Compositional Systematics of Sphalerites from Western Bergslagen, Sweden Huvud- Och Spårelementsystematik I Zinkblände Från Västra Bergslagen, Sverige

Total Page:16

File Type:pdf, Size:1020Kb

Compositional Systematics of Sphalerites from Western Bergslagen, Sweden Huvud- Och Spårelementsystematik I Zinkblände Från Västra Bergslagen, Sverige Examensarbete vid Institutionen för geovetenskaper Degree Project at the Department of Earth Sciences ISSN 1650-6553 Nr 370 Compositional Systematics of Sphalerites from Western Bergslagen, Sweden Huvud- och spårelementsystematik i zinkblände från västra Bergslagen, Sverige Aristeidis Kritikos INSTITUTIONEN FÖR GEOVETENSKAPER DEPARTMENT OF EARTH SCIENCES Examensarbete vid Institutionen för geovetenskaper Degree Project at the Department of Earth Sciences ISSN 1650-6553 Nr 370 Compositional Systematics of Sphalerites from Western Bergslagen, Sweden Huvud- och spårelementsystematik i zinkblände från västra Bergslagen, Sverige Aristeidis Kritikos ISSN 1650-6553 Copyright © Aristeidis Kritikos Published at Department of Earth Sciences, Uppsala University (www.geo.uu.se), Uppsala, 2016 Abstract Compositional Systematics of Sphalerites from Western Bergslagen, Sweden Aristeidis Kritikos Sphalerite is, apart from being the main global source of zinc (Zn), also one of the main source for the critical elements indium (In), gallium (Ga) and germanium (Ge), which can be extracted as by-products during Zn mining. In the westernmost part of the Palaeoproterozoic Bergslagen ore province, Sweden, In-anomalies have been reported from sulphide mineralizations. These In-anomalies can be attributed to either pre-ore formation crustal processes manifested by the local (Svecofennian, c. 1.87-1.89 Ga) syn-volcanic mineralisations, or to epigenetic metasomatic events primarily related to younger (c. 1.80- 1.79 Ga) granitoids. In this study, sphalerite samples from 19 different mineralisations in westernmost Bergslagen were examined by both electron probe microanalyzer (EPMA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), in order to firstly, measure trace element concentrations, and especially those of the critical element In, Ga and Ge, and secondly, to apply this information to gain new information on the trace element inventory and incorporation mechanisms of sphalerite. The dataset also allows for testing the ore-formation process models, not least in cases of elevated In- contents. Utilization of these two analytical methods also provided the opportunity for a direct spot-to- spot comparison of their performance in detecting trace element concentrations in sphalerite. The results verify the In-enrichment of the area, whereas Ga and Ge only follow crustal abundancies. The concentrations of the other trace elements vary significantly, even at a sample scale. The compositional variation shows several patterns between certain elements, suggesting that their incorporation in the sphalerite lattice was allowed via substitution mechanisms (e.g. In3++(Cu+,Ag+)↔2Zn2+; Fe2++Cd2++Mn2+↔3Zn2+; Cu++Mn2++In3+↔3Zn2+). In contrast, some measured high Cd, Ag and Pb concentrations are attributed to nano (or micro) inclusions of primarily galena. Other elements such as As, Sn, Sb, Se, Au, Tl, Ni, Te and Mo yielded, in almost all the samples, concentrations below the detection limit for both analytical methods. Discrimination methods based on trace element concentrations and distribution of the In-enriched mineralizations suggest that the In- anomalies are most likely related to Svecofennian volcanic to subvolcanic hydrothermal processes, forming mineralisations that were later modified during the Svecokarelian orogeny. Finally, the direct comparison of EPMA results to that of LA-ICP-MS, showed the significantly better performance of the latter method in detecting trace-level concentrations, provided that a proper calibration procedure has been followed. Keywords: Western Bergslagen, sphalerite, critical elements, trace elements, substitution mechanisms, EPMA, LA-ICP-MS. Degree Project E1 in Earth Science, 1GV025, 30 credits Supervisors: Karin Högdahl and Erik Jonsson Department of Earth Sciences, Uppsala University, Villavägen 16, SE-752 36 Uppsala (www.geo.uu.se) ISSN 1650-6553, Examensarbete vid Institutionen för geovetenskaper, No. 370, 2016 The whole document is available at www.diva-portal.org Populärvetenskaplig sammanfattning Huvud-och spårelementsystematik i zinkblände från västra Bergslagen, Sverige Aristeidis Kritikos Sulfidmineralet zinkblände är, förutom att vara den huvudsakliga globala källan för zink (Zn), också ett av de viktigaste värdmineralen för de kritiska metallerna indium (In), gallium (Ga) och germanium (Ge), vilka kan utvinnas som viktiga biprodukter vid zinkbrytning. I den västligaste delen av malmprovinsen Bergslagen i Mellansverige har In-anomalier rapporterats från flera mineraliseringar. Dessa lokala In-anrikningar kan tillskrivas antingen processer verksamma innan och under den vulkaniska