-001-6 LAH-001-1 LAH-001-1 LAH-001-6 LAH-001-1 LAH-001-1 LAH-001-1 LAH-001-1 LAH-001-4 LAH-001-1 LAH-001-4 LAH-001-1 LAH-001-4 LAH-001-1 LAH-001-4 LAH-001-1 LAH-001-4 LAH-001-1 LAH-001-4 LAH-001-1 LAH-001-6 LAH-001-1 LAH-001-6 LAH-001-1 LAH-001-6 LAH-001-1 LAH-001-6 LAH-001-1 LAH-001-6

96

579 541 560 580 542 561 581 543 562 582 544 563 583 545 564 584 546 565 585 547 566 548 567 549 568 550 569 551 570 552 571 553 554 572 555 573 556 574 557 575 558 576 559 577 578 No Table 7. Continued 7. Table Ag Ag 0.007 0.001 0.009 0.018 0.004 0.002 0.011 0.003 0.004 0.001 0.006 0.001 0.013 0.049 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 As 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Bi Bi 0.137 0.121 0.173 0.114 0.051 0.145 0.088 0.099 0.134 0.156 0.168 0.168 0.191 0.139 0.146 0.119 0.099 0.093 0.171 0.149 0.153 0.029 0.155 0.097 0.064 0.156 0.113 0.092 0.086 0.105 0.035 0.093 0.107 0.118 0.14 0.18 0.14 0.11 0.16 0.15 0.14 0.15 0.13 0 0

Cd Cd 0.031 0.259 0.247 0.033 0.237 0.046 0.265 0.272 0.031 0.248 0.012 0.297 0.004 0.255 0.257 0.255 0.251 2.272 2.254 2.239 0.001 3.441 0.028 2.416 0.034 0.017 0.26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Co Co 0.003 0.029 0.011 0.028 0.009 0.027 0.013 0.007 0.005 0.003 0.011 0.022 0.016 0.013 0.018 0.007 0.025 0.025 0.019 0.004 0.005 0.058 0.053 0.025 0.045 0.004 0.056 0.006 0.056 0.027 0.004 0.001 0.002 0.03 0.02 0.02 0 0 0 0 0 0 0 0 0 Cu Cu 0.007 0.011 0.013 0.001 0.032 0.003 0.046 0.031 0.023 0.002 0.015 0.007 0.012 0.003 0.021 0.011 0.021 0.029 0.025 0.001 0.005 0.019 0.006 0.021 0.026 0.029 0.005 0.03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Fe Fe 10.397 10.416 10.281 8.945 8.944 9.086 9.278 8.927 9.106 9.395 9.097 9.051 9.386 9.231 9.132 9.095 9.145 9.147 9.446 9.175 9.258 9.214 9.196 9.137 9.256 9.163 9.261 9.146 8.776 9.236 9.233 9.098 9.001 9.163 9.226 9.206 9.103 9.645 10.19 9.082 8.846 9.108 9.154 9.16 9.15 Ga Ga 0.007 0.003 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ge Ge 0.006 0.003 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Hg Hg 0.027 0.019 0.051 0.049 0.004 0.016 0.007 0.108 0.021 0.057 0.053 0.023 0.029 0.002 0.019 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 In In 0.008 0.002 0.004 0.003 0.007 0.035 0.003 0.038 0.02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Mn Mn 0.333 0.337 0.354 0.579 0.328 0.317 0.606 0.328 0.324 0.653 0.322 0.325 0.597 0.335 0.328 0.319 0.313 0.613 0.314 0.561 0.316 0.572 0.333 0.588 0.306 0.516 0.327 0.645 0.317 0.574 0.269 0.235 0.303 0.248 0.337 0.241 0.322 0.139 0.309 0.341 0.326 0.339 0.57 0.31 0.33 Pb Pb 0.211 0.282 0.005 0.044 0.222 0.023 0.265 0.243 0.266 0.235 0.016 0.278 0.044 0.261 0.323 0.224 0.289 0.003 0.233 0.262 0.248 0.002 0.267 0.492 0.454 0.604 0.008 0.509 0.219 0.249 0.037 0.316 0.26 0.38 0 0 0 0 0 0 0 0 0 0 0 33.453 S 33.467 33.516 33.133 33.591 33.484 32.922 33.564 33.504 32.929 33.595 33.577 32.951 33.567 33.643 33.199 33.451 33.472 33.113 33.505 33.486 33.168 33.505 32.974 32.945 33.158 33.529 32.945 33.533 33.082 33.398 32.307 32.673 33.631 32.915 33.504 32.472 33.518 32.642 33.588 33.515 33.507 33.493 33.51 33.55 Sb Sb 0.021 0.005 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Se Se 0.081 0.002 0.026 0.064 0.103 0.014 0.064 0.007 0.104 0.132 0.083 0.001 0.007 0.081 0.051 0.003 0.001 0.038 0.024 0.027 0.046 0.066 0.002 0.042 0.05 0.06 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Sn Sn 0.033 0.006 0.009 0.011 0.004 0.003 0.046 0.024 0.021 0.011 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Zn Zn 56.096 56.415 55.844 57.512 56.395 55.979 57.299 56.011 56.763 56.112 56.089 57.211 56.142 56.319 57.426 56.081 55.746 56.992 55.944 55.836 56.987 56.134 56.674 55.888 56.764 56.461 56.546 56.735 56.481 55.813 55.228 56.035 55.437 56.191 54.461 55.985 55.135 55.966 56.302 56.186 56.091 56.09 55.61 55.93 55.5 Total 101.182 100.856 100.393 100.573 101.346 100.738 100.707 100.224 100.195 100.092 101.516 101.382 101.926 100.966 101.063 98.974 99.612 98.945 99.466 99.047 99.274 99.441 99.568 99.594 99.375 99.711 99.329 98.981 99.214 99.302 99.545 99.128 99.672 99.725 98.828 99.098 99.994 98.889 99.405 99.292 99.457 99.177 99.648 99.221 99.43 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b MyB-001-1 MyB-001-1 MyB-001-1 MyB-001-1 MyB-001-1 Sample ID LAH-001-6 LAH-001-6 LAH-001-6 LAH-001-6 LAH-001-6 LAH-001-6 LAH-001-6 LAH-001-6 LAH-001-6 LAH-001-6 LAH-001-6 LAH-001-6

97

586 587 605 624 588 606 625 589 607 626 590 608 627 591 609 628 592 610 629 593 611 630 594 612 595 613 596 614 597 615 598 616 599 617 600 618 601 619 602 620 603 621 604 622 623 No Table 7. Continued 7. Table Ag Ag 0.016 0.006 0.002 0.015 0.003 0.001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 As 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Bi Bi 0.148 0.128 0.138 0.126 0.129 0.128 0.139 0.132 0.126 0.165 0.097 0.181 0.119 0.194 0.124 0.139 0.131 0.149 0.169 0.136 0.112 0.119 0.118 0.134 0.112 0.107 0.163 0.156 0.124 0.133 0.111 0.121 0.087 0.165 0.131 0.103 0.121 0.144 0.118 0.117 0.134 0.15 0.17 0.14 0.16

Cd Cd 0.049 0.041 0.053 0.016 0.025 0.001 0.226 0.229 0.225 0.034 0.021 0.029 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Co Co 0.023 0.007 0.005 0.012 0.016 0.003 0.026 0.019 0.018 0.039 0.009 0.009 0.002 0.008 0.023 0.009 0.003 0.006 0.001 0.029 0.016 0.004 0.001 0.002 0.002 0.025 0.022 0.028 0.003 0.02 0.01 0.03 0.01 0 0 0 0 0 0 0 0 0 0 0 0 Cu Cu 0.018 0.007 0.004 0.018 0.003 0.032 0.023 0.004 0.009 0.004 0.013 0.009 0.031 0.012 0.014 0.016 0.035 0.016 0.002 0.022 0.004 0.027 0.009 0.027 0.039 0.029 0.041 0.018 0.027 0.027 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Fe Fe 9.145 9.229 9.231 9.249 9.176 9.177 9.137 9.176 9.238 9.044 9.177 9.213 9.247 9.171 9.143 8.081 9.176 9.162 9.592 9.218 9.206 9.726 9.179 9.158 9.203 9.172 9.271 9.223 9.168 9.103 9.127 9.203 9.135 9.133 9.062 9.208 9.217 9.298 9.208 9.298 9.133 9.118 9.18 9.13 9.3 Ga Ga 0.003 0.011 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ge Ge 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Hg Hg 0.027 0.007 0.015 0.017 0.034 0.025 0.047 0.006 0.013 0.002 0.031 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 In In 0.003 0.002 0.002 0.022 0.018 0.005 0.014 0.001 0.004 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Mn Mn 0.321 0.335 0.316 0.321 0.316 0.317 0.322 0.325 0.324 0.313 0.318 0.319 0.319 0.307 0.327 0.418 0.322 0.343 0.427 0.328 0.325 0.409 0.324 0.314 0.323 0.327 0.328 0.316 0.326 0.311 0.327 0.333 0.338 0.321 0.309 0.327 0.346 0.301 0.305 0.349 0.328 0.32 0.32 0.32 0.32 Pb Pb 0.013 0.244 0.226 0.242 0.286 0.218 0.033 0.043 0.014 0.002 0.029 0.893 0.042 0.277 0.033 0.013 0.317 0.015 0.079 0.033 0.024 0.068 0.292 0.206 0.272 0.001 0.02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 S 33.506 33.592 33.431 33.487 33.496 33.445 33.533 33.584 33.413 33.434 33.554 33.592 33.615 33.549 33.501 33.544 33.451 33.029 33.677 33.245 33.627 33.514 33.223 33.563 33.591 33.471 33.611 33.602 33.561 33.489 33.612 33.533 33.542 33.549 33.476 33.343 33.526 33.507 33.555 33.515 33.461 33.443 33.62 33.61 33.57 Sb Sb 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Se Se 0.037 0.036 0.023 0.046 0.035 0.024 0.004 0.097 0.095 0.098 0.085 0.018 0.009 0.056 0.046 0.018 0.041 0.037 0.018 0.04 0.02 0.04 0.08 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Sn Sn 0.007 0.011 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Zn Zn 55.903 55.928 56.066 56.101 55.692 56.239 56.209 56.204 56.133 56.017 56.272 56.078 56.036 55.869 56.142 56.164 53.939 56.179 56.098 54.056 56.076 56.055 53.748 56.131 55.891 56.151 55.908 56.167 56.104 55.909 56.122 56.081 56.146 56.094 55.926 56.126 55.978 56.354 55.718 56.038 56.058 56.173 56.01 56.19 56.01 Total 100.017 99.115 99.219 99.514 99.337 99.161 99.608 99.364 99.758 99.415 99.152 99.556 99.243 99.364 99.256 99.352 99.311 96.768 99.567 99.448 97.995 99.439 99.366 97.786 99.387 99.581 99.153 99.527 99.708 99.428 99.186 99.165 99.209 99.354 99.259 99.226 98.826 99.693 99.236 99.009 99.574 99.146 99.384 99.16 99.2 Getberget-a Getberget-a Getberget-a 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b Sample ID

98

631 669 650 632 670 651 633 671 652 634 672 653 635 673 654 636 674 655 637 675 656 638 657 639 658 640 659 641 660 642 661 643 662 644 663 645 664 646 665 647 666 648 667 649 668 No Table 7. Continued 7. Table Ag Ag 0.003 0.009 0.004 0.004 0.014 0.014 0.018 0.003 0.012 0.016 0.005 0.007 0.008 0.001 0.013 0.017 0.006 0.023 0.008 0.008 0.002 0.012 0.02 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 As 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Bi Bi 0.094 0.168 0.127 0.183 0.077 0.173 0.182 0.123 0.165 0.173 0.154 0.114 0.096 0.145 0.147 0.168 0.144 0.132 0.156 0.177 0.121 0.138 0.173 0.122 0.117 0.122 0.129 0.143 0.114 0.108 0.171 0.117 0.129 0.157 0.099 0.127 0.124 0.119 0.104 0.131 0.142 0.158 0.137 0.15 0.05

Cd Cd 0.209 0.196 0.197 0.199 0.232 0.221 0.206 0.199 0.202 0.222 0.212 0.237 0.228 0.213 0.207 0.224 0.205 0.203 0.189 0.199 0.204 0.232 0.213 0.196 0.199 0.172 0.001 0.001 0.202 0.213 0.202 0.23 0.21 0.19 0.17 0.2 0 0 0 0 0 0 0 0 0 Co Co 0.002 0.008 0.003 0.017 0.018 0.016 0.015 0.011 0.002 0.004 0.017 0.004 0.017 0.014 0.019 0.014 0.006 0.011 0.004 0.017 0.012 0.011 0.013 0.014 0.007 0.001 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Cu Cu 0.013 0.001 0.012 0.037 0.023 0.007 0.003 0.003 0.023 0.007 0.005 0.019 0.003 0.002 0.018 0.005 0.009 0.001 0.002 0.039 0.005 0.02 0.01 0.03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Fe Fe 10.055 10.001 10.092 9.843 9.745 9.799 9.891 9.716 9.956 9.906 9.611 9.938 9.779 9.721 9.857 9.801 9.836 9.978 9.717 9.972 9.758 9.815 9.826 9.895 9.915 9.873 9.867 9.847 9.842 9.702 9.926 9.827 9.895 10.15 9.839 9.859 9.749 9.789 9.835 9.828 9.757 9.861 9.79 9.87 9.79 Ga Ga 0.007 0.016 0.006 0.016 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ge Ge 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Hg Hg 0.034 0.013 0.024 0.019 0.003 0.001 0.024 0.013 0.012 0.006 0.006 0.026 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 In In 0.018 0.006 0.003 0.005 0.009 0.003 0.001 0.005 0.002 0.003 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Mn Mn 0.403 0.409 0.396 0.421 0.412 0.418 0.397 0.421 0.402 0.417 0.417 0.412 0.402 0.397 0.387 0.415 0.422 0.406 0.398 0.402 0.413 0.406 0.419 0.411 0.419 0.392 0.441 0.413 0.422 0.409 0.422 0.402 0.398 0.395 0.389 0.431 0.404 0.406 0.409 0.422 0.413 0.41 0.42 0.43 0.4 Pb Pb 0.327 0.341 0.002 0.252 0.307 0.322 0.407 0.276 0.187 0.352 0.224 0.337 0.005 0.222 0.311 0.056 0.261 0.223 0.017 0.324 0.264 0.344 0.239 0.337 0.023 0.302 0.287 0.319 0.285 0.282 0.288 0.297 0.317 0.322 0.011 0.021 0.235 0.225 0.303 0.19 0.18 0 0 0 0 S 33.377 33.193 33.284 33.371 33.246 33.394 33.292 33.278 33.447 33.341 33.425 33.394 33.299 33.382 33.452 33.249 33.392 33.225 33.517 33.318 33.337 33.444 33.382 33.451 33.355 33.539 33.407 33.491 33.183 33.418 33.401 33.441 33.396 33.449 33.342 33.421 33.528 33.357 33.368 33.458 33.361 33.37 33.37 33.38 33.4 Sb Sb 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Se Se 0.067 0.041 0.048 0.012 0.008 0.047 0.064 0.066 0.058 0.054 0.023 0.059 0.011 0.004 0.057 0.105 0.015 0.036 0.034 0.039 0.034 0.114 0.058 0.108 0.059 0.078 0.064 0.086 0.024 0.051 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Sn Sn 0.009 0.006 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Zn Zn 54.045 53.914 54.218 53.918 54.476 53.926 54.099 53.777 54.316 54.086 54.109 53.939 54.017 53.791 54.039 53.792 53.737 54.114 53.836 54.135 53.755 54.359 53.829 53.829 53.803 53.977 53.984 54.265 54.374 53.876 54.061 53.985 54.263 54.262 54.285 53.798 54.099 53.594 54.01 54.04 53.95 54.41 53.66 54.02 54.04 Total 98.497 98.151 98.075 97.954 98.273 98.924 97.793 98.233 98.443 97.962 98.583 98.442 98.343 98.166 98.352 97.875 98.529 97.589 97.833 98.549 97.603 98.049 98.515 98.472 98.056 98.659 97.955 98.063 98.317 98.106 98.759 98.392 98.875 98.812 98.209 98.377 97.785 98.186 98.064 97.946 98.425 97.875 98.08 97.81 98.16 Getberget-a Getberget-a Getberget-a Getberget-a Getberget-a Getberget-a Getberget-a Getberget-a Getberget-a Getberget-a Getberget-a Getberget-a Getberget-a Getberget-a Getberget-a Getberget-a Getberget-a Getberget-a Getberget-a Getberget-a Getberget-a Getberget-a Getberget-a Getberget-a Getberget-a Getberget-a Getberget-a Getberget-a Getberget-a Getberget-a Getberget-a Getberget-a Getberget-a Getberget-a Getberget-a Getberget-a Getberget-a Getberget-a Getberget-a Getberget-a Getberget-a Getberget-a Getberget-a Getberget-a Getberget-a Sample ID