aktiviteten, eller senare geologiska händelser relaterade till yngre graniter. I denna studie har zinkblände från 19 olika mineraliseringar i västra Bergslagen karakteriserats med två olika system för mikrokemisk analys; elektronmikrosond (EPMA) och laserablativ induktivt kopplad plasma-masspektrometri (LA-ICP-MS). Detta har gjorts för att mäta spårelementhalter, och särskilt då för de kritiska metallerna In, Ga och Ge. Genom att använda dessa två metoder parallellt gavs också möjligheten till direkta jämförelser mellan dem vad gäller deras kapacitet för spårelementanalys av zinkblände. Resultaten verifierar att detta område är anomalt In-anrikat, medan halterna av Ga och Ge är låga och endast följer genomsnittshalterna för kontinental jordskorpa. Halterna av de övriga spårelementen varierar avsevärt, även på individuell provskala, och visar i flera fall systematiska mönster mellan vissa element. Dessa mönster tyder på att deras införlivande i zinkbländestrukturen gått via flera specifika utbytes-(substitutions-)mekanismer (t.ex. In3++ (Cu+, Ag+) ↔2Zn2+; Fe2+ + Cd2++ Mn2+ ↔3Zn2+, Cu++ Mn2++ In3+ ↔3Zn2+). Däremot kan förhöjda halter av Cd, Ag och Pd tillskrivas nano- (eller mikro-) inneslutningar av framförallt blyglans. Andra element, som As, Sn, Sb, Se, Au, TI, Ni, Te och Mo uppvisade halter under detektionsgränserna för båda analysmetoderna i nästan alla undersökta prov. Bildningsmässiga (genetiska) diskrimineringsmetoder baserade på spårelementhalter kombinerat med de geologiska och spatiella relationerna för de In-anrikade mineraliseringarna tyder på att de senare bildades genom svekofenniska vulkanisk-hydrotermala processer och därefter modifierats under svekokarelsk bergskedjebildning. Slutligen, i den direkta jämförelsen av EPMA gentemot LA-ICP-MS, visade den senare metoden signifikant bättre kapacitet för spårämnesanalys, förutsatt att ett korrekt kalibreringsprotokoll har följts. Nyckelord: Västra Bergslagen, zinkblände, kritiska metaller, spårelement, substitutionsmekanismer, EPMA, LA-ICP-MS. Examensarbete E1 i geovetenskap, 1GV025, 30 hp Handledare: Karin Högdahl och Erik Jonsson Institutionen för geovetenskaper, Uppsala universitet, Villavägen 16, 752 36 Uppsala (www.geo.uu.se) ISSN 1650-6553, Examensarbete vid Institutionen för geovetenskaper, Nr 370, 2016 Hela publikationen finns tillgänglig på www.diva-portal.org Table of Contents 1. Introduction and background ............................................................................................. 1 1.1 Critical elements for energy saving devices .................................................................................. 2 1.2 Sphalerite ...................................................................................................................................... 3 2. Geological setting of the Bergslagen ore province ............................................................ 5 2.1 Volcanic evolution ........................................................................................................................ 9 2.2 Metallogenesis of Bergslagen ..................................................................................................... 10 3. Methodology ....................................................................................................................... 11 3.1 Sample preparation ..................................................................................................................... 13 3.2 Reflected light microscopy ......................................................................................................... 13 3.3 Electron Microprobe Analysis .................................................................................................... 14 3.3.1 EPMA analytical setup ...................................................................................... 15 3.4 LA-ICP-MS ................................................................................................................................. 16 3.4.1 LA-ICP-MS analytical setup .............................................................................. 17 4. Studied mineralizations ..................................................................................................... 18 4.1 Långban ....................................................................................................................................... 20 4.2 Lahäll .......................................................................................................................................... 21 4.3 Myssfallet .................................................................................................................................... 22 4.4 Myssberget/Mysstjärnen ............................................................................................................. 23 4.5 Näset ..........................................................................................................................................