99

676 714 695 677 696 715 678 697 679 716 698 680 717 699 681 718 700 682 719 701 683 720 702 684 685 703 686 704 687 705 688 706 689 707 690 691 708 692 709 693 694 710 711 712 713 No Table 7. Continued 7. Table Ag Ag 0.008 0.015 0.003 0.001 0.001 0.019 0.011 0.002 0.009 0.002 0.011 0.002 0.002 0.005 0.013 0.007 0.003 0.014 0.013 0.005 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 As 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Bi Bi 0.107 0.135 0.098 0.134 0.129 0.166 0.139 0.107 0.135 0.136 0.109 0.157 0.137 0.165 0.127 0.128 0.152 0.144 0.105 0.128 0.135 0.171 0.081 0.123 0.143 0.139 0.096 0.124 0.118 0.129 0.133 0.108 0.172 0.169 0.109 0.155 0.147 0.132 0.145 0.173 0.14 0.14 0.14 0.16 0.12

Cd Cd 0.002 0.187 0.217 0.207 0.225 0.791 0.201 0.223 0.195 0.206 0.832 0.205 0.203 0.859 0.202 0.002 0.758 0.193 0.171 0.591 0.206 0.196 0.189 0.564 0.214 0.563 0.202 0.208 0.007 0.228 0.225 0.213 0.194 0.234 0.194 0.217 0.21 0.78 0.59 0.22 0 0 0 0 0 Co Co 0.002 0.012 0.006 0.027 0.005 0.014 0.005 0.004 0.001 0.003 0.007 0.018 0.022 0.014 0.004 0.003 0.026 0.003 0.011 0.007 0.026 0.001 0.027 0.011 0.013 0.016 0.005 0.002 0.01 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Cu Cu 0.013 0.027 0.143 0.037 0.011 0.815 0.027 0.013 0.004 0.022 0.012 0.024 0.076 0.028 0.002 0.467 0.038 0.012 0.018 0.071 0.026 0.012 0.022 0.029 0.028 0.028 0.025 0.001 0.002 0.005 0.021 0.023 0.056 0.02 0.03 0.01 0.02 0 0 0 0 0 0 0 0 Fe Fe 10.154 10.056 10.166 10.166 8.797 10.26 9.847 8.355 9.886 8.639 8.321 9.805 8.733 9.988 8.651 8.575 9.828 8.603 8.946 9.936 8.223 9.129 9.916 5.842 8.365 9.925 7.569 9.841 9.777 8.227 9.895 8.188 9.891 8.306 9.862 8.099 9.947 8.952 9.955 9.054 9.015 9.926 8.34 9.42 9.9 Ga Ga 0.001 0.008 0.009 0.009 0.001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ge Ge 0.017 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Hg Hg 0.002 0.036 0.008 0.064 0.014 0.001 0.005 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 In In 0.001 0.002 0.015 0.002 0.005 0.003 0.001 0.012 0.007 0.008 0.001 0.004 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Mn Mn 0.316 0.398 0.406 0.584 0.304 0.409 1.029 0.287 0.417 1.004 0.429 0.287 1.049 0.414 0.284 0.416 0.926 0.407 0.267 0.412 0.265 0.737 0.404 0.422 0.705 0.762 0.411 0.821 0.409 0.771 0.437 0.415 0.419 0.333 0.403 0.382 0.339 0.343 0.377 0.359 0.29 0.75 0.42 0.31 0.9 Pb Pb 0.311 0.385 0.225 0.314 0.336 1.387 0.238 0.396 0.249 0.295 0.317 0.263 0.309 0.296 0.015 0.375 0.279 0.302 0.635 0.203 0.253 0.247 0.403 0.225 0.393 0.284 0.266 0.197 0.252 0.281 0.314 0.287 0.293 0.011 0.32 0.36 0.29 0.29 0.3 0 0 0 0 0 0 S 33.595 33.388 33.546 33.473 33.352 33.183 33.477 33.559 33.646 33.211 33.619 33.674 33.449 33.626 33.569 33.386 33.487 33.488 27.843 33.627 33.378 33.323 33.613 33.522 33.571 33.595 33.632 33.432 33.462 33.637 33.549 33.656 33.575 33.446 33.305 33.516 32.997 33.535 33.639 33.094 33.161 33.358 33.43 33.37 33.36 Sb Sb 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Se Se 0.001 0.017 0.074 0.029 0.148 0.013 0.026 0.012 0.005 0.007 0.031 0.008 0.045 0.023 0.003 0.042 0.044 0.056 0.032 0.014 0.032 0.158 0.051 0.036 0.015 0.012 0.108 0.086 0.09 0.05 0.09 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Sn Sn 0.011 0.002 0.002 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Zn Zn 55.241 52.873 54.381 53.736 55.954 54.368 54.647 54.307 54.456 55.189 54.325 54.525 55.463 55.772 55.661 55.151 54.298 51.408 56.422 54.281 56.603 54.591 54.354 56.352 54.364 54.673 56.089 54.623 56.628 54.409 54.058 54.533 54.779 54.035 53.337 54.365 54.601 53.832 53.232 55.85 54.65 54.71 56.45 56.27 54.26 Total 100.593 100.197 100.292 98.081 97.574 98.799 98.644 98.894 98.887 98.761 98.819 99.841 98.705 99.205 99.105 98.524 99.314 98.742 98.695 98.595 98.975 98.374 99.886 99.113 99.744 99.196 99.129 99.493 99.087 98.764 97.317 99.009 97.727 98.648 97.544 97.772 97.744 97.454 98.96 98.22 99.97 86.12 99.04 98.26 99 Getberget-b Getberget-b Getberget-b Getberget-b Getberget-b Getberget-b Getberget-b Getberget-b Getberget-b Getberget-b Getberget-b Getberget-a Getberget-a Getberget-a Getberget-a Getberget-a Getberget-a Getberget-a Getberget-a Getberget-a Getberget-a Getberget-a Getberget-a Getberget-a Getberget-a Getberget-a Getberget-a Getberget-a Getberget-a Getberget-a Getberget-a Getberget I Getberget I Getberget I Getberget I Getberget I Getberget I Getberget I Getberget I Getberget I Getberget I Getberget I Getberget I Getberget I Getberget I Sample ID

100

759 721 740 760 722 761 741 723 762 742 724 763 743 725 764 744 726 765 745 727 766 746 728 747 729 730 748 731 749 732 750 733 751 734 752 735 753 736 754 737 755 738 756 757 739 758 No Table 7. Continued 7. Table Ag Ag 0.012 0.014 0.005 0.019 0.004 0.001 0.002 0.019 0.008 0.006 0.005 0.003 0.02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 As 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Bi Bi 0.116 0.167 0.151 0.118 0.174 0.123 0.131 0.177 0.113 0.146 0.118 0.132 0.128 0.147 0.169 0.115 0.155 0.143 0.134 0.103 0.128 0.145 0.111 0.154 0.122 0.118 0.147 0.114 0.135 0.157 0.135 0.137 0.156 0.104 0.122 0.193 0.087 0.096 0.118 0.146 0.152 0.13 0.13 0.11 0.11 0.11

Cd Cd 0.207 0.214 0.211 0.169 0.207 0.206 0.168 0.245 0.179 0.001 0.005 0.203 0.001 0.181 0.006 0.208 0.208 0.207 0.003 0.002 0.004 0.159 0.143 0.187 0.161 0.196 0.205 0.24 0.15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Co Co 0.009 0.004 0.003 0.001 0.013 0.009 0.012 0.006 0.003 0.003 0.003 0.014 0.009 0.007 0.007 0.003 0.013 0.005 0.006 0.003 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Cu Cu 0.017 0.006 0.005 0.277 0.405 0.007 0.107 0.014 0.093 0.005 0.921 0.012 0.196 0.011 0.752 0.264 0.169 0.019 0.158 0.448 0.021 0.233 0.032 0.694 0.752 0.009 0.517 0.025 0.017 0.505 0.018 0.203 0.007 0.016 0.289 0.021 0.012 0.013 0.04 0.07 0 0 0 0 0 0 Fe Fe 7.989 8.481 7.538 8.325 8.561 8.523 8.489 9.873 9.133 8.763 8.442 8.863 9.005 8.632 8.531 8.766 8.001 8.227 8.185 8.247 8.622 8.407 8.767 8.743 8.951 8.912 8.826 9.246 7.974 8.762 8.918 7.515 8.497 8.202 9.444 8.738 9.208 8.662 8.387 8.618 8.248 8.184 8.79 7.52 8.56 8.48 Ga Ga 0.016 0.008 0.003 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ge Ge 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Hg Hg 0.038 0.022 0.015 0.002 0.043 0.001 0.004 0.001 0.007 0.061 0.027 0.016 0.007 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 In In 0.009 0.005 0.001 0.004 0.001 0.008 0.004 0.003 0.002 0.003 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Mn Mn 0.287 0.325 0.336 0.276 0.287 0.322 0.321 0.319 0.251 0.305 0.324 0.283 0.322 0.336 0.315 0.341 0.297 0.298 0.282 0.295 0.331 0.313 0.318 0.307 0.309 0.278 0.311 0.272 0.324 0.315 0.285 0.278 0.302 0.279 0.316 0.282 0.314 0.309 0.308 0.305 0.302 0.32 0.31 0.26 0.31 0.3 Pb Pb 0.292 0.271 0.318 0.254 0.314 0.245 0.282 0.338 0.242 0.013 0.365 0.004 0.313 0.016 0.003 0.237 0.004 0.301 0.274 0.278 0.004 0.041 0.013 0.017 0.248 0.006 0.198 0.209 0.017 0.028 0.019 0.005 0.33 0.25 0.26 0.02 0.3 0 0 0 0 0 0 0 0 0 33.491 S 33.061 33.487 33.336 33.477 33.206 33.508 33.441 33.522 33.413 33.841 33.311 33.433 33.386 33.544 33.311 33.445 33.464 33.429 33.267 33.485 33.484 33.495 33.511 33.445 33.712 33.582 33.381 33.426 33.444 30.036 33.304 33.706 33.557 33.347 33.412 33.375 33.21 33.74 33.42 33.65 33.33 33.49 33.49 33.51 33.44 Sb Sb 0.003 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Se Se 0.114 0.049 0.081 0.032 0.027 0.051 0.008 0.027 0.096 0.003 0.149 0.001 0.101 0.021 0.035 0.031 0.028 0.028 0.038 0.091 0.069 0.156 0.005 0.014 0.017 0.039 0.014 0.12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Sn Sn 0.015 0.015 0.005 0.004 0.003 0.009 0.004 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Zn Zn 56.785 55.493 55.867 56.834 55.932 55.855 56.091 57.083 54.061 55.928 54.708 55.735 55.422 55.765 54.995 55.387 56.481 56.713 55.712 55.975 56.117 55.909 55.766 55.387 55.313 54.966 55.075 55.288 55.984 55.669 55.145 49.443 55.074 56.235 54.561 54.637 55.929 55.672 56.046 56.081 56.395 55.76 55.94 56.21 55.99 55.71 Total 99.339 97.891 98.902 98.952 99.025 98.775 98.542 99.054 98.528 98.528 99.491 98.771 98.599 98.508 98.734 98.329 98.322 99.045 98.879 98.405 99.028 98.518 98.718 98.807 98.472 98.064 98.496 98.827 98.651 98.801 98.446 98.478 87.928 97.951 98.889 98.329 98.717 98.564 98.539 98.344 98.188 98.604 98.443 98.79 98.61 98.58 Getberget I Getberget I Getberget I Getberget I Getberget I Getberget I Getberget I Getberget I Getberget I Getberget I Getberget I Getberget I Getberget I Getberget I Getberget I Getberget I Getberget I Getberget I Getberget I Getberget I Getberget I Getberget I Getberget I Getberget I Getberget I Getberget I Getberget I Getberget I Getberget I Getberget I Getberget I Getberget I Getberget I Getberget I Getberget I Getberget I Getberget I Getberget I Getberget I Getberget I Getberget I Getberget I Getberget I Getberget I Getberget I Getberget I Sample ID

101

805 767 786 806 768 807 787 769 788 808 770 789 771 809 790 772 810 773 791 774 792 775 793 776 777 794 778 795 779 796 780 797 781 782 798 783 799 784 800 785 801 802 803 804 No Table 7. Continued 7. Table Ag Ag 0.006 0.007 0.005 0.013 0.002 0.009 0.013 0.005 0.008 0.012 0.011 0.005 0.004 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 As 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Bi Bi 0.168 0.106 0.158 0.125 0.162 0.161 0.136 0.152 0.174 0.157 0.148 0.145 0.117 0.146 0.153 0.101 0.161 0.108 0.134 0.131 0.106 0.131 0.112 0.103 0.126 0.118 0.094 0.091 0.122 0.111 0.123 0.105 0.152 0.164 0.122 0.159 0.136 0.153 0.14 0.11 0.12 0.14 0.13 0.12

Cd Cd 0.557 0.571 0.593 0.539 0.002 0.566 0.573 0.542 0.003 0.002 0.534 0.578 0.519 0.587 0.001 0.649 0.583 0.001 0.571 0.001 0.552 0.553 0.545 0.511 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Co Co 0.023 0.037 0.118 0.043 0.019 0.026 0.024 0.028 0.024 0.011 0.002 0.026 0.058 0.013 0.039 0.012 0.029 0.042 0.041 0.034 0.017 0.031 0.026 0.015 0.004 0.035 0.029 0.029 0.034 0.014 0.013 0.039 0.022 0.028 0.031 0.025 0.043 0.032 0.02 0.03 0.02 0.01 0.02 0.02 Cu Cu 0.094 0.038 0.009 0.009 0.012 0.012 0.029 0.002 0.034 0.024 0.162 0.008 0.007 0.025 0.023 0.096 0.064 0.005 0.013 0.067 0.151 0.063 0.021 0.043 0.025 0.019 0.04 0.02 0.03 0.02 0.11 0.03 0 0 0 0 0 0 0 0 0 0 0 0 Fe Fe 10.511 10.603 10.883 10.332 11.026 10.561 10.422 10.048 10.391 10.082 11.081 10.496 10.672 10.853 10.515 10.558 11.554 11.503 11.084 10.917 10.615 11.046 9.195 10.93 8.027 11.38 9.814 9.521 9.605 9.568 9.489 9.635 9.321 9.571 10.94 9.298 9.225 9.496 9.869 9.385 9.311 9.165 9.55 9.92 Ga Ga 0.018 0.002 0.002 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ge Ge 0.003 0.038 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Hg Hg 0.015 0.008 0.003 0.003 0.018 0.002 0.037 0.004 0.001 0.023 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 In In 0.002 0.002 0.009 0.006 0.002 0.006 0.003 0.01 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Mn Mn 0.203 0.125 0.253 0.224 0.232 0.239 0.206 0.203 0.231 0.206 0.211 0.197 0.212 0.212 0.183 0.222 0.203 0.228 0.203 0.203 0.222 0.187 0.204 0.235 0.184 0.248 0.177 0.215 0.187 0.226 0.257 0.222 0.217 0.243 0.241 0.238 0.243 0.219 0.199 0.201 0.188 0.202 0.23 0.21 Pb Pb 0.009 0.261 0.018 0.264 0.004 0.012 0.284 0.293 0.081 0.188 0.011 0.305 0.009 0.231 0.349 0.319 0.272 0.239 0.283 0.332 0.019 0.252 0.305 0.204 0.04 0.06 0.27 0.26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 33.527 S 33.546 33.714 33.643 33.599 33.511 33.586 33.732 33.548 33.825 33.457 33.768 33.601 33.689 33.446 33.548 33.576 33.384 33.319 33.827 33.416 33.751 33.394 33.815 33.677 33.508 33.582 33.473 33.433 33.555 33.541 33.544 33.419 33.653 33.411 33.705 33.555 33.46 33.58 33.69 33.62 33.51 33.45 33.6 Sb Sb 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Se Se 0.069 0.071 0.098 0.039 0.016 0.038 0.001 0.013 0.108 0.054 0.132 0.127 0.042 0.065 0.071 0.088 0.064 0.045 0.047 0.025 0.037 0.031 0.014 0.034 0.051 0.008 0.006 0.013 0.099 0.03 0.07 0 0 0 0 0 0 0 0 0 0 0 0 0 Sn Sn 0.004 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Zn Zn 55.856 54.036 56.885 53.581 54.172 54.438 54.393 54.424 55.001 53.843 54.381 54.875 55.409 54.908 55.017 55.383 55.106 54.857 53.642 55.508 54.867 55.801 54.682 54.314 55.191 53.863 55.742 54.295 55.721 54.175 55.406 52.974 55.073 53.652 54.305 53.968 54.186 53.568 54.984 55.401 55.905 55.53 55.67 52.9 Total 99.041 98.839 99.024 99.247 98.886 98.994 99.342 99.628 99.898 98.924 100.48 99.027 98.884 98.956 99.407 99.403 99.638 99.069 98.985 99.907 99.309 99.426 99.407 99.109 99.654 99.691 99.421 99.414 98.493 99.516 98.791 98.901 98.941 99.726 99.796 99.653 99.622 99.012 98.75 99.54 99.29 99.84 98.48 98.7 Sample ID Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen

102

849 811 830 850 812 831 851 813 832 852 814 833 853 815 834 816 835 854 817 836 855 818 837 819 838 820 839 821 840 822 841 823 842 824 843 825 844 826 845 827 846 828 847 829 848 No Table 7. 7. Table Ag Ag 0.003 0.012 0.007 0.017 0.002 0.007 0.005 0.006 0.004 0.008 0.004 0.005 0.001 0.016 0.005 0.006 0.015 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Continued As 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Bi Bi 0.112 0.154 0.115 0.153 0.071 0.155 0.132 0.127 0.205 0.117 0.128 0.097 0.147 0.206 0.129 0.142 0.165 0.117 0.141 0.136 0.105 0.087 0.194 0.135 0.108 0.128 0.174 0.158 0.174 0.148 0.164 0.103 0.126 0.151 0.129 0.156 0.161 0.155 0.135 0.157 0.15 0.09 0.15 0.14 0.12

Cd Cd 0.206 0.227 0.225 0.572 0.229 0.571 0.537 0.214 0.002 0.235 0.004 0.553 0.249 0.004 0.001 0.586 0.001 0.592 0.004 0.563 0.005 0.535 0.514 0.209 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Co Co 0.003 0.015 0.003 0.012 0.019 0.007 0.022 0.013 0.005 0.021 0.036 0.041 0.003 0.014 0.024 0.018 0.007 0.019 0.008 0.002 0.052 0.035 0.052 0.025 0.041 0.022 0.021 0.017 0.028 0.031 0.011 0.007 0.019 0.025 0.034 0.039 0.043 0.006 0.02 0.01 0.02 0.02 0 0 0 Cu Cu 0.022 0.001 0.012 0.474 0.031 0.017 0.019 0.023 0.033 0.022 0.004 0.007 0.003 0.083 0.022 0.019 0.034 0.205 0.031 0.013 0.002 0.056 0.004 0.055 0.005 0.033 0.001 0.047 0.018 0.03 0.01 0.01 0.01 0 0 0 0 0 0 0 0 0 0 0 0 Fe Fe 10.144 10.091 11.014 10.781 10.842 8.277 8.928 8.617 9.712 9.144 8.811 9.833 9.256 8.693 9.879 8.899 8.239 9.634 9.794 9.944 9.729 8.696 9.947 9.792 8.568 9.181 9.721 9.396 9.432 9.239 9.535 9.046 9.358 9.515 9.758 9.382 9.898 9.874 9.549 11.22 9.281 8.891 9.66 9.83 8.06 Ga Ga 0.013 0.007 0.012 0.013 0.005 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ge Ge 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Hg Hg 0.017 0.016 0.013 0.019 0.003 0.036 0.023 0.013 0.028 0.025 0.002 0.008 0.012 0.002 0.01 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 In In 0.004 0.002 0.006 0.007 0.002 0.004 0.003 0.003 0.002 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Mn Mn 0.189 0.293 0.199 0.197 0.278 0.206 0.205 0.275 0.223 0.278 0.204 0.202 0.254 0.212 0.203 0.194 0.275 0.211 0.204 0.261 0.217 0.213 0.255 0.194 0.209 0.191 0.198 0.208 0.221 0.197 0.211 0.222 0.212 0.236 0.227 0.234 0.236 0.188 0.176 0.245 0.26 0.22 0.21 0.21 0.2 Pb Pb 0.262 0.259 0.032 0.268 0.006 0.325 0.231 0.329 0.318 0.004 0.172 0.011 0.238 0.249 0.011 0.017 0.021 0.038 0.247 0.001 0.295 0.018 0.244 0.253 0.074 0.006 0.295 0.316 0.01 0.28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 33.568 S 33.561 33.759 33.675 33.627 33.509 33.821 33.732 33.561 33.628 33.455 33.605 33.671 33.561 33.722 33.685 33.603 33.605 33.481 33.611 33.563 33.561 33.435 33.635 33.746 33.636 33.589 33.513 33.578 33.502 33.523 33.431 33.458 33.804 33.393 33.733 33.444 33.639 33.619 33.519 33.28 33.48 33.62 33.55 33.4 Sb Sb 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Se Se 0.066 0.007 0.018 0.177 0.055 0.166 0.023 0.031 0.121 0.028 0.055 0.041 0.037 0.116 0.068 0.017 0.021 0.044 0.069 0.009 0.093 0.014 0.002 0.005 0.022 0.02 0.04 0.02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Sn Sn 0.007 0.008 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Zn Zn 57.097 56.115 56.817 55.412 55.475 56.445 54.823 55.628 57.079 54.819 54.986 56.489 54.745 55.131 55.284 57.342 55.167 55.392 56.647 54.862 55.276 56.808 54.888 55.821 54.439 55.613 55.664 55.805 55.282 56.161 55.392 54.785 55.351 55.014 53.841 54.674 54.185 55.085 53.562 55.468 54.218 55.896 57.111 55.44 55.32 Total 100.136 100.242 98.995 99.204 98.806 99.715 98.954 99.025 99.615 99.028 99.876 99.764 99.367 98.947 99.421 99.749 99.145 99.118 99.824 98.686 99.839 99.781 98.972 98.974 98.016 99.131 99.122 98.903 99.163 98.935 99.619 98.534 99.487 98.857 99.202 99.176 99.272 98.971 99.572 99.146 99.693 99.89 99.39 99.06 98.65 Mysst.B4.1 Mysst.B4.1 Mysst.B4.1 Mysst.B4.1 Mysst.B4.1 Mysst.B4.1 Mysst.B4.1 Mysst.B4.1 Mysst.B4.1 Sample ID Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen

103

856 857 875 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 No Table 7. Continued 7. Table Ag Ag 0.004 0.004 0.002 0.005 0.013 0.014 0.002 0 0 0 0 0 0 0 0 0 0 0 0 0 As 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bi Bi 0.142 0.157 0.141 0.106 0.162 0.146 0.127 0.126 0.135 0.173 0.168 0.126 0.213 0.116 0.128 0.134 0.138 0.141 0.15 0.11 Cd Cd 0.223 0.238 0.224 0.001 0.218 0.228 0.232 0.224 0.246 0.226 0.223 0.244 0.23 0 0 0 0 0 0 0 Co Co 0.014 0.011 0.001 0.008 0.009 0.006 0.009 0.009 0.006 0.002 0.005 0 0 0 0 0 0 0 0 0 Cu Cu 0.002 0.002 0.003 0.005 0.001 0.008 0.011 0.018 0.035 0.028 0.006 0.005 0.02 0.03 0 0 0 0 0 0 Fe Fe 8.801 8.665 8.256 8.662 8.471 8.446 8.417 8.663 8.405 8.851 8.973 8.577 8.543 8.492 8.064 8.716 8.431 8.411 8.39 8.6 Ga Ga 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ge Ge 0.007 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Hg Hg 0.015 0.016 0.022 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 In In 0.004 0.001 0.002 0.002 0.004 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Mn Mn 0.277 0.286 0.269 0.274 0.265 0.262 0.252 0.279 0.271 0.266 0.269 0.262 0.264 0.281 0.278 0.273 0.28 0.25 0.25 0.26 Pb Pb 0.285 0.035 0.278 0.303 0.004 0.279 0.236 0.205 0.246 0.236 0.246 0.297 0.279 0.243 0.002 0 0 0 0 0 S 33.657 33.433 33.466 33.434 33.596 33.473 33.331 33.584 33.348 33.536 33.513 33.626 33.569 33.661 33.786 33.814 33.476 33.71 33.59 33.54 Sb Sb 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Se Se 0.057 0.002 0.064 0.031 0.004 0.002 0.018 0.015 0.034 0.069 0.05 0 0 0 0 0 0 0 0 0 Sn Sn 0.003 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Zn Zn 56.471 57.636 56.426 57.261 56.652 56.832 56.758 56.536 56.826 56.365 56.762 56.838 57.613 56.886 57.078 57.098 57.12 56.97 56.24 57.12 Total 100.218 100.168 100.381 100.415 99.936 99.471 99.935 99.207 99.653 99.525 99.257 99.526 99.115 99.765 99.537 99.344 99.663 99.902 99.475 99.83 Mysst.B4.1 Mysst.B4.1 Mysst.B4.1 Mysst.B4.1 Mysst.B4.1 Mysst.B4.1 Mysst.B4.1 Mysst.B4.1 Mysst.B4.1 Mysst.B4.1 Mysst.B4.1 Mysst.B4.1 Mysst.B4.1 Mysst.B4.1 Mysst.B4.1 Mysst.B4.1 Mysst.B4.1 Mysst.B4.1 Mysst.B4.1 Mysst.B4.1 Sample ID

104

Appendix B: LA-ICP-MS results

No. 39 38 10 40 37 36 11 35 34 12 41 33 32 31 13 42 30 14 43 29 15 44 28 27 16 17 45 19 18 26 24 23 22 21 20 25 Table 8. LA 8. Table 5 4 6 3 7 2 1 8 9 607959.1 613430.3 599505.2 605609.6 610643.8 601819.9 623845.8 603294.3 598458.4 577184.3 581221.1 604836.3 585597.8 585778.6 577850.7 583386.7 582042.9 584830.4 580155.4 573946.5 579435.1 578297.4 587800.6 575759.8 658916.4 579643.3 585686.6 615144.1 581109.6 578166.9 663672.1 562523.5 556894.9 533171.1 553813.6 563102.1 579194.2 546709.9 551974.8 540892.1 537205.9 547478.9 632713.2 573633 696968 Zn 315088.6 312944.4 307833.8 319742.5 318361.8 307614.4 309298.8 305271.4 308127.8 316748.3 318235.4 321554.3 304342.9 314934.1 320884.2 309618.8 324181.3 315007.4 318107.5 324502.5 320674.5 321771.9 317133.5 326950.8 314616.3 315677.4 316365.1 305220.2 310602.3 318518.2 310677.2 323997.9 274039.1 330767.8 316650.7 341445.4 306224.8 310191.3 317184.2 312782.2 308230.8 309238.8 301777.5 309035.3 320217 S - ICP 69957.99 67626.07 65294.13 66848.76 69957.99 64516.82 62184.88 87058.84 87836.15 86281.52 95609.26 86281.52 95609.27 85504.22 95609.26 87058.84 97163.89 88613.46 84726.91 98718.51 90168.09 98718.52 90168.08 122815.2 95609.26 118151.3 126701.7 111932.8 108823.6 121260.5 119705.9 69180.7 62962.2 97941.2 62962.2 97941.2 1204.83 97941.2 1165.97 1111.55 1173.74 1119.33 117374 117374 979.41 - MS sphalerite rawMS All data. elements shown are ppm. in Fe 3798.17 3210.72 3139.55 3059.47 3937.57 3085.54 6770.34 3517.71 3165.63 6788.42 3055.67 2896.27 6807.66 3681.41 6703.29 3468.29 6927.04 3546.14 4120.58 355.97 339.05 297.43 340.86 335.65 293.25 339.45 316.12 308.88 315.68 780.42 151.07 828.62 680.56 775.85 960.42 936.24 863.53 98.14 35.61 30.42 12.98 833.5 865.8 12.58 3066 Mn 1132.99 1051.21 1111.86 199.82 193.66 189.04 188.06 177.97 196.46 179.17 433.06 396.75 173.01 394.24 174.72 507.12 381.79 135.46 400.53 427.26 417.56 435.23 441.42 154.24 352.83 135.14 877.92 143.06 390.52 722.85 234.97 478.18 201.29 238.14 227.05 230.54 955.84 151.33 178.27 197.6 389.9 394.8 144.9 169.7 148.7 Co 10317.46 1592.43 1618.87 1599.44 1729.04 1543.22 1600.79 1684.55 5722.34 1656.35 1648.07 5650.25 5538.69 5379.47 6883.83 5408.05 2880.42 5597.81 5406.06 6451.38 5369.13 2882.01 6640.53 2838.61 9101.58 6210.19 2868.55 8643.16 2847.27 10779.5 6695.33 6430.71 5171.15 6842.85 5788.78 5925.31 6432.45 8713.97 5500.91 5470.91 6071.57 6878.2 1651.2 9949.9 6353.2 Cd 133.09 154.57 134.96 424.83 132.94 294.77 306.22 137.25 202.52 268.76 315.84 137.62 177.13 58.33 80.95 58.24 56.18 79.64 57.84 82.22 58.41 58.21 76.81 82.53 82.62 79.22 136.1 82.84 83.68 59.89 186.1 180.8 5.89 5.95 6.07 5.94 5.97 5.88 5.86 5.89 58.4 58.3 59 In 6 6 192.94 176.59 175.93 163.46 214.51 183.62 <5.18 <5.64 <2.07 <5.32 <5.45 <2.10 <5.50 <5.51 <5.29 <5.20 <5.09 54.68 52.76 54.34 56.33 60.07 53.47 57.96 55.59 50.41 53.62 54.96 55.98 57.36 28.15 30.19 42.05 56.47 28.99 24.61 22.66 29.56 25.51 27.43 3.35 54.2 5.7 2.3 2.5 Se 10.66 1.411 10.74 17.52 25.77 30.29 10.09 10.13 14.89 26.65 10.08 118.7 10.05 22.62 5.27 2.22 3.51 1.76 8.28 2.04 4.51 9.06 1.66 2.61 4.51 4.04 1.87 1.93 2.26 4.79 3.46 3.14 2.85 3.99 2.92 3.56 1.04 1.91 8.83 2.01 5.28 1.91 1.88 1.58 Ag 6.3 41.38 45.79 40.33 52.91 37.94 57.58 38.66 16.03 36.73 28.22 17.77 39.56 19.59 21.97 39.63 23.31 20.78 21.33 19.19 21.59 16.88 15.37 27.88 27.02 26.46 21.58 26.09 14.14 24.04 16.02 10.89 30.82 11.66 17.24 43.05 26.3 31.8 27.5 16.6 16.3 8.83 15.2 8.38 7.17 6.97 Hg 1037.33 1281.02 4513.04 1158.37 3560.09 3922.91 161.93 369.33 220.01 110.35 402.04 976.18 502.51 284.79 120.63 289.49 191.59 134.75 1280.5 417.38 343.94 230.89 381.28 44.05 26.19 27.51 22.81 26.29 71.56 50.99 74.47 52.11 56.31 58.66 69.33 67.93 544.4 74.62 79.43 77.84 186.1 599.9 313.5 342.4 178 Cu 348.65 <0.149 <0.43 <0.18 0.368 0.397 0.517 0.378 0.379 0.395 0.269 0.917 0.348 11.56 0.478 0.377 10.81 0.397 0.416 23.78 0.478 0.565 0.503 0.557 25.77 0.302 0.261 0.259 0.258 0.44 2.77 3.82 3.19 6.03 5.66 8.29 0.43 0.42 0.35 3.04 3.52 3.82 1.02 4.61 3.05 Sn