Recommended publications
  • Calaverite Aute2 C 2001-2005 Mineral Data Publishing, Version 1 Crystal Data: Monoclinic
    Calaverite AuTe2 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Monoclinic. Point Group: 2/m or 2. Bladed and short to slender prisms elongated k [010], striated k [010], to 1 cm; also massive, granular. Twinning: Common on {110}, less common on {031} and {111}. Physical Properties: Fracture: Uneven to subconchoidal. Tenacity: Brittle. Hardness = 2.5–3 VHN = 197–213 (100 g load). D(meas.) = 9.10–9.40 D(calc.) = 9.31 Optical Properties: Opaque. Color: Grass-yellow to silver-white; white in reflected light. Streak: Greenish to yellowish gray. Luster: Metallic. Pleochroism: Weak. Anisotropism: Weak. R1–R2: (400) 45.7–54.4, (420) 48.4–57.1, (440) 51.1–59.6, (460) 53.6–61.8, (480) 56.0–63.6, (500) 57.9–65.2, (520) 59.4–66.4, (540) 60.6–67.3, (560) 61.3–68.0, (580) 61.8–68.3, (600) 62.2–68.4, (620) 62.5–68.6, (640) 62.7–68.5, (660) 62.8–68.4, (680) 62.9–68.2, (700) 63.0–68.1 Cell Data: Space Group: C2/m or C2. a = 7.1947(4) b = 4.4146(2) c = 5.0703(3) β =90.038(4)◦ Z=2 X-ray Powder Pattern: Cripple Creek, Colorado, USA. 3.02 (10), 2.09 (8), 2.20 (4), 2.93 (3), 1.758 (3), 1.689 (3), 1.506 (3) Chemistry: (1) (2) (3) Au 41.66 42.15 43.59 Ag 0.77 0.60 Te 57.87 57.00 56.41 Total 100.30 99.75 100.00 (1) Cripple Creek, Colorado, USA.
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • 1 Revision 1 Single-Crystal Elastic Properties of Minerals and Related
    Revision 1 Single-Crystal Elastic Properties of Minerals and Related Materials with Cubic Symmetry Thomas S. Duffy Department of Geosciences Princeton University Abstract The single-crystal elastic moduli of minerals and related materials with cubic symmetry have been collected and evaluated. The compiled dataset covers measurements made over an approximately seventy year period and consists of 206 compositions. More than 80% of the database is comprised of silicates, oxides, and halides, and approximately 90% of the entries correspond to one of six crystal structures (garnet, rocksalt, spinel, perovskite, sphalerite, and fluorite). Primary data recorded are the composition of each material, its crystal structure, density, and the three independent nonzero adiabatic elastic moduli (C11, C12, and C44). From these, a variety of additional elastic and acoustic properties are calculated and compiled, including polycrystalline aggregate elastic properties, sound velocities, and anisotropy factors. The database is used to evaluate trends in cubic mineral elasticity through consideration of normalized elastic moduli (Blackman diagrams) and the Cauchy pressure. The elastic anisotropy and auxetic behavior of these materials are also examined. Compilations of single-crystal elastic moduli provide a useful tool for investigation structure-property relationships of minerals. 1 Introduction The elastic moduli are among the most fundamental and important properties of minerals (Anderson et al. 1968). They are central to understanding mechanical behavior and have applications across many disciplines of the geosciences. They control the stress-strain relationship under elastic loading and are relevant to understanding strength, hardness, brittle/ductile behavior, damage tolerance, and mechanical stability. Elastic moduli govern the propagation of elastic waves and hence are essential to the interpretation of seismic data, including seismic anisotropy in the crust and mantle (Bass et al.