<0.125 <0.152 <0.042 <0.22 <0.21 1.431 0.518 1.266 1.419 1.425 1.033 1.804 1.493 1.528 0.433 0.477 1.315 0.458 1.512 0.486 0.409 1.291 0.212 0.078 0.851 0.258 0.228 0.298 0.246 3.57 3.49 3.42 3.41 4.12 3.27 3.39 3.29 1.61 3.61 0.45 1.22 0.63 0.17 0.31 4.3 Ga <0.051 1.923 1.031 16.38 35.81 41.23 0.154 0.143 0.482 1.148 0.288 0.166 20.04 0.319 0.838 16.43 0.504 0.684 0.159 4.24 1.77 1.18 4.97 2.91 2.24 5.25 1.22 9.56 1.64 0.75 6.22 5.03 3.38 3.54 1.25 8.98 3.39 5.96 3.36 5.94 3.18 1.4 4.1 1.4 7.4 Pb <0.0196 <0.0200 <0.0057 <0.0215 0.0163 0.0088 0.0072 0.0108 0.0149 0.642 0.424 0.663 0.274 0.437 0.172 0.743 0.446 1.256 1.525 0.884 0.469 0.103 0.074 0.839 0.419 0.677 0.398 0.927 19.62 0.131 0.661 0.037 0.321 0.236 0.04 1.96 3.16 6.57 0.04 2.49 2.39 5.55 2.06 2.05 9.21 Bi <0.0128 <0.0055 <0.0042 <0.0038 <0.0051 <0.0058 <0.0054 <0.0027 <0.0049 <0.0146 <0.0159 <0.0103 <0.0113 <0.0049 <0.0115 <0.0106 <0.0040 <0.0125 0.0037 0.0046 0.0049 0.0077 0.0698 0.0044 0.0054 0.0067 0.0362 <0.026 0.0572 0.0076 0.0068 0.0064 0.0069 0.0059 0.0055 0.0042 <0.00 <0.00 0.005 0.087 0.029 0.021 0.088 0.045 0.018 Au <0.099 <0.171 <0.106 <0.125 <0.100 <0.097 <0.129 <0.096 <0.150 <0.038 <0.034 <0.042 <0.037 0.418 0.159 0.186 0.129 1.912 0.141 0.054 0.098 0.909 0.216 0.148 0.041 0.111 0.096 0.217 0.302 0.437 0.576 0.342 0.126 0.044 0.147 0.125 0.085 0.273 0.934 2.56 1.85 0.66 1.08 0.75 0.27 Sb <0.28 0.612 0.588 0.628 0.641 0.858 0.637 0.689 0.742 0.644 0.724 0.689 0.594 0.612 0.611 0.668 0.695 0.839 0.651 0.807 0.715 0.775 0.787 0.612 0.945 0.58 0.67 0.53 0.78 0.75 0.64 0.76 0.73 0.53 0.52 0.44 0.75 0.94 0.66 0.73 0.44 1.22 0.42 0.49 0.5 Ge <0.0128 <0.0086 <0.0129 <0.0120 <0.0058 <0.0060 <0.0068 <0.0189 <0.0248 <0.0160 <0.0145 <0.0143 <0.0043 <0.0073 <0.054 0.0142 0.0128 0.0546 <0.022 <0.021 0.0129 0.0166 <0.016 0.0098 0.0062 0.207 0.204 0.224 0.131 0.274 0.149 0.385 0.145 0.129 0.277 0.919 0.088 0.246 0.141 1.148 2.25 0.38 4.09 2.08 25 Tl <0.132 <0.133 <0.130 <0.128 <0.140 <0.132 <0.136 <0.129 <0.127 <0.136 <0.142 <0.131 <0.132 <0.125 <0.129 <0.122 <0.124 <0.33 <0.35 <0.34 <0.33 <0.36 <0.34 <0.59 <0.35 <0.59 <0.32 <0.40 <0.35 <0.33 <0.41 <0.32 <0.31 <0.44 <0.47 <0.33 0.131 0.403 0.214 0.319 0.678 0.224 0.193 0.135 4.26 As <0.198 <0.198 <0.189 <0.196 <0.204 <0.198 <0.201 <0.194 <0.189 <0.54 <0.60 <0.53 <0.89 <0.19 <0.20 <0.20 <0.20 <0.70 <0.20 <0.51 <0.51 <0.49 <0.64 <0.49 <0.47 <0.69 <0.20 <0.21 <0.20 <0.56 <0.20 <0.69 <0.20 <0.20 <0.19 <0.52 0.74 0.25 0.51 0.38 0.95 1.07 0.94 0.81 1.18 Ni <0.63 <0.69 <0.68 <0.62 <0.22 <0.66 <0.23 <0.23 <0.23 <0.23 <0.22 <0.23 <0.22 <0.22 <0.23 <0.23 <0.22 <0.23 <0.65 <0.23 <1.10 <0.63 <0.22 <1.06 <0.63 <0.22 <0.76 <0.64 <0.61 <0.22 <0.79 <0.65 <0.23 <0.60 <0.90 <0.88 <0.19 <0.20 <0.19 <0.74 <0.24 <0.20 <0.19 <0.69 0.25 Mo <1.43 <1.47 <1.49 <1.42 <0.43 <1.49 <0.47 <0.49 <0.46 <0.49 <0.47 <0.45 <0.45 <0.49 <0.47 <0.51 <0.48 <2.33 <1.46 <2.43 <1.60 <1.35 <0.47 <1.36 <1.32 <1.82 <1.32 <0.49 <1.31 <1.47 <1.86 <0.52 <1.97 <0.39 <0.40 <0.38 0.57 1.52 1.05 1.59 0.63 0.58 0.84 1.71 0.93 Te Total 100 100 100 100 101 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 105 100 100 100 100 100 100 100 98 97 98 97 97 93 85 95 98 98 97 98 97 Gås NI And Gås NI And Gås NI And Gås NI And Gås NI And Gås NI And Gås NI And Gås NI And Gås NI And LAH 001.6 LAH LAH 001.6 LAH LAH 001.6 LAH LAH 001.6 LAH LAH 001.6 LAH EJ-BhZ-1b EJ-BhZ-1b EJ-BhZ-1b EJ-BhZ-1b EJ-BhZ-1b EJ-BhZ-1b Sample ID 2000.0189 2000.0189 2000.0189 2000.0189 2000.0189 2000.0189 2000.0189 2000.0189 2000.0189 2000.0189 57.4154 57.4154 57.4154 57.4154 57.4154 57.4154 57.4154 57.4154 57.4154 57.4154 57.4154 57.4154 57.4154 57.4154 57.4154

105

Table 8 Table No. 76 61 62 77 46 47 78 48 63 79 64 80 81 49 82 65 83 50 84 51 66 85 86 52 67 87 88 53 68 89 54 90 69 71 72 55 74 73 56 70 75 57 58 59 60 0.732 1.079 1.772 0.797 12.88 0.911 12.33 1.231 0.792 1.146 0.776 0.811 15.94 1.302 1.084 1.158 1.115 1.128 1.223 1.142 1.021 0.812 1.048 1.691 1.104 0.866 0.808 1.135 0.834 0.712 1.119 1.068 1.433 1.213 14.1 5.94 1.07 2.87 2.06 5.18 3.91 2.39 5.32 6.79 1.15 Ag . Continued <0.146 <0.120 <0.132 <0.132 <0.132 <0.124 <0.130 <0.120 <0.126 <0.143 <0.134 <0.171 <0.125 <0.127 <0.123 <0.125 <0.130 <0.122 <0.150 <0.118 <0.142 <0.147 <0.124 <0.137 <0.133 <0.135 <0.132 <0.133 <0.123 <0.138 <0.156 <0.126 <0.142 <0.137 <0.125 <0.129 <0.126 0.289 0.248 0.216 0.149 0.229 0.281 0.213 0.29 As <0.00191 <0.0061 <0.0028 <0.0039 <0.0049 <0.0035 <0.0051 <0.0107 <0.0052 <0.0053 <0.0036 <0.0073 <0.0054 <0.0043 <0.0073 <0.0034 <0.0050 <0.0046 <0.0066 <0.0047 0.0111 0.0088 0.0033 0.0039 0.0046 0.0069 0.0404 0.0815 0.0012 0.0054 0.0399 0.0018 0.0453 0.0196 0.0114 0.0503 0.0072 0.0224 0.0033 0.0256 0.0058 0.0082 0.008 0.027 0.04 Au

0.0138 0.0136 0.0293 0.0599 0.0251 0.0711 0.0537 0.0467 0.0899 0.0168 0.0612 0.0299 0.0219 0.0268 0.733 0.106 1.355 0.386 0.164 0.092 0.289 0.709 0.198 0.287 1.319 0.007 0.154 0.308 0.033 0.146 0.168 0.132 0.436 0.444 0.807 0.225 0.138 0.363 0.148 0.013 0.335 0.199 0.73 2.49 3.04 Bi 6841.74 6727.04 7080.28 7286.17 6090.19 5985.61 5743.26 6314.26 5754.74 5720.02 6132.93 817.84 602.89 630.52 834.72 803.78 607.17 823.77 797.13 624.05 841.48 621.46 619.16 610.03 623.58 615.03 601.85 6172.8 620.94 603.01 599.35 858.21 827.65 866.96 619.33 846.03 834.07 640.99 600.36 630.77 612.56 637.49 633.2 810.7 815 Cd 303.76 156.15 154.95 307.85 546.63 293.42 570.87 152.39 302.26 287.19 152.88 313.28 584.48 289.47 279.63 154.65 276.21 153.41 301.99 151.88 305.72 156.29 283.64 153.23 303.17 152.94 393.03 147.81 154.11 154.21 297.93 298.62 306.96 303.56 156.47 304.18 308.19 155.59 153.57 528.6 151.9 316.5 152.1 153.6 155.1 Co 1077.53 1500.91 1065.12 337.93 164.37 201.48 971.04 174.85 178.81 368.69 117.94 207.95 175.23 156.76 226.48 152.87 271.18 147.61 105.79 152.72 107.65 158.86 164.61 159.38 162.28 158.29 176.51 178.22 157.35 166.51 164.18 109.1 10.93 11.02 15.95 1.96 6.56 8.22 2.21 2.02 3.17 3.23 3.83 Cu 2.4 3.2 96386.57 88613.46 87836.15 93277.33 95609.26 88613.46 88613.46 94831.95 94831.95 93277.33 87058.84 87836.15 94054.64 87836.15 104159.7 87058.84 96386.57 88613.47 95609.26 87836.15 102605.1 87058.84 101827.8 85504.22 87836.15 88613.47 90168.09 88613.46 88613.46 88613.46 87836.15 88613.46 3653.36 3731.09 3653.36 3420.17 3808.82 3731.09 3575.63 3575.63 3731.09 3653.36 3653.36 3653.36 3497.9 Fe <0.055 <0.049 <0.051 <0.063 <0.054 0.994 0.116 0.588 0.421 0.789 0.995 0.574 0.129 0.116 0.556 0.763 2.326 0.534 0.659 2.396 0.661 2.155 0.591 1.858 0.241 2.152 0.539 1.617 0.489 0.089 1.862 0.647 0.545 0.143 0.077 0.587 0.059 0.086 0.603 0.533 0.417 0.422 0.432 0.446 2.12 Ga 0.423 0.834 0.615 0.496 0.587 0.357 0.629 0.806 0.542 0.513 0.622 0.734 0.579 0.663 0.782 0.612 0.603 0.556 0.809 0.533 0.668 0.712 0.618 0.584 0.697 0.424 0.568 0.608 0.622 0.617 0.351 0.445 0.719 0.719 0.538 0.656 0.721 0.896 0.618 0.658 0.52 0.67 0.82 0.45 0.7 Ge 125.89 115.52 105.22 219.58 134.66 38.57 68.78 13.02 58.94 36.45 75.52 72.95 67.57 71.64 46.92 32.75 50.13 79.29 27.35 47.11 49.69 80.87 51.47 58.18 65.27 72.22 38.03 86.99 83.47 88.15 64.11 46.38 61.29 9.52 9.48 6.17 8.34 55.6 8.03 5.84 5.95 4.67 7.25 7.02 Hg 12 213.85 121.98 231.81 128.22 143.77 233.69 234.04 144.78 138.13 141.22 227.92 122.69 202.64 107.25 109.57 190.85 122.51 200.61 109.09 206.78 216.95 210.63 212.25 202.22 229.53 238.57 219.08 0.279 214.8 0.256 0.297 0.332 0.249 0.341 272.3 200.4 0.286 97.32 1.438 0.392 0.445 0.369 0.289 207.1 0.23 In 3346.67 1754.47 3919.33 1773.75 3333.17 1675.06 3855.19 3954.53 3252.75 1574.74 1854.12 3814.46 2223.39 3358.29 3313.95 2137.71 3274.28 2218.27 3383.48 2154.73 3296.21 3337.72 1776.23 2389.47 3196.56 3319.99 1687.65 1596.41 1665.36 3325.16 1732.63 1747.93 1737.11 3353.13 3358.61 3328.53 3341.73 3320.61 1753.2 3347.5 2227.9 3339.9 2320.2 3341 2322 Mn <0.23 <0.27 <0.23 <0.25 <0.24 <0.22 <0.25 <0.21 <0.27 <0.28 <0.23 <0.22 <0.24 <0.23 <0.23 <0.22 <0.26 <0.23 <0.24 <0.28 <0.22 <0.27 <0.25 <0.24 <0.24 <0.26 <0.24 <0.28 <0.32 <0.24 <0.27 <0.25 <0.25 <0.24 <0.24 <0.24 <0.24 0.25 0.31 0.35 0.34 0.27 0.27 Mo 0.3 0.4 <0.195 <0.196 <0.198 <0.196 <0.191 <0.204 <0.192 <0.198 <0.198 <0.181 <0.199 <0.209 <0.204 <0.211 <0.199 <0.201 <0.196 <0.190 <0.20 <0.26 <0.21 <0.24 <0.22 <0.20 <0.24 <0.24 <0.26 <0.28 <0.20 <0.22 <0.26 <0.26 0.244 0.302 0.47 0.62 0.23 0.52 0.59 0.89 0.46 0.56 0.49 0.45 0.3 Ni <0.023 <0.023 0.185 0.052 0.114 1.127 0.854 11.37 0.231 1.789 1.962 1.011 0.037 16.17 0.759 0.036 0.743 0.034 0.285 0.026 0.946 0.029 0.356 0.049 0.408 1.201 12.52 0.823 0.022 1.931 0.096 0.033 0.034 0.037 0.357 4.49 7.46 12.8 2.77 0.14 4.94 0.08 2.09 2.51 1.9 Pb 315786.2 316879.1 328405.5 318944.3 317869.1 313903.8 322340.7 312512.9 321784.9 311306.1 321605.6 328699.2 315459.1 317881.8 315642.4 317938.8 316022.1 316383.2 315392.5 313444.6 315923.2 319087.7 314988.2 315913.5 316811.3 314021.9 325962.3 314759.9 314670.2 307184.1 326443.2 319213.2 327336.7 315902.9 328216.9 328144.1 315561.8 317249.2 313407.8 318720 314533 321834 329409 313291 317385 S <0.042 <0.042 <0.042 <0.041 <0.038 <0.048 <0.049 <0.040 <0.036 <0.037 <0.037 <0.035 <0.043 <0.042 <0.043 <0.040 <0.041 <0.040 <0.042 <0.043 <0.045 <0.041 <0.040 <0.041 <0.040 0.186 0.042 0.347 0.218 0.525 0.311 0.078 0.073 0.052 0.041 0.041 0.052 0.053 0.063 0.131 0.397 0.29 0.13 0.07 0.24 Sb <2.43 <2.11 <2.48 <2.74 <2.19 12.04 59.86 59.25 50.26 75.86 57.24 74.17 10.21 71.52 70.26 72.56 70.97 70.66 73.97 10.44 10.23 2.62 9.22 2.76 8.38 3.05 6.34 7.85 7.03 5.88 7.35 9.14 3.23 6.83 7.45 6.15 3.14 5.48 3.97 3.18 7.36 8.77 6.88 5.32 7.8 Se 0.205 0.229 0.327 0.286 0.223 0.187 53.54 0.257 0.208 0.339 57.51 0.199 0.371 1.786 31.03 1.828 0.521 0.308 0.311 1.035 0.753 0.294 0.345 0.872 0.343 1.331 0.377 0.214 0.267 0.174 0.304 0.179 0.217 2.173 0.412 0.356 0.507 0.206 0.25 9.52 2.87 0.48 0.16 2.2 2.2 Sn <0.55 <0.50 <0.54 <0.57 <0.49 <0.50 <0.49 <0.52 <0.48 <0.59 <0.56 <0.49 <0.49 <0.50 <0.46 <0.55 <0.64 <0.58 <0.57 <0.58 <0.52 <0.51 <0.56 <0.63 <0.54 <0.64 <0.65 <0.66 <0.53 <0.56 <0.50 <0.52 <0.52 <0.49 <0.51 0.96 0.53 0.52 0.83 0.51 0.53 0.72 1.2 0.5 0.6 Te <0.0068 <0.0129 <0.0049 <0.0077 <0.0075 <0.0066 <0.0061 <0.0056 <0.0072 <0.0076 <0.0077 <0.0082 <0.0067 <0.0077 <0.0068 <0.0085 <0.0037 <0.0083 <0.0038 <0.0059 <0.0065 <0.0064 0.0137 0.0367 0.0057 0.0645 0.0059 0.0046 0.0064 0.0104 0.0268 0.0063 1.254 0.066 0.086 0.124 0.015 0.202 0.286 9.02 9.61 0.29 0.02 0.11 6.3 Tl 592774.7 590192.3 667932.2 573934.2 668258.6 569819.4 594456.4 663684.7 591538.6 663932.3 668870.2 576340.7 595715.9 584392.7 570165.6 580743.3 590311.1 595115.2 583271.4 576003.9 593226.9 590016.1 575989.8 580158.3 591728.4 587127.9 574168.1 590850.8 670024.9 669346.3 662293.7 589845.7 661380.4 673164.8 591767.3 594608.8 669097.6 593508.1 593799.9 588363.1 591117.8 674740 671916 570650 569416 Zn 100.2731 101.0 100.2 100.0 100.3 100.1 100.1 100.7 100.4 100.4 100.0 100.4 100.1 100.3 100.0 100.0 100.0 100.0 100.0 100.4 100.1 100.7 100.0 100.4 100.5 100.4 100.3 Total 99.3 99.4 99.2 99.7 99.2 99.7 99.6 99.6 99.9 99.7 99.6 99.7 99.7 96.7 99.5 99.0 99.9 99.7 1919.1470.a 1919.1470.a 1919.1470.a 1919.1470.a 1919.1470.a 1919.1470.a 1919.1470.a 1919.1470.a 1919.1470.a 1919.1470.a 1919.1470.a 1919.1470.a 1919.1470.a 1919.1470.a 1919.1470.a 1919.1470.a 1919.1470.a 1919.1470.a 1919.1470.a 1919.1470.a Sample ID 1831.1033 1831.1033 1831.1033 1831.1033 1831.1033 1831.1033 1831.1033 1831.1033 1831.1033 1831.1033 1831.1033 1831.1033 Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen Gruvåsen 57.4154 57.4154 57.4154 57.4154 940069

106

121 106 107 108 109 111 110 112 No. 122 123 117 116 118 113 124 125 114 127 126 119 115 120 128 129 133 134 135 131 130 132 101 100 102 103 104 105 Table 8 Table 91 92 93 94 95 96 97 98 99 132.65 1.163 1.059 1.122 1.214 1.166 1.762 1.426 61.98 18.02 1.186 1.339 1.039 22.63 85.44 92.27 0.698 0.813 0.803 11.55 1.369 0.937 0.964 20.82 0.946 0.949 1.131 0.746 1.103 1.215 1.197 1.427 14.5 1.58 43.9 46.2 1.86 29.9 3.16 1.88 1.39 1.84 1.35 0.72 0.87 Ag . Continued <0.134 <0.138 <0.118 <0.127 <0.132 <0.125 <0.174 <0.154 <0.168 <0.173 <0.154 <0.165 <0.160 <0.154 <0.149 <0.145 <0.164 <0.138 <0.136 <0.143 <0.146 <0.135 <0.125 <0.121 <0.128 <0.142 <0.18 <0.62 <0.60 <0.55 <0.60 <0.66 <0.55 <0.75 <0.78 <0.64 <0.20 0.276 0.229 0.289 0.207 0.295 0.219 0.18 As 4.1 <0.00277 <0.0041 <0.0037 <0.0029 <0.0053 <0.0023 <0.0064 <0.0043 <0.0052 <0.0041 <0.0029 <0.0041 0.0264 0.0131 0.0123 0.0053 0.0182 0.0258 0.0099 0.0053 0.0062 0.0195 <0.039 0.0307 0.0057 0.0103 0.0012 0.0127 0.0089 0.0049 0.0235 0.0095 0.0158 0.0085 0.0057 0.0045 0.0099 0.0265 <0.00 0.007 0.312 0.126 0.921 0.282 0.052 Au

<0.0128 <0.0099 <0.0094 <0.0140 0.0542 0.0232 0.0458 0.0469 0.0311 0.0162 0.0164 0.0426 0.0565 0.0103 0.0318 0.0416 0.0095 0.0427 0.288 0.768 0.184 1.366 0.071 0.196 0.613 0.016 0.636 0.085 0.236 0.092 0.303 0.164 1.279 0.312 0.113 0.132 0.281 0.268 0.549 0.317 0.116 3.95 0.53 0.15 Bi 3 4377.31 4465.76 2218.91 4092.08 4506.37 4378.58 2296.67 2273.97 2312.32 4430.38 4432.49 2354.99 4151.69 4038.29 2310.55 3907.08 1066.95 1031.47 2193.59 2315.16 2319.16 1037.57 1101.96 852.27 856.13 848.04 851.44 872.16 872.84 848.59 875.69 831.73 2240.3 874.28 852.41 879.22 807.12 878.29 872.01 859.39 881.93 877.17 840.59 893 895 Cd <0.052 <0.050 <0.067 <0.057 <0.050 <0.065 309.29 <0.052 321.89 297.48 148.57 311.43 326.04 143.95 316.09 296.07 335.93 314.09 321.71 33.29 32.55 32.49 32.53 32.55 24.29 0.064 24.66 24.34 0.096 24.88 0.767 24.19 24.32 24.24 24.01 194.9 33.73 34.67 34.46 33.25 35.05 32.7 25.6 25.1 185 Co 1692.17 133.47 482.69 364.77 324.53 332.97 303.88 248.09 360.32 421.17 234.44 591.83 10.57 15.26 274.5 55.85 70.14 71.95 51.89 16.81 54.89 56.99 59.79 54.39 47.72 61.67 17.64 14.02 10.39 10.32 8.31 6.49 9.43 2.74 1.79 21.9 1.91 2.03 7.41 2.43 1.62 6.07 8.21 7.49 7.45 Cu 77731.11 78508.41 78508.41 77731.11 77731.11 72289.93 87058.84 68403.38 73067.24 87836.15 88613.46 86281.52 67626.06 74621.86 88613.46 73844.55 69180.69 69180.69 90168.09 69957.99 90168.09 85504.22 90945.39 85504.22 90168.09 89390.77 88613.46 90945.39 94054.64 80063.04 80840.35 80840.35 80840.35 79285.73 76953.8 3731.09 3808.82 3575.63 3808.82 3886.56 3731.09 3964.29 4586.13 3731.09 3808.82 Fe <0.048 <0.051 <0.215 <0.224 <0.209 <0.210 <0.274 <0.251 <0.189 <0.270 <0.280 <0.229 1.034 1.045 1.103 1.059 1.083 0.203 0.732 0.541 0.595 0.762 0.095 0.058 0.584 0.173 0.226 0.819 0.247 0.839 0.185 0.716 0.524 0.322 0.153 1.233 1.048 1.102 1.074 1.086 1.05 0.32 0.62 0.06 0.09 Ga <0.49 <0.49 <0.56 <0.61 <0.63 <0.53 0.687 0.486 0.643 0.631 0.726 0.814 0.572 0.722 0.594 0.638 0.822 0.787 0.694 0.805 0.714 0.623 0.665 0.819 0.638 0.666 0.755 0.661 0.635 0.707 0.777 0.858 0.562 0.562 0.678 0.64 0.68 0.77 0.71 0.63 0.65 0.61 0.45 Ge 2.4 0.6 102.88 11.21 10.98 11.37 10.46 14.29 15.69 15.36 14.26 12.58 14.02 12.39 16.34 15.13 46.74 11.71 19.45 17.48 20.42 34.75 10.15 21.12 36.31 11.21 14.17 33.09 62.69 10.29 55.28 50.34 31.05 34.14 9.27 9.24 16.2 13.5 5.88 7.02 5.34 7.68 9.27 7.35 7.13 8.79 9.4 Hg 350.77 464.04 489.71 387.32 392.12 402.59 315.28 459.39 408.25 307.27 0.764 1.367 0.912 0.845 0.864 0.858 0.859 60.11 64.12 57.67 0.279 58.92 0.275 58.57 0.284 59.64 57.96 14.61 0.267 0.271 15.91 53.46 17.69 16.45 0.287 0.332 0.271 0.827 0.255 0.303 0.845 61.8 53.5 0.82 0.87 In 16844.59 11210.83 12016.75 10616.74 12343.32 1389.96 1350.54 1419.03 1368.77 1351.11 1348.12 1061.44 2259.39 1038.56 2353.82 2274.36 1052.55 1799.59 1769.99 1038.07 1085.63 5890.81 2364.87 1736.29 2275.34 2375.18 2255.75 1833.46 1746.88 2379.01 1655.23 1974.93 2281.24 1380.08 1614.42 1732.21 1410.51 1425.62 1395.06 1349.2 937.97 2332.2 1545.3 2379.6 1859.8 Mn <0.27 <0.25 <0.25 <0.21 <0.23 <0.24 <0.24 <0.23 <0.24 <0.22 <0.21 <0.24 <0.25 <0.23 <0.23 <0.92 <0.21 <0.24 <0.24 <1.11 <0.24 <0.99 <0.27 <0.24 <0.30 <0.94 <1.48 <0.24 <1.07 <0.98 <1.42 <0.23 <1.30 <1.34 <0.21 <0.24 <0.26 0.38 1.55 0.59 0.56 0.36 0.46 0.42 Mo 0.3 <0.185 <0.190 <0.209 <0.182 <0.23 <0.22 <0.22 <0.20 <0.24 <0.25 <0.23 <0.23 <0.26 <0.25 <0.24 <0.24 <0.25 <0.90 <0.23 <0.26 <0.24 <0.24 <0.98 <0.97 <0.28 <0.22 <0.21 <0.23 <0.30 <0.23 <0.89 <1.18 <0.23 <0.22 <1.02 <0.82 <1.22 <0.21 <1.36 <0.93 <0.21 0.38 0.24 0.43 0.3 Ni 10487.46 903.88 <0.025 0.195 0.831 0.035 0.164 1.667 0.726 0.118 1.898 0.197 14.48 1.936 99.38 0.732 0.384 0.154 1.553 0.653 0.054 0.166 0.916 0.224 0.227 0.459 0.112 0.208 0.633 0.025 0.062 0.89 2.85 0.92 2.76 7.41 6.51 6.44 94.3 5.77 2.95 4.94 2.75 4.2 1.2 Pb 319398.8 316832.4 315206.8 315723.2 314357.3 317850.9 318418.2 311718.9 313308.1 312884.3 313000.8 315680.5 319924.2 323184.3 313643.6 311719.4 314359.6 308985.8 324723.1 313072.3 318132.7 314946.2 313568.2 313914.3 318456.8 306841.3 308886.3 328708.2 308559.3 313245.6 327608.7 295813.8 326921.5 309294.5 328369.7 325041.5 309744.6 311298.4 314339 315000 318449 313876 316095 322779 311014 S <0.043 <0.037 <0.037 <0.050 <0.052 <0.050 <0.203 <0.046 <0.140 <0.060 <0.044 <0.239 <0.198 <0.043 <0.194 <0.165 <0.181 <0.263 <0.182 <0.036 <0.045 0.076 0.117 0.238 0.101 1.264 43.16 0.264 0.068 11.65 24.78 0.146 28.15 11.78 0.281 1.111 0.084 8.49 5.93 4.21 3.47 0.17 4.25 3.5 0.1 Sb <11.05 <10.66 <10.86 <12.46 <10.26 <2.30 <2.23 <2.11 <1.93 <1.97 <2.13 <2.23 <2.44 <2.37 <2.13 <2.11 <2.17 <2.30 <2.31 <2.20 <2.20 <8.58 <2.24 <2.44 <2.26 <2.27 <9.12 <2.20 <8.35 <2.59 <2.28 <2.07 <2.75 <2.15 <2.34 <9.29 <2.16 <2.17 <1.94 <2.13 <2.33 10.35 2.26 2.67 2.91 Se 213.12 <0.209 <0.229 <0.257 <0.32 0.277 0.546 0.456 0.338 0.221 0.445 0.307 1.042 0.386 0.365 0.279 1.493 0.339 0.303 0.284 0.965 0.279 0.527 0.484 0.213 0.226 0.352 0.291 0.216 0.434 0.287 0.244 0.267 0.225 0.473 0.449 0.193 0.615 0.272 0.333 0.433 2.44 0.73 0.47 2.96 Sn <0.56 <0.51 <0.51 <0.48 <0.50 <0.50 <0.49 <0.49 <0.54 <0.46 <0.49 <0.47 <0.52 <0.47 <0.51 <0.45 <2.64 <0.51 <0.51 <1.98 <0.50 <0.60 <1.97 <0.52 <0.47 <0.61 <0.56 <0.60 <2.08 <0.47 <0.54 <3.68 <3.31 <2.11 <2.75 <2.47 <2.43 <0.55 1.07 0.71 0.49 0.49 0.54 0.71 0.64 Te <0.0051 <0.0053 <0.0038 <0.0045 <0.0050 <0.0055 <0.0044 <0.0105 <0.0046 <0.0064 0.0288 0.0039 0.0366 0.0327 0.0084 0.0217 0.0092 0.0197 0.0098 0.0258 0.0061 0.0184 0.0275 0.0041 0.0431 0.0056 0.0041 0.0194 0.0088 <0.072 0.0036 0.0035 <0.048 0.0078 0.141 0.165 0.219 0.222 0.509 0.27 0.03 1.74 0.01 0.2 2.2 Tl 586001.5 596809.9 605127.1 602314.4 600778.4 608102.4 606920.4 605596.2 572923.9 587929.9 574028.7 575645.5 591326.2 582569.4 591427.9 575890.4 574166.8 589562.9 674408.7 585711.1 591865.1 565569.7 678203.4 572699.8 576713.6 668881.1 566611.4 567930.8 572347.1 574310.4 573548.6 572043.3 673091.2 571153.1 669608.9 674973.6 620832.4 673782.9 665752.5 676928.8 610730.1 606111.8 607476.9 588847 602491 Zn 100.2 100.3 100.2 100.4 100.4 101.0 98.37 100.3 100.5 100.9 100.9 100.1 100.9 100.2 100.0 Total 98.1 99.9 99.8 99.6 98.2 98.1 98.5 98.2 98.2 98.3 98.2 99.0 98.2 98.1 98.2 97.5 97.9 98.6 98.1 98.2 99.3 98.5 98.6 98.0 98.3 98.4 97.9 92.4 99.9 99.7 Mysst.B1.1 Mysst.B1.1 Mysst.B1.1 Mysst.B1.1 Mysst.B1.1 Mysst.B1.1 Mysst.B1.1 Mysst.B1.1 Mysst.B1.1 Mysst.B1.1 LAH.001.2 LAH.001.2 LAH.001.2 LAH.001.2 Sample ID HÄL.01.1 2007.0304 2007.0304 2007.0304 2007.0304 2007.0304 2007.0304 2007.0304 HÄL.01.1 HÄL.01.1 HÄL.01.1 HÄL.01.1 HÄL.01.1 HÄL.01.1 HÄL.01.1 HÄL.01.1 HÄL.01.1 2007.0304 2007.0304 2007.0304 2007.0304 940069 940069 940069 940069 940069 940069 940069 940069 940069 940069