    [Show full text]
  • Type of the Paper (Article
    Conference Proceedings Paper Gold deposits in Greece: Hypogene ore mineralogy as a guide for precious and critical metal exploration Panagiotis Voudouris 1,*, Paul G. Spry 2, Vasilios Melfos 3, Karsten Haase 4, Reiner Klemd 4, Constantinos Mavrogonatos 1, Alexander Repstock 5 and Dimitrios Alfieris 6 Published: date Academic Editor: name 1 Department of Mineralogy and Petrology, Faculty of Geology & Geoenvironment, National and Kapodistrian University of Athens, Greece; [email protected]; [email protected] 2 Department of Geological and Atmospheric Sciences, Iowa State University, Ames IA 50011-1027, USA ([email protected]); 3 Department of Mineralogy-Petrology-Economic Geology, Faculty of Geology, Aristotle University of Thessaloniki, Greece; [email protected] 4 GeoZentrum Nordbayern, Universität Erlangen-Nürnberg, Erlangen, Germany; [email protected]; [email protected] 5 Institut für Geologie, TU Bergakademie Freiberg, Germany; [email protected] 6 Kairi str., 15126, Athens, Greece; [email protected] * Correspondence: [email protected]; Tel.: +30-210-7274129 Abstract: Gold deposits in Greece are spatially associated with back-arc/arc related volcanic, subvolcanic and plutonic rocks, which were controlled by extensional kinematic conditions when metamorphic core complexes in the Rhodope-Serbomacedonian- and Attico-Cycladic Massifs were uplifted to near surface levels over the south-westward retreating Hellenic subduction zone. Porphyry Cu-Mo-Au, high-intermediate sulfidation epithermal Au-Ag deposits and other intrusion-related proximal to distal systems (skarn, carbonate replacement, metamorphic rock-hosted quartz veins) are characterized by enrichment of trace metallic minerals like bismuth sulfosalts and Bi-sulfotellurides, precious- and base metal tellurides and Se-bearing phases, which can be considered as pathfinder minerals for gold as they are intimately associated with gold-bearing ores.
    [Show full text]
  • Chrisstanleyite Ag2pd3se4 C 2001-2005 Mineral Data Publishing, Version 1
    Chrisstanleyite Ag2Pd3Se4 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Monoclinic. Point Group: 2/m or 2. Anhedral crystals, to several hundred µm, aggregated in grains. Twinning: Fine polysynthetic and parquetlike, characteristic. Physical Properties: Tenacity: Slightly brittle. Hardness = ∼5 VHN = 371–421, 395 average (100 g load), D(meas.) = n.d. D(calc.) = 8.30 Optical Properties: Opaque. Color: Silvery gray. Streak: Black. Luster: Metallic. Optical Class: Biaxial. Pleochroism: Slight; pale buff to slightly gray-green buff. Anisotropism: Moderate; rose-brown, gray-green, pale bluish gray, dark steel-blue. Bireflectance: Weak to moderate. R1–R2: (400) 35.6–43.3, (420) 36.8–44.2, (440) 37.8–45.3, (460) 39.1–46.7, (480) 40.0–47.5, (500) 41.1–48.0, (520) 42.1–48.5, (540) 42.9–48.7, (560) 43.5–49.1, (580) 44.1–49.3, (600) 44.4–49.5, (620) 44.6–49.6, (640) 44.5–49.3, (660) 44.4–49.2, (680) 44.2–49.1, (700) 44.0–49.0 Cell Data: Space Group: P 21/m or P 21. a = 6.350(6) b = 10.387(4) c = 5.683(3) β = 114.90(5)◦ Z=2 X-ray Powder Pattern: Hope’s Nose, England. 2.742 (100), 1.956 (100), 2.688 (80), 2.868 (50b), 2.367 (50), 1.829 (30), 2.521 (20) Chemistry: (1) (2) (3) Pd 37.64 35.48 37.52 Pt 0.70 Hg 0.36 Ag 25.09 24.07 25.36 Cu 0.18 2.05 Se 36.39 38.50 37.12 Total 99.30 101.16 100.00 (1) Hope’s Nose, England; by electron microprobe, average of 26 analyses; corresponding to (Ag2.01Cu0.02)Σ=2.03Pd3.02Se3.95.
    [Show full text]
  • European Journal of Mineralogy
    Title Grundmannite, CuBiSe<SUB>2</SUB>, the Se-analogue of emplectite, a new mineral from the El Dragón mine, Potosí, Bolivia Authors Förster, Hans-Jürgen; Bindi, L; Stanley, Christopher Date Submitted 2016-05-04 European Journal of Mineralogy Composition and crystal structure of grundmannite, CuBiSe2, the Se-analogue of emplectite, a new mineral from the El Dragόn mine, Potosí, Bolivia --Manuscript Draft-- Manuscript Number: Article Type: Research paper Full Title: Composition and crystal structure of grundmannite, CuBiSe2, the Se-analogue of emplectite, a new mineral from the El Dragόn mine, Potosí, Bolivia Short Title: Composition and crystal structure of grundmannite, CuBiSe2, Corresponding Author: Hans-Jürgen Förster Deutsches GeoForschungsZentrum GFZ Potsdam, GERMANY Corresponding Author E-Mail: [email protected] Order of Authors: Hans-Jürgen Förster Luca Bindi Chris J. Stanley Abstract: Grundmannite, ideally CuBiSe2, is a new mineral species from the El Dragόn mine, Department of Potosí, Bolivia. It is either filling small shrinkage cracks or interstices in brecciated kruta'ite−penroseite solid solutions or forms independent grains in the matrix. Grain size of the anhedral to subhedral crystals is usually in the range 50−150 µm, but may approach 250 µm. Grundmannite is usually intergrown with watkinsonite and clausthalite; other minerals occasionally being in intimate grain-boundary contact comprise quartz, dolomite, native gold, eskebornite, umangite, klockmannite, Co-rich penroseite, and three unnamed phases of the Cu−Bi−Hg−Pb−Se system, among which is an as-yet uncharacterizedspecies with the ideal composition Cu4Pb2HgBi4Se11. Eldragόnite and petrovicite rarely precipitated in the neighborhood of CuBiSe2. Grundmannite is non-fluorescent, black and opaque with a metallic luster and black streak.
    [Show full text]
  • Mineralogy of Zn–Hg–S and Hg–Se–S Series Minerals in Carbonate-Hosted Mercury Deposits in Western Hunan, South China
    minerals Article Mineralogy of Zn–Hg–S and Hg–Se–S Series Minerals in Carbonate-Hosted Mercury Deposits in Western Hunan, South China Jianping Liu 1,2, Yanan Rong 1 and Shugen Zhang 1,* 1 Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Ministry of Education, Central South University, Changsha 410083, China; [email protected] (J.L.); [email protected] (Y.R.) 2 Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510460, China * Correspondence: [email protected]; Tel.: +86-731-888-30616 Academic Editor: Radostina Atanassova Received: 10 May 2017; Accepted: 12 June 2017; Published: 15 June 2017 Abstract: Among the Zn–Hg–S and Hg–Se–S series minerals, Hg-bearing sphalerite and metacinnabar are uncommon in ore deposits, but they are useful indicators of temporal variation of ore forming fluids, as well as presenting metallurgical implications for Hg-bearing deposits. To understand the Hg–Zn–Se mineralization system of the Tongren–Fenghuang Hg Belt (TFHB), the Zn–Hg–S and Hg–Se–S series minerals of the Chashula Hg–Zn and Dongping Hg–Ag–Se carbonate-hosted deposits were studied by microscopic observation, electron-probe microanalysis, and X-ray diffraction analysis. Observations show that the Chashula and Dongping deposits experienced two stages of mineralization (Stages 1 and 2). The pyrite, sphalerite I (Hg-poor sphalerite), and quartz formed in Stage 1, while the Zn-bearing cinnabar, sphalerite II (Hg-bearing sphalerite), cinnabar, selenium metacinnabar, and Ag minerals formed in Stage 2. The Hg-bearing sphalerite, containing 13.36–22.26 wt % Hg (average 18.73 wt % Hg), replaces sphalerite I (0.00–1.31 wt % Hg).