107

Table 8 Table 180 179 177 178 174 176 175 173 172 166 167 155 168 171 157 156 158 154 159 169 170 151 153 152 142 160 146 145 144 143 140 141 137 138 139 150 147 161 No. 149 148 136 162 163 165 164 1.402 1.242 27.09 53.45 12.75 48.49 26.98 38.25 1.145 28.45 1.204 0.916 1.521 1.441 1.461 1.561 1.387 1.427 1.559 3.74 2.52 3.91 4.28 1.74 3.25 7.43 5.35 1.69 2.04 7.42 2.63 2.26 2.27 3.69 1.48 5.15 3.36 4.54 3.36 3.54 3.16 9.7 2.7 3.7 2.3 Ag . Continued <0.130 <0.156 <0.123 <0.129 <0.130 <0.124 <0.142 <0.132 <0.155 <0.173 <0.154 <0.142 <0.178 <0.182 <0.129 <0.148 <0.154 <0.153 <0.156 <0.147 <0.147 <0.185 <0.141 <0.170 <0.161 <0.186 <0.21 <0.18 0.328 0.224 0.416 0.305 0.302 0.181 0.176 0.255 0.277 0.179 0.16 1.63 0.95 0.57 0.45 0.39 0.39 As <0.0048 <0.0070 <0.0097 <0.0052 <0.0052 <0.0071 <0.0030 <0.0056 <0.0048 0.0107 0.0055 0.0063 0.0115 0.0098 0.0232 0.0192 0.0266 0.0341 0.0132 0.0051 0.0251 0.0253 0.0041 0.0037 0.0073 0.0119 0.0259 0.0427 0.0182 0.0289 0.0134 0.0312 0.0078 0.037 0.014 0.046 0.142 0.021 0.254 0.067 0.042 0.563 0.086 0.166 0.013

Au <0.0065 <0.0065 0.0436 0.0187 0.0177 0.0105 0.0466 0.0099 0.0082 0.0234 0.0575 0.0494 0.0151 0.0517 0.0413 0.0219 0.0071 0.0152 0.0156 0.0412 0.084 0.071 0.113 0.311 0.081 0.121 0.211 1.776 0.643 0.348 0.219 0.113 1.988 0.856 1.253 0.862 2.269 0.176 0.179 0.18 4.49 0.14 0.11 0.06 7.9 Bi 22776.51 28275.86 22356.43 2449.98 2391.67 2778.17 2653.96 2687.41 2760.81 2691.28 2704.39 2683.89 2005.94 2027.11 2707.84 2029.82 2054.29 2075.54 1896.36 2839.29 1458.75 2067.49 1465.36 1426.77 1422.02 1096.88 2034.91 1485.48 1480.61 1495.32 1077.58 1017.83 1035.16 1473.19 1082.61 2136.24 1046.65 2060.24 2008.51 2072.15 2040.73 1933.1 1901.6 1476.3 1458.4 Cd 135.98 133.61 138.11 124.11 127.11 127.38 131.22 596.18 540.19 133.87 159.49 160.67 153.44 160.85 165.15 29.47 30.73 571.9 49.97 37.26 50.64 35.92 29.39 30.11 50.57 53.61 52.72 3.13 3.59 2.77 2.76 2.94 3.79 2.97 3.88 2.91 3.09 48.1 2.78 2.88 3.42 5.85 3.25 134 163 Co 146.79 141.31 <2.50 48.57 49.71 49.18 46.67 46.62 50.28 46.44 18.52 17.93 47.31 24.05 16.65 19.78 16.53 23.25 18.14 23.27 49.53 56.71 36.86 28.27 29.95 34.51 32.66 16.22 33.12 34.29 65.29 27.65 43.39 23.45 16.83 36.49 17.53 15.06 13.82 14.2 19.1 17.6 33.5 15.6 Cu 41 98718.49 103382.4 88613.45 94054.63 90945.38 87058.82 89390.77 90945.38 87836.14 106491.6 106491.6 24873.95 24796.22 24018.91 23630.26 93277.33 25029.42 25651.27 25418.07 92500.01 92500.02 25573.53 93277.33 94054.64 92500.02 85504.2 6031.93 4656.09 1064.92 8231.72 91722.7 24252.1 24252.1 1064.92 104937 310.92 101.05 124.37 209.87 310.92 691.81 163.24 582.98 116.6 66.07 Fe <0.058 0.116 1.025 0.206 0.096 0.238 0.104 0.881 0.413 0.122 0.506 36.98 10.89 0.086 0.093 0.083 2.031 0.443 1.068 1.392 1.922 1.227 1.905 1.468 1.932 1.913 0.294 0.256 1.972 0.245 0.321 0.186 0.169 10.36 0.143 2.23 2.18 0.17 9.07 3.93 3.58 0.33 7.12 3.34 1.04 Ga 0.766 0.671 0.732 0.732 0.611 0.626 0.697 0.575 0.618 0.464 0.674 0.665 0.481 0.736 0.722 0.758 0.472 0.674 0.511 0.512 0.544 0.521 0.528 0.628 0.773 0.581 0.638 0.591 0.633 0.559 0.731 0.601 0.714 0.658 0.712 0.571 0.485 0.604 0.613 0.69 0.67 0.91 0.63 0.68 0.81 Ge 274.41 260.17 127.03 239.13 173.84 153.45 255.69 10.45 11.84 14.12 11.03 12.32 54.35 46.54 62.11 15.38 57.58 78.83 55.21 45.83 17.07 42.57 69.98 37.57 67.09 54.85 43.46 44.15 51.97 53.65 8.39 7.58 38.8 8.47 9.35 5.04 5.59 7.34 117 9.6 9.2 4.4 Hg 5.7 6.9 10 107.52 108.48 66.74 66.25 66.24 66.76 66.78 66.92 64.89 16.21 21.64 30.77 18.97 67.41 18.81 21.69 19.13 30.22 29.63 29.73 19.84 21.45 68.18 30.72 20.95 30.02 29.71 29.73 28.57 19.56 11.27 28.46 29.42 11.82 18.47 17.77 18.75 18.53 19.92 15.49 17.08 32.6 30.4 9.22 16.7 In 10708.48 10014.35 10256.65 10363.52 10123.29 10266.56 11998.85 12038.88 11937.74 12212.35 11419.78 11813.27 4363.46 4552.57 10402.9 9851.35 2678.61 2727.38 3091.84 9988.8 103.55 118.35 111.27 101.14 <0.72 <0.76 <0.80 <0.71 <0.81 <0.73 <0.72 <0.93 <0.74 <0.74 <0.84 <0.74 93.44 83.84 99.05 91.93 92.54 93.83 2.37 2.27 5.44 Mn <0.26 <0.24 <0.25 <0.25 <0.25 <0.26 <0.26 <0.27 <0.26 <0.22 <0.27 <0.28 <0.32 <0.26 <0.24 <0.21 <0.32 <0.29 <0.30 <0.27 <0.31 <0.21 <0.27 <0.30 <0.29 <0.26 <0.27 <0.32 <0.28 <0.26 <0.35 <0.34 <0.36 <0.28 <0.26 <0.34 <0.27 <0.27 <0.31 <0.28 0.29 0.36 0.27 0.33 0.57 Mo <0.221 <0.27 <0.24 <0.21 <0.22 <0.23 <0.23 <0.23 <0.27 <0.28 <0.30 <0.27 <0.22 <0.25 <0.30 <0.28 <0.30 <0.27 <0.27 <0.24 <0.23 <0.23 <0.24 <0.28 <0.29 <0.24 <0.24 <0.35 <0.29 <0.28 <0.31 <0.28 0.35 0.27 1.28 0.35 0.61 0.85 0.27 0.26 0.42 0.33 0.29 0.49 0.4 Ni 146.37 137.15 910.22 131.81 284.23 <1.80 55.52 10.67 11.25 77.75 2.004 24.67 0.341 1.332 0.048 0.095 0.318 0.711 1.158 0.061 1.669 0.51 68.9 0.49 0.88 1.08 5.96 6.76 0.73 6.38 2.36 3.05 7.45 9.09 60.8 4.09 5.27 2.47 4.19 15.4 8.27 7.97 6.4 3.6 Pb 5 316332.3 318830.8 314308.6 319073.5 317943.2 317033.9 320349.1 317145.6 328524.7 329253.3 314217.7 316978.8 324474.9 335892.1 340210.4 332588.9 316691.5 318206.5 315942.4 320292.5 342714.1 332749.4 313224.2 328849.2 319610.8 316979.8 317304.8 319666.1 312626.9 308634.8 319409.1 309368.3 319932.9 331239.2 306695.1 309625.9 310042.3 316811.2 313454.5 340044.1 330565.6 337265.9 331599.8 313936 333796 S <0.050 <0.061 <0.059 <0.055 <0.054 <0.064 0.323 0.648 0.458 0.155 0.128 0.607 0.952 0.066 0.869 0.081 0.499 1.716 0.473 1.362 0.307 0.043 0.064 1.607 0.052 0.625 0.266 0.341 0.297 0.096 0.206 6.73 8.84 2.77 3.46 2.24 3.69 2.74 0.44 2.84 2.53 0.43 1.79 3.38 Sb 2 <2.60 <2.22 <2.08 <2.23 <2.05 <2.29 <2.33 <2.18 <2.50 <2.28 <2.17 <3.19 <2.22 <2.09 <2.00 <2.30 <2.22 <2.33 <2.95 <2.90 <2.95 11.54 10.28 23.12 13.66 13.65 19.27 15.02 14.05 14.47 18.92 12.34 13.01 10.64 11.26 24.57 16.91 13.02 12.23 2.97 4.85 8.78 4.75 12.5 5.54 Se 1.282 23.12 0.614 0.394 0.282 0.648 0.304 0.327 1.086 22.19 0.214 0.223 32.04 0.448 0.296 0.986 0.273 0.245 0.413 0.295 0.927 0.291 0.406 0.312 0.289 0.274 0.371 0.281 0.359 0.368 0.389 0.281 0.275 0.484 7.85 0.22 8.39 5.19 1.81 5.42 0.17 1.96 6.19 2.26 0.71 Sn <0.57 <0.52 <0.52 <0.49 <0.49 <0.53 <0.54 <0.53 <0.56 <0.57 <0.47 <0.56 <0.58 <0.54 <0.57 <0.51 <0.59 <0.54 <0.42 <0.62 <0.68 <0.56 <0.55 <0.61 <0.56 <0.59 <0.78 <0.72 <0.72 <0.59 <0.53 <0.60 <0.59 <0.72 <0.59 <0.56 0.83 0.52 0.91 0.71 0.82 0.86 0.89 0.55 0.6 Te <0.0070 <0.0056 <0.0089 <0.0083 <0.0085 <0.0075 <0.0109 <0.0089 <0.0085 <0.0077 <0.0082 <0.0080 <0.0057 <0.0047 <0.0071 <0.0070 <0.0094 <0.0079 <0.0088 <0.0086 <0.0103 <0.0078 <0.0060 <0.0266 <0.0063 <0.0098 <0.0068 <0.0101 0.0203 0.0119 0.0431 0.0092 0.0071 0.0066 0.0155 0.0056 0.0447 0.703 0.029 1.049 0.238 0.487 0.082 0.033 0.13 Tl 573330.6 579185.5 586093.4 580266.7 583310.8 581533.6 583593.9 584766.1 582640.3 660688.2 656604.6 544501.1 661565.7 581228.3 653895.1 636181.9 651601.9 546833.7 672642.1 663793.3 656179.9 541791.1 635031.5 631058.3 567251.7 659975.5 571252.8 633609.2 635490.8 637546.4 634774.9 564247.4 570908.6 571207.5 570479.6 633861.8 632692.9 663471.3 634569.3 669970.7 661848.1 660362.7 657324.1 582271 637100 Zn 100.4002 100.0 100.2 100.2 100.6 100.2 100.5 100.0 100.4 100.3 101.8 100.0 101.2 100.0 Total 99.8 99.5 98.8 99.3 99.9 99.2 96.3 99.9 99.6 99.9 99.4 98.1 97.8 98.6 99.1 98.6 98.0 97.8 98.0 98.1 97.9 98.5 98.6 98.6 98.1 97.9 99.8 97.9 97.8 99.5 99.3 Getberget-a Getberget-a LAH.001.1 LAH.001.1 LAH.001.1 LAH.001.1 LAH.001.1 LAH.001.1 LAH.001.1 LAH.001.1 LAH.001.1 LAH.001.2 LAH.001.2 LAH.001.2 LAH.001.2 LAH.001.2 LAH.001.2 MyB 001.1 MyB MyB 001.1 MyB MyB 001.1 MyB Sample ID 2002.0015 2002.0015 2002.0015 2002.0015 2002.0015 2002.0015 2002.0015 2002.0015 2002.0015 2002.0015 2002.0015 2002.0015 2002.0015 2002.0015 2002.0015 66.001 66.001 66.001 66.001 66.001 66.001 66.001 66.001 66.001 66.001