    [Show full text]
  • Intergrowth Texture in Au-Ag-Te Minerals from Sandaowanzi Gold Deposit, Heilongjiang Province: Implications for Ore-Forming Environment
    Article Geology July 2012 Vol.57 No.21: 27782786 doi: 10.1007/s11434-012-5170-7 SPECIAL TOPICS: Intergrowth texture in Au-Ag-Te minerals from Sandaowanzi gold deposit, Heilongjiang Province: Implications for ore-forming environment XU Hong*, YU YuXing, WU XiangKe, YANG LiJun, TIAN Zhu, GAO Shen & WANG QiuShu School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China Received January 16, 2012; accepted March 16, 2012; published online May 6, 2012 Sandaowanzi gold deposit, Heilongjiang Province, is the only single telluride type gold deposit so far documented in the world, in which 90% of gold is hosted in gold-silver telluride minerals. Optical microscope observation, scanning electron microscope, electron probe and X-ray diffraction analysis identified abundant intergrowth textures in the Au-Ag-Te minerals, typified by sylvanite-hosting hessite crystals and hessite-hosting petzite crystals. The intergrown minerals and their chemistry are consistent, and the hosted minerals are mostly worm-like or as oriented stripes, evenly distributed in the hosting minerals, with clear and smooth interfaces. These suggest an exsolution origin for the intergrowth texture. With reference to the phase-transformation temperature derived from synthesis experiments of tellurides, the exsolution texture of Au-Ag-Te minerals implies that the veined tellurides formed at 150–220°C. The early stage disseminated tellurides formed at log f(Te2) from 13.6 to 7.8, log f(S2) from 11.7 to 7.6, whereas the late stage veined tellurides formed at log f(Te2) ranging from 11.2 to 9.7 and log f(S2) from 16.8 to 12.2.
    [Show full text]
  • Selenium Minerals and the Recovery of Selenium from Copper Refinery Anode Slimes by C
    http://dx.doi.org/10.17159/2411-9717/2016/v116n6a16 Selenium minerals and the recovery of selenium from copper refinery anode slimes by C. Wang*, S. Li*, H. Wang*, and J. Fu* and genesis of native selenium from Yutangba, #65'272 Enshi City, Hubei Province, China in 2004, and pointed out, from the different forms of native Since it was first identified in 1817, selenium has received considerable Se, that selenium can be interest. Native selenium and a few selenium minerals were discovered several decades later. With the increasing number of selenium minerals, activated,transformed, remobilized, and the occurrence of selenium minerals became the focus of much research. A enriched at sites such as in the unsaturated great number of selenium deposits were reported all over the world, subsurface zone or in the saturated zone (Zhu although few independent selenium deposits were discovered. Selenium is et al., 2005). The transport and deposition of obtained mainly as a byproduct of other metals, and is produced primarily selenium in felsic volcanic-hosted massive from the anode mud of copper refineries. This paper presents a compre- sulphide deposits of the Yukon Territory, hensive review of selenium minerals, as well as the treatment of copper Canada was studied and reported by Layton- refinery anode slimes for the recovery of selenium. Our focus is on the Matthews et al. (2005). selenium minerals, including their discovery and occurrence, and the Selenium is a comparatively rare and distribution of selenium resources. In addition, the main methods of greatly dispersed element. The average recovering selenium from copper anode slimes are summarized.
    [Show full text]
  • Ore Mineralogy, Trace Element Geochemistry And
    minerals Article Ore Mineralogy, Trace Element Geochemistry and Geochronological Constraints at the Mollehuaca and San Juan de Chorunga Au-Ag Vein Deposits in the Nazca-Ocoña Metallogenic Belt, Arequipa, Peru Jorge Crespo 1,*, Elizabeth Holley 1, Katharina Pfaff 2, Madeleine Guillen 3 and Roberto Huamani 4 1 Department of Mining Engineering, Colorado School of Mines, Golden, CO 80401, USA; [email protected] 2 Department of Geology and Geological Engineering, Colorado School of Mines, Golden, CO 80401, USA; kpfaff@mines.edu 3 Department of Geology, Geophysics and Mining, Universidad Nacional de San Agustín, Av. Independencia and Paucarpata Street S/N, Arequipa 04001, Peru; [email protected] 4 Faculty of Process Engineering, Department of Metallurgical Engineering, Universidad Nacional de San Agustín, Av. Independencia S/N, Arequipa 04001, Peru; [email protected] * Correspondence: [email protected] Received: 29 October 2020; Accepted: 8 December 2020; Published: 11 December 2020 Abstract: The Mollehuaca and San Juan de Chorunga deposits are hosted in the poorly explored gold and copper trends of the Nazca-Ocoña metallogenic belt in Arequipa, Perú, which extends from Trujillo (9 ◦S) to Nazca-Ocoña (14 ◦S). The aim of this study is to characterize the age, occurrence, and distribution of quartz vein-hosted Au-Ag mineralization and associated trace elements (e.g., Hg, Pb, Cu, Zn, and Bi) in these deposits. Here, we present geological mapping, geochemical whole rock inductively coupled plasma (ICP)-MS data of the veins, petrographic observations, backscattered electron images, quantitative SEM-based automated mineralogy, and electron microprobe analyses (EMPA). Despite the fact that there are numerous small-scale gold mines in the Nazca-Ocoña metallogenic belt, there have been few studies that document the origin and geological evolution of these deposits or the implications for decision-making in exploration, metallurgical processing, and environmental management.