108

Table 8 Table No. 198 181 182 184 183 200 197 196 186 185 202 201 199 189 188 187 203 225 224 222 221 220 219 218 211 204 190 223 216 214 215 212 217 213 205 191 206 207 192 193 210 209 208 194 195 1.045 1.407 1.041 11.84 1.062 0.771 1.109 1.073 1.229 1.079 1.047 39.78 2.12 5.84 3.73 2.87 1.03 1.02 1.74 33.8 4.88 1.47 8.58 0.86 3.36 2.54 0.93 1.77 4.51 5.31 2.03 2.61 2.75 1.71 3.36 1.01 2.82 2.54 5.74 7.76 6.47 Ag 2.8 2.7 5.4 9.3 . Continued <0.133 <0.152 <0.171 <0.167 <0.151 <0.135 <0.133 <0.135 <0.144 <0.136 <0.112 <0.144 <0.177 <0.151 <0.173 <0.181 <0.163 <0.163 <0.164 <0.149 <0.127 <0.124 <0.160 <0.140 <0.141 <0.144 <0.144 <0.133 <0.122 <0.148 <0.125 <0.152 <0.147 <0.125 <0.119 0.178 0.232 0.272 0.206 0.127 0.368 0.247 0.141 0.368 0.23 As <0.0074 <0.0077 <0.0084 <0.0042 <0.0045 <0.0121 <0.0075 <0.0048 <0.0047 <0.0031 <0.0053 <0.0043 <0.0042 <0.0265 0.0268 0.0057 0.0396 0.0136 0.0279 0.0103 0.0273 0.0313 0.0237 0.0073 0.0248 0.0133 0.0072 0.0054 0.0129 0.0124 0.0097 0.0059 0.0205 0.0104 0.0205 0.038 0.198 0.217 0.122 0.004 0.119 0.038 0.095 0.062 0.307 Au

<0.0103 0.0352 0.0542 0.0616 0.0061 0.0318 0.0394 0.0145 0.0198 0.0097 0.0308 0.0456 0.0461 0.0135 0.0261 0.0188 0.0101 0.0121 0.0166 0.0307 0.0165 0.0144 0.0081 0.0065 0.091 0.096 0.244 1.447 0.838 0.007 0.031 0.012 0.154 0.164 0.831 0.113 0.375 0.299 0.114 0.253 0.252 0.085 0.225 0.079 0.22 Bi 2307.81 2392.07 2502.83 2411.92 7901.36 2435.96 2441.35 2402.71 2343.86 8806.81 2409.13 2445.47 2324.81 2036.53 2037.53 2016.84 1750.36 1929.36 2312.63 8921.67 2020.91 2115.61 2390.48 2448.78 8802.39 8233.69 2399.29 7859.99 1806.09 1836.59 8077.29 2359.4 7022.2 8975.1 838.39 808.18 793.14 796.09 800.93 816.59 824.32 805.77 1732.5 8095.1 2459 Cd 533.65 710.31 714.62 297.41 295.92 284.94 292.73 290.62 296.95 297.39 295.46 707.79 714.99 420.03 409.79 416.37 31.74 29.85 28.69 29.63 32.74 532.1 30.79 32.69 32.96 29.74 29.19 31.71 32.29 35.22 36.46 31.77 30.18 31.57 32.53 34.95 31.47 32.13 31.98 31.09 412.5 29.1 35.1 31.4 28.1 Co 2037.42 1139.98 1719.13 1531.85 1440.22 1889.11 4742.79 134.98 132.95 165.85 177.51 145.67 155.03 126.51 610.09 122.87 158.11 138.25 609.99 633.18 117.19 688.36 137.01 115.77 301.34 125.66 194.15 169.99 36.74 55.38 62.74 76.95 31.56 12.59 80.14 66.55 55.59 33.14 96.13 48.78 34.44 34.91 38.9 4.64 8.89 Cu 97941.19 97941.18 100273.1 87836.14 93277.31 101827.7 88613.45 89390.77 88613.45 89390.77 98718.49 98718.49 85504.21 95609.25 94831.94 86281.51 87058.83 88613.45 88613.45 91722.69 86281.51 95609.24 85504.21 96386.56 87836.14 90168.08 87058.83 87058.83 87058.83 86281.52 87836.14 89390.77 84726.9 99495.8 4119.75 4042.02 3964.29 4042.02 4042.02 4042.02 4042.02 4119.75 84726.9 84726.9 85504.2 Fe <0.053 <0.067 2.019 2.117 1.696 0.223 1.859 2.011 2.096 0.083 0.069 0.099 0.139 0.102 0.114 0.193 1.067 1.089 1.131 1.229 1.158 1.159 0.184 2.075 0.207 0.248 0.327 1.241 1.221 0.242 0.211 2.31 2.14 2.22 2.35 2.06 2.08 2.24 0.13 0.17 1.31 2.41 2.22 2.48 1.14 Ga 0.771 0.822 0.646 0.718 0.539 0.731 0.567 0.685 0.609 0.755 0.768 0.641 0.706 0.735 0.684 0.536 0.578 0.545 0.454 0.584 0.423 0.559 0.478 0.547 0.577 0.627 0.717 0.533 0.482 0.778 0.688 0.713 0.712 0.509 0.869 0.722 0.801 0.644 0.539 0.562 0.723 0.83 0.47 0.72 Ge 0.6 14.86 11.03 12.85 10.52 13.92 15.31 11.81 14.58 34.18 33.01 39.81 48.68 49.26 51.58 69.12 43.94 12.02 10.91 22.39 19.39 10.72 8.86 11.3 7.55 8.72 9.55 9.04 10.2 6.66 7.79 8.67 7.88 8.41 8.23 8.05 6.24 4.54 8.69 9.08 7.41 8.42 8.28 Hg 8.1 7.1 8 196.82 105.28 105.86 106.87 197.48 201.89 107.34 109.48 106.48 107.84 171.07 169.95 170.34 141.49 201.09 200.92 200.34 29.86 29.88 24.86 30.53 30.07 27.94 0.194 0.186 0.194 0.201 0.214 0.212 0.214 71.94 75.06 75.69 75.51 75.67 28.77 76.85 27.01 27.23 69.82 70.01 71.12 0.19 74.7 28.1 In 5011.28 4360.31 4405.79 4441.89 4566.56 4407.31 4542.38 1599.16 1561.81 1538.03 4442.06 4426.72 1486.85 5596.43 1638.38 1631.74 1548.09 1599.58 1583.58 1648.24 1670.58 5700.92 1616.42 3384.92 3369.77 3240.73 2979.24 1502.85 3572.59 1512.77 5667.53 1508.63 5513.84 1544.82 5145.61 4939.16 2877.42 2888.58 5073.49 1454.7 1540.4 5078.3 3064.1 3343.5 2903.5 Mn <0.26 <0.27 <0.28 <0.31 <0.31 <0.27 <0.24 <0.28 <0.33 <0.27 <0.28 <0.30 <0.30 <0.25 <0.23 <0.33 <0.29 <0.33 <0.30 <0.31 <0.26 <0.24 <0.29 <0.28 <0.28 <0.26 <0.27 <0.27 <0.27 <0.25 <0.30 <0.25 <0.28 <0.25 <0.27 <0.27 <0.25 0.33 1.22 0.31 0.28 0.46 0.47 0.62 Mo 0.4 <0.213 <0.24 <0.23 <0.26 <0.29 <0.26 <0.22 <0.23 <0.30 <0.23 <0.24 <0.26 <0.27 <0.22 <0.23 <0.24 <0.24 <0.23 <0.24 <0.23 <0.23 <0.23 <0.23 <0.25 <0.24 <0.22 <0.23 0.277 0.84 0.24 0.36 1.55 1.52 1.28 0.83 1.02 1.04 0.86 0.73 0.61 1.89 0.26 0.86 1.3 0.9 Ni <0.058 446.48 585.67 119.02 144.29 23.99 19.48 19.47 71.98 53.89 20.07 11.71 0.221 0.192 0.121 46.29 90.51 3.12 0.62 2.62 0.53 0.35 4.03 3.38 69.6 2.24 7.35 1.51 1.57 1.28 1.05 5.66 3.09 0.92 0.34 1.68 0.26 0.55 0.31 1.5 0.4 1.2 0.7 1.7 7.6 Pb 312581.1 315393.1 313794.1 317567.2 317305.1 313490.9 311415.7 311905.8 314831.2 313262.8 314770.8 319740.3 315801.5 313783.5 312348.5 308440.7 331748.7 329169.6 330478.9 333684.7 328081.3 332823.7 334219.5 311406.4 329929.4 318732.5 318853.3 320183.2 316961.7 314338.7 319963.1 317005.8 315886.9 307224.9 317092.9 311814.1 310753.8 307764.7 317871.3 309419.8 318943.6 320025.7 312800.9 314294 316236 S <0.044 <0.043 <0.046 <0.048 <0.060 <0.049 <0.055 <0.054 <0.050 <0.045 <0.045 <0.043 <0.038 <0.050 <0.057 0.441 1.141 0.468 0.177 0.099 0.701 0.346 0.241 0.152 0.381 0.074 0.165 11.45 31.47 0.296 0.107 0.076 0.074 0.317 0.065 6.58 3.08 0.29 1.84 1.45 1.88 2.78 2.02 8.01 4.89 Sb <2.29 <2.34 <2.75 <2.49 <2.57 <2.21 <2.27 <2.21 <2.12 <2.32 <2.97 <2.32 <2.34 <2.57 <2.55 <2.13 <2.05 <2.95 <2.32 <2.08 <2.22 <2.26 <2.25 <2.22 <2.34 <2.22 <2.29 <2.46 <2.01 <2.38 <2.08 <2.26 <2.12 <2.14 <2.35 <2.01 8.72 7.34 7.62 6.27 5.24 7.07 5.04 3.58 2.3 Se 0.439 1.154 1.078 0.693 0.242 0.321 0.268 0.988 0.636 0.505 1.525 0.248 0.196 0.197 0.204 0.202 0.167 0.238 0.214 0.427 0.578 0.303 0.249 0.196 0.547 0.509 0.394 0.543 0.364 0.523 0.367 0.345 0.357 0.614 0.349 0.675 0.802 0.602 0.705 0.599 9.43 4.94 6.27 3.72 0.8 Sn <0.57 <0.54 <0.66 <0.60 <0.66 <0.57 <0.58 <0.57 <0.53 <0.54 <0.66 <0.58 <0.60 <0.62 <0.66 <0.54 <0.67 <0.61 <0.64 <0.73 <0.64 <0.58 <0.56 <0.52 <0.73 <0.52 <0.55 <0.59 <0.52 <0.58 <0.61 <0.59 <0.55 <0.51 <0.62 <0.55 <0.58 <0.54 <0.52 <0.59 <0.53 0.69 1.04 0.6 0.6 Te <0.0061 <0.0101 <0.0084 <0.0070 <0.0046 <0.0110 <0.0056 <0.0069 <0.0073 <0.0084 <0.0040 <0.0101 <0.0074 <0.0060 <0.0045 <0.0043 <0.0072 <0.0065 0.0244 0.0143 0.0089 0.0064 0.0106 0.0061 0.0246 0.0047 0.0156 0.0141 0.0148 0.0243 0.0333 0.0309 0.0061 0.0113 0.0144 0.0145 0.0165 0.0079 0.0105 0.0091 0.086 0.199 0.174 0.177 0.15 Tl 579679.1 592356.2 571907.3 582274.1 588933.8 595957.9 580396.4 586796.3 575330.8 581340.4 588766.9 583051.3 579428.8 580491.3 596776.3 668810.4 663444.3 667650.1 659358.1 655959.8 668108.9 588427.8 592296.1 580922.8 657240.5 582448.8 591217.6 585848.6 589397.6 595073.6 588660.8 587733.1 590870.4 581641.7 594473.9 574371.3 594544.6 584215.1 588508.6 587990.3 586470.9 580631.1 581894 589478 658328 Zn 100.2 100.1 100.3 100.0 100.2 100.4 100.3 100.1 100.0 100.8 100.5 100.8 100.0 100.4 100.4 100.5 100.2 100.0 100.1 100.0 100.3 Total 99.6 99.9 99.7 99.8 99.8 99.7 99.6 99.9 99.9 99.4 99.6 99.6 99.4 99.9 99.9 99.8 99.8 99.8 99.7 99.8 99.7 99.6 99.8 99.5 Getberget-a Getberget-a Getberget-a Getberget-a Getberget-a Getberget-a Getberget-a Mysst.B3.1 Mysst.B3.1 Mysst.B3.1 Mysst.B3.1 Mysst.B3.1 Mysst.B3.1 Mysst.B3.1 Mysst.B3.1 Mysst.B3.1 Mysst.B3.1 Getberget I Getberget I Getberget I Getberget I Getberget I Getberget I Getberget I Getberget I Getberget I Getberget I Sample ID Näset IINäset Näset IINäset Näset IINäset Näset IINäset Näset IINäset Näset IINäset Näset IINäset Näset IINäset Näset IINäset Näset IINäset 57.4128 57.4128 57.4128 57.4128 57.4128 57.4128 57.4128 57.4128

109

No. 226 227 233 228 232 229 230 231 241 256 242 Table 8 Table 234 257 243 258 260 261 263 235 259 262 264 236 244 265 266 237 245 267 246 268 269 238 247 249 248 250 253 251 252 254 239 255 240 513.73 460.97 509.74 273.78 1.197 1.108 111.8 1.111 1.156 0.987 1.073 13.24 21.67 1.081 1.122 1.091 42.67 88.78 1.053 1.169 1.118 1.113 1.745 1.093 1.154 8.07 77.8 4.77 2.88 5.13 2.32 2.01 10.6 9.91 3.16 9.89 2.22 2.13 1.62 2.93 2.66 2.88 5.97 6.93 Ag . Continued <0.167 <0.163 <0.143 <0.146 <0.144 <0.141 <0.150 <0.155 <0.156 <0.131 <0.152 <0.142 <0.150 <0.137 <0.143 <0.143 <0.151 <0.155 <0.141 <0.164 <0.16 <0.34 <0.41 <0.42 <0.45 <0.32 <0.32 <0.38 <0.56 <0.55 <0.15 0.168 0.197 0.244 0.271 0.53 1.04 0.39 0.44 0.37 0.79 0.74 As 1.6 1 <0.00313 <0.0090 <0.0166 <0.0067 <0.0149 <0.0100 <0.0072 <0.0048 <0.0152 <0.0127 <0.0057 <0.0069 <0.0059 <0.0069 <0.0045 <0.0037 <0.0033 <0.0042 <0.0043 <0.0066 <0.0034 0.0096 0.0146 0.0085 0.0141 0.0081 0.0028 0.0087 0.0049 0.0186 <0.00 0.013 1.029 0.054 0.089 0.011 0.148 0.835 0.099 0.029 0.139 0.03 0.01 0.06 Au

<0.0117 <0.0177 <0.0104 <0.0080 <0.0079 269.46 176.71 0.0258 408.58 295.03 0.0348 0.0185 <0.030 0.0098 <0.021 0.0236 0.0253 0.0237 0.0256 0.0125 0.0439 0.0238 0.0203 0.0174 0.0158 0.0112 0.0353 0.0161 0.0253 0.377 0.416 12.52 0.069 0.067 0.224 1.275 23.52 18.35 0.271 0.14 5.52 3.52 0.12 8.9 Bi 11388.88 11227.19 7992.64 6529.94 6987.61 3473.88 6983.67 6797.79 6863.07 6722.08 7310.21 3079.51 3345.33 3518.75 3101.25 2924.24 3051.35 2823.57 2833.07 2852.75 2875.25 2801.74 7235.15 6941.81 799.28 6236.9 7925.1 622.53 628.26 607.97 635.91 631.58 623.85 631.61 619.51 623.06 626.85 617.76 2887.4 7394.1 618.94 610.09 843.9 599 Cd 280.24 293.27 109.59 138.59 141.87 136.66 119.24 109.29 146.52 765.47 153.24 142.88 724.12 588.38 835.46 714.42 156.59 776.21 673.09 146.19 583.81 147.98 152.13 652.04 152.42 633.88 151.56 150.86 627.67 602.87 643.85 150.11 136.36 148.88 125.81 912.93 133.86 139.08 829.85 151.92 781.79 148.17 128.2 675 Co 14030.65 1266.14 1883.73 1977.21 3063.81 8058.62 37965.3 129.55 235.59 276.18 159.91 178.15 804.41 336.82 160.94 161.87 154.52 232.41 173.86 387.86 158.96 1929.8 171.07 182.76 184.63 168.43 134.53 597.08 151.65 142.94 166.96 148.79 148.77 244.34 147.55 148.25 247.16 162.03 909.94 161.94 47.55 132.2 131.7 168 Cu 81617.66 93277.32 89390.76 101050.4 79285.72 83172.27 89390.76 112710.1 93277.32 87836.13 101827.8 98718.52 100273.1 105714.3 98718.52 93277.32 108046.2 103382.4 89390.77 90945.38 92500.01 84726.91 94831.95 94054.63 90945.38 78508.41 98718.52 94831.96 99495.81 96386.57 96386.57 91722.69 112710.1 97163.88 97163.88 111155.5 94054.63 108046.2 89390.77 3886.55 4042.02 91722.7 97941.2 92500 Fe <0.154 <0.150 <0.121 <0.142 <0.139 <0.160 <0.21 <0.21 0.078 0.101 0.346 0.239 0.246 0.164 0.949 0.414 0.202 0.251 0.084 0.162 0.207 0.423 0.455 0.704 0.417 0.677 1.236 0.465 0.429 0.218 0.409 0.103 0.458 0.449 0.115 0.585 0.056 0.24 0.56 0.29 0.46 0.71 0.59 0.34 Ga <0.46 0.349 0.647 0.517 0.661 0.654 0.966 0.764 0.623 0.698 0.594 0.557 0.479 0.748 0.878 0.828 0.613 0.635 0.595 0.716 0.829 0.829 0.748 0.621 0.664 0.71 0.88 0.86 0.58 0.77 0.84 0.72 0.69 0.84 0.56 0.83 0.91 0.52 0.67 1.25 0.35 0.75 0.96 0.65 Ge 191.64 149.15 132.69 41.54 86.77 38.25 30.09 53.21 19.75 56.73 50.41 60.53 68.96 64.78 15.74 15.81 11.39 82.74 14.98 11.61 64.42 13.79 51.05 11.44 98.86 11.31 13.86 51.15 62.85 8.28 8.37 6.69 8.73 9.92 10.9 9.43 7.72 7.21 6.42 7.19 8.75 7.81 6.64 Hg 8.5 220.38 238.59 224.47 201.51 212.79 217.34 148.22 212.35 213.84 147.88 155.31 148.41 152.78 151.91 146.71 230.57 218.14 245.35 249.96 228.49 225.35 144.98 199.49 150.18 216.54 144.54 0.209 254.2 79.81 83.05 236.1 78.49 79.93 67.23 69.98 91.91 90.65 91.36 91.95 90.56 91.13 0.22 75.7 216 In 13671.38 11811.27 10979.72 12231.12 3330.28 1581.35 9161.61 3714.16 3384.95 5770.78 3488.62 5483.74 5515.89 5877.82 5975.94 3545.05 3386.34 1044.03 3447.06 3464.68 3463.64 3705.51 3410.66 7090.43 6718.94 6704.44 6151.89 3458.69 6849.66 6681.65 6750.23 5992.38 5908.15 1524.6 3443.2 5225.2 948.55 5648.3 770.46 870.03 682.84 875.26 810.49 3503.1 Mn <0.31 <0.30 <0.32 <0.80 <0.32 <0.97 <0.28 <0.28 <0.28 <0.28 <0.81 <0.65 <0.78 <0.62 <0.28 <0.29 <0.70 <0.73 <0.27 <0.26 <0.70 <0.28 <0.27 <1.07 <0.20 <0.18 <0.19 <0.20 <0.26 <0.29 <0.20 1.07 0.36 0.26 0.78 0.67 0.41 1.66 1.25 0.22 0.24 0.26 Mo 2.5 0.2 669.89 <0.26 <0.70 <0.67 <0.25 <0.57 <0.24 <0.25 <0.24 <0.24 <0.66 <0.55 <0.70 <0.47 <0.82 <1.05 <0.24 <0.25 <0.65 <0.24 <0.58 <0.24 <0.23 <0.57 <0.86 <0.24 <0.23 <0.21 <0.20 <0.21 <0.24 <0.19 <0.21 <0.25 0.75 1.31 0.75 0.59 0.26 0.66 1.26 0.29 0.87 0.43 Ni 10187.73 13844.72 28465.28 2324.96 2504.19 <0.058 823.65 <0.051 <0.051 <0.060 0.192 0.081 0.966 0.088 0.269 12.77 0.108 0.077 0.086 0.046 58.09 0.096 0.071 0.645 0.087 0.114 0.129 0.862 0.068 0.083 0.229 0.058 12.84 2.07 2.71 0.12 1.45 5.62 9.39 0.82 11.7 8.54 1.11 1.76 Pb 333975.9 333516.8 315475.3 319289.1 327889.9 356220.6 301197.4 309326.3 312623.7 314518.3 302030.1 317497.6 311540.9 310448.4 307729.5 312895.2 311967.6 311504.4 307715.9 317273.3 315353.4 312452.1 311545.2 315891.2 311993.8 315029.2 309002.1 335378.6 314066.1 328964.9 303734.7 312759.6 281149.3 313160.4 312249.4 308323.8 310153.4 307261.5 312782.6 312956.9 308969.1 312973.9 316042.7 309237.8 S 116.49 129.35 476.45 <0.044 <0.043 <0.048 <0.044 <0.109 <0.049 <0.043 <0.116 <0.045 <0.046 <0.043 <0.044 <0.046 <0.044 <0.18 <0.17 0.071 0.066 0.229 19.94 0.056 0.193 0.177 0.134 0.567 0.089 0.242 0.202 0.078 0.059 0.508 0.064 0.766 52.9 1.93 2.71 0.28 4.59 0.29 0.05 0.2 Sb <6.80 <7.73 <6.96 <2.51 <5.50 <2.07 <5.28 <6.55 <5.27 <5.25 <1.99 <1.89 <1.88 <1.98 <1.96 <1.86 <1.95 <2.06 <1.97 10.46 37.14 42.86 33.48 41.77 48.72 39.38 21.57 5.88 3.42 5.48 7.28 2.48 7.02 7.98 7.54 8.61 9.68 6.94 6.07 7.43 8.95 8.62 8.39 6.12 Se 3077.78 116.92 <0.23 0.214 23.79 0.529 0.458 69.94 0.541 0.259 0.287 0.469 0.336 0.415 0.195 0.478 0.334 0.335 0.618 0.334 0.328 0.284 0.729 0.573 0.581 0.331 0.404 0.311 0.333 0.24 4.97 8.24 1.56 0.45 2.87 0.69 0.31 0.34 0.28 1.39 0.41 2.04 2.78 1.77 Sn <0.63 <0.68 <1.77 <0.64 <0.40 <1.83 <1.98 <1.51 <0.61 <0.63 <0.59 <0.47 <0.57 <0.44 <0.63 <1.41 <1.80 <1.33 <1.78 <1.39 <1.60 <0.63 <1.48 <0.66 <0.57 <1.59 <0.58 <1.57 <2.49 <0.63 <0.56 <1.75 <0.40 <0.42 <0.37 <0.41 <0.41 <0.39 <0.38 <0.60 <0.41 <0.62 0.77 2.77 Te <0.0076 <0.0063 <0.0048 <0.0052 <0.0079 <0.0046 <0.0060 <0.0150 <0.0066 <0.0058 <0.0069 <0.0081 <0.0068 <0.0057 <0.0069 <0.0049 <0.0065 <0.0062 0.0092 0.0127 0.0087 0.0049 <0.024 <0.019 0.0054 0.075 0.384 0.206 0.454 0.178 0.151 0.044 0.192 0.133 0.052 0.302 0.062 0.728 0.026 1.486 0.069 0.056 3.83 0.07 Tl 662157.1 576404.9 532738.9 557611.4 666475.2 593295.3 592775.5 548989.3 575197.3 592041.8 590364.5 541545.6 587668.5 549554.1 574791.1 563292.6 568774.2 589058.5 569452.6 571392.1 560702.5 595075.4 586138.6 565888.5 590210.9 591709.8 594054.1 591917.4 531280.8 528452.9 584620.9 595546.3 558552.6 556667.4 563504.9 561234.5 539881.8 587940.1 558121.8 563378.5 537469.6 589293.8 565973 621301 Zn 100.3 101.4 103.0 100.8 100.7 100.4 100.2 100.1 100.0 100.1 100.4 100.2 100.4 106.5 100.0 104.2 91.27 100.4 100.4 Total 98.1 99.9 99.7 97.3 99.7 97.5 99.9 99.7 99.9 99.8 98.8 99.7 97.6 97.1 93.8 99.8 97.9 98.0 97.8 97.8 97.5 99.7 97.8 97.9 97.6 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b 1919.1470.b Getberget-b Getberget-b Getberget-b Getberget-b Getberget-b LAH.001.6 LAH.001.6 LAH.001.6 LAH.001.6 LAH.001.6 LAH.001.6 Sample ID 57.4128 57.4128 Näset I Näset Näset I Näset Näset I Näset Näset I Näset Näset I Näset Näset I Näset Näset I Näset Näset I Näset Gås IIa Gås IIa Gås IIa Gås IIa Gås IIa Gås IIa Gås IIa Näset I Näset Näset I Näset

110

Appendix C: LA-ICP-MS data of the 1831.1815 sample

LA 9. Table No. 19 18 20 17 16 15 33 32 14 30 31 26 13 12 29 28 25 24 27 11 21 22 23 10 1 2 9 4 3 6 5 8 7

0.64 0.74 0.63 0.82 0.70 0.65 0.69 0.71 0.88 0.70 0.73 0.64 0.67 0.60 0.63 0.71 0.68 0.64 0.57 0.79 0.66 0.66 0.66 0.65 0.64 0.72 0.71 0.69 0.78 0.67 0.60 0.67 0.76 Ag - ICP 0.01 0.05 0.01 0.03 0.07 0.05 0.07 0.10 0.02 0.02 0.05 0.01 0.05 0.04 0.02 0.02 0.01 0.42 0.03 Au - MS analyses of of analyses MS

0.46 0.05 0.16 0.14 0.01 0.01 0.06 0.03 0.05 0.04 0.23 0.01 0.04 0.02 0.01 0.08 0.05 0.03 0.03 0.04 0.09 0.01 0.03 0.02 0.04 Bi

1091 1032 1000 1048 1004 1002 1006 1006 1034 1024 1015 1024 1016 1013 1000 985 990 953 982 975 930 997 990 907 967 998 896 949 960 888 991 966 956 Cd the sphalerite sample 1831.1815 509 532 503 473 524 487 529 509 484 493 521 514 504 510 491 493 497 514 503 531 513 518 487 493 490 543 459 517 506 520 510 534 525 Co

622 143 Cu 83 4 4 8 6 9 4 4 5 5 2 5 4 4 4 5 6 3 8 5 4 4 4 6 4 4 5 5 4 5 5 30131 29170 28880 27126 30302 26792 28722 28456 26768 28581 29118 32008 29087 29843 30441 28007 23763 29579 31349 30299 29838 31308 22319 26769 26887 29127 21657 29445 30497 30792 29975 30519 29942

Fe

0.17 0.24 0.28 0.16 0.20 0.25 0.22 0.18 0.17 0.19 0.24 0.18 0.11 0.23 0.19 0.16 0.19 0.26 0.27 0.26 0.15 0.27 0.26 0.20 0.24 0.25 0.18 0.13 Ga

0.91 0.60 0.79 0.70 0.84 0.86 0.88 0.75 0.59 0.68 0.69 0.72 0.91 0.88 0.76 0.80 0.93 0.85 0.90 0.98 0.82 0.61 0.66 0.75 0.91 0.89 0.81 0.86 1.15 0.98 0.74 0.82 0.64 Ge

Hg 10 12 10 11 11 10 13 11 10 13 14 11 12 12 16 11 11 10 10 10 16 17 9 7 8 8 8 8 8 8 8 9 9

5.2 5.1 5.6 5.1 5.5 5.1 4.7 4.7 5.4 5.2 5.7 5.4 5.3 5.6 5.2 5.1 4.7 5.7 5.6 5.6 5.4 5.1 4.7 5.1 5.1 5.6 4.7 5.4 5.2 5.4 5.5 5.5 5.4 In

1308 1289 1264 1181 1331 1175 1269 1231 1210 1245 1260 1287 1310 1360 1329 1224 1068 1276 1349 1334 1368 1301 1030 1172 1170 1289 1319 1337 1307 1293 1317 1308 956 Mn

0.91 1.05 0.60 1.24 1.29 0.88 0.89 0.83 1.25 0.95 1.35 0.54 0.88 1.29 0.79 1.32 0.93 1.05 0.77 1.60 1.05 1.77 1.49 0.97 1.09 1.12 1.08 Ni

28.8 0.5 5.9 1.1 1.9 6.9 2.5 2.9 1.3 2.3 0.6 2.2 0.7 0.8 0.7 1.5 0.3 2.1 0.8 1.4 0.7 0.9 0.4 1.8 2.4 0.7 1.2 1.2 0.7 0.5 1.2 1.1 0.9 Pb

319769.5 320799.1 320046.1 320518.9 320558.5 319901.6 311643.2 323103.1 321227.7 318843.2 323542.4 319614.8 326448.6 318460.1 321665.3 324963.2 323490.4 324839.2 317631.3 318739.8 320493.3 317450.5 315363.3 318415.5 321532.1 324231.5 320819 321739 320729 323832 321445 314539 322219 S

Se 43.2 50.8 41.8 51.6 49.8 51.6 47.7 47.0 46.2 45.1 46.2 48.5 45.0 50.0 47.1 49.0 49.3 47.0 44.8 45.6 47.7 47.9 51.6 51.9 46.6 51.3 45.2 47.5 45.8 47.0 49.9 44.7 46.7

Sn 14 10 11 16 12 10 16 12 12 10 13 13 14 13 11 13 10 8 8 8 8 9 7 8 9 7 7 9 5 7

648001 647738 645628 649248 645489 650443 646735 648267 656424 647122 645390 645177 643177 649467 652436 650830 644829 645366 637350 647509 649672 647249 648797 644814 642782 658611 647243 650763 646197 641664 650098 643059 644779 Zn

1000987 1000593 1000053 1001206 1000245 1000195 1000851 1000209 1000604 1001661 1003141 1000840 1001829 999824 999452 999191 999253 999420 997713 999248 999366 999110 998114 999284 997010 999424 999452 998736 998438 998997 997242 993124 998015 Total

Sample ID Sample 1831.1815 1831.1815 1831.1815 1831.1815 1831.1815 1831.1815 1831.1815 1831.1815 1831.1815 1831.1815 1831.1815 1831.1815 1831.1815 1831.1815 1831.1815 1831.1815 1831.1815 1831.1815 1831.1815 1831.1815 1831.1815 1831.1815 1831.1815 1831.1815 1831.1815 1831.1815 1831.1815 1831.1815 1831.1815 1831.1815 1831.1815 1831.1815 1831.1815

111

Examensarbete vid Institutionen för geovetenskaper ISSN 1650-6553