    [Show full text]
  • A Specific Gravity Index for Minerats
    A SPECIFICGRAVITY INDEX FOR MINERATS c. A. MURSKyI ern R. M. THOMPSON, Un'fuersityof Bri.ti,sh Col,umb,in,Voncouver, Canad,a This work was undertaken in order to provide a practical, and as far as possible,a complete list of specific gravities of minerals. An accurate speciflc cravity determination can usually be made quickly and this information when combined with other physical properties commonly leads to rapid mineral identification. Early complete but now outdated specific gravity lists are those of Miers given in his mineralogy textbook (1902),and Spencer(M,i,n. Mag.,2!, pp. 382-865,I}ZZ). A more recent list by Hurlbut (Dana's Manuatr of M,i,neral,ogy,LgE2) is incomplete and others are limited to rock forming minerals,Trdger (Tabel,l,enntr-optischen Best'i,mmungd,er geste,i,nsb.ildend,en M,ineral,e, 1952) and Morey (Encycto- ped,iaof Cherni,cal,Technol,ogy, Vol. 12, 19b4). In his mineral identification tables, smith (rd,entifi,cati,onand. qual,itatioe cherai,cal,anal,ys'i,s of mineral,s,second edition, New york, 19bB) groups minerals on the basis of specificgravity but in each of the twelve groups the minerals are listed in order of decreasinghardness. The present work should not be regarded as an index of all known minerals as the specificgravities of many minerals are unknown or known only approximately and are omitted from the current list. The list, in order of increasing specific gravity, includes all minerals without regard to other physical properties or to chemical composition. The designation I or II after the name indicates that the mineral falls in the classesof minerals describedin Dana Systemof M'ineralogyEdition 7, volume I (Native elements, sulphides, oxides, etc.) or II (Halides, carbonates, etc.) (L944 and 1951).
    [Show full text]
  • Stilleite Znse C 2001-2005 Mineral Data Publishing, Version 1
    Stilleite ZnSe c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Cubic. Point Group: 43m. As microscopic angular inclusions. Twinning: Twin lamellae noted in polished section. Physical Properties: Hardness = ∼5 VHN = n.d. D(meas.) = 5.42 D(calc.) = 5.267 Optical Properties: Opaque to translucent. Color: Gray; in polished section, resembles tetrahedrite without the olive-brown or greenish blue hues. Optical Class: Isotropic. n = ∼2.5 R: n.d. Cell Data: Space Group: F 43m. a = 5.667 Z = 4 X-ray Powder Pattern: Synthetic. 3.273 (100), 2.003 (70), 1.707 (44), 1.1561 (15), 1.299 (13), 1.416 (9), 1.0901 (8) Chemistry: (1) (2) Zn 40.30 45.29 Hg 7.04 Se 54.95 54.71 Total 102.29 100.00 (1) Santa Brigida mine, Argentina; by electron microprobe, corresponds to (Zn0.92Hg0.05)Σ=0.97Se1.03. (2) ZnSe. Mineral Group: Sphalerite group. Occurrence: Included in linnaeite (Shinkolobwe, Congo); intermixed with other selenides (Santa Brigida mine, Argentina). Association: Pyrite, linnaeite, clausthalite, selenian vaesite, molybdenite, dolomite (Shinkolobwe, Congo); tiemannite, clausthalite, eucairite, umangite, klockmannite (Santa Brigida mine, Argentina). Distribution: From Shinkolobwe, Katanga Province, Congo (Shaba Province, Zaire) [TL]. In the Santa Brigida mine, La Rioja Province, Argentina. From Tilkerode, Harz Mountains, Germany. Name: Honors Hans Stille (1876–1966), German geologist. Type Material: n.d. References: (1) Ramdohr, P. (1956) Stilleit, ein neues Mineral, nat¨urliches Zinkselenid, von Shinkolobwe. Geotektonisches Symposium zu Ehren von Hans Stille, 481–483 (in German). (2) (1957) Amer. Mineral., 42, 584 (abs. ref. 1). (3) DeMontreuil, L.A. (1974) Occurrence of mercurian stilleite.
    [Show full text]