A Crash Course: DNS & BIND
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Oracle Berkeley DB Installation and Build Guide Release 18.1
Oracle Berkeley DB Installation and Build Guide Release 18.1 Library Version 18.1.32 Legal Notice Copyright © 2002 - 2019 Oracle and/or its affiliates. All rights reserved. This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited. The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing. Berkeley DB, and Sleepycat are trademarks or registered trademarks of Oracle. All rights to these marks are reserved. No third- party use is permitted without the express prior written consent of Oracle. Other names may be trademarks of their respective owners. If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable: U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. -
Unbound: a New Secure and High Performance Open Source DNS Server
New Open Source DNS Server Released Today Unbound – A Secure, High-Performance Alternative to BIND – Makes its Debut within Open Source Community Amsterdam, The Netherlands and Mountain View, CA – May 20, 2008 – Unbound – a new open source alternative to the BIND domain name system (DNS) server– makes its worldwide debut today with the worldwide public release of Unbound 1.0 at http://unbound.net. Released to open source developers by NLnet Labs, VeriSign, Inc. (NASDAQ: VRSN), Nominet, and Kirei, Unbound is a validating, recursive, and caching DNS server designed as a high- performance alternative for BIND (Berkeley Internet Name Domain). Unbound will be supported by NLnet Labs. An essential component of the Internet, the DNS ties domain names (such as www.verisign.com) to the IP addresses and other information that Web browsers need to access and interact with specific sites. Though it is unknown to the vast majority of Web users, DNS is at the heart of a range of Internet-based services beyond Web browsing, including email, messaging and Voice Over Internet Protocol (VOIP) telecommunications. Although BIND has been the de facto choice for DNS servers since the 1980s, a desire to seek an alternative server that excels in security, performance and ease of use prompted an effort to develop an open source DNS implementation. Unbound is the result of that effort. Mostly deployed by ISPs and enterprise users, Unbound will also be available for embedding in customer devices, such as dedicated DNS appliances and ADSL modems. By making Unbound code available to open source developers, its originators hope to enable rapid development of features that have not traditionally been associated with DNS. -
Stateless DNS
Technical Report KN{2014{DiSy{004 Distributed System Laboratory Stateless DNS Daniel Kaiser, Matthias Fratz, Marcel Waldvogel, Valentin Dietrich, Holger Strittmatter Distributed Systems Laboratory Department of Computer and Information Science University of Konstanz { Germany Konstanzer Online-Publikations-System (KOPS) URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-0-267760 Abstract. Several network applications, like service discovery, file dis- covery in P2P networks, distributed hash tables, and distributed caches, use or would benefit from distributed key value stores. The Domain Name System (DNS) is a key value store which has a huge infrastructure and is accessible from almost everywhere. Nevertheless storing information in this database makes it necessary to be authoritative for a domain or to be \registered" with a domain, e.g. via DynDNS, to be allowed to store and update resource records using nsupdate . Applications like the ones listed above would greatly benefit from a configurationless approach, giving users a much more convenient experience. In this report we describe a technique we call Stateless DNS, which allows to store data in the cache of the local DNS server. It works without any infrastructure updates; it just needs our very simple, configurationless echo DNS server that can parse special queries containing information desired to be stored, process this information, and generate DNS answers in a way that the DNS cache that was asked the special query will store the desired information. Because all this happens in the authority zone of our echo DNS server, we do not cause cache poisoning. Our tests show that Stateless DNS works with a huge number of public DNS servers. -
Internet Systems Consortium, Inc
BIND 9 Administrator Reference Manual I S C Copyright c 2004, 2005, 2006, 2007, 2008, 2009, 2010 Internet Systems Consortium, Inc. (”ISC”) Copyright c 2000, 2001, 2002, 2003 Internet Software Consortium. Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies. THE SOFTWARE IS PROVIDED ”AS IS” AND ISC DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL ISC BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 2 Contents 1 Introduction 9 1.1 Scope of Document . 9 1.2 Organization of This Document . 9 1.3 Conventions Used in This Document . 9 1.4 The Domain Name System (DNS) . 10 1.4.1 DNS Fundamentals . 10 1.4.2 Domains and Domain Names . 10 1.4.3 Zones . 10 1.4.4 Authoritative Name Servers . 11 1.4.4.1 The Primary Master . 11 1.4.4.2 Slave Servers . 11 1.4.4.3 Stealth Servers . 11 1.4.5 Caching Name Servers . 12 1.4.5.1 Forwarding . 12 1.4.6 Name Servers in Multiple Roles . 12 2 BIND Resource Requirements 13 2.1 Hardware requirements . 13 2.2 CPU Requirements . 13 2.3 Memory Requirements . -
Bind 9 Linux 3.19, Microsoft Windows Server 2008 Integration Guide: Bind 9
Integration Guide Bind 9 Linux 3.19, Microsoft Windows Server 2008 Integration Guide: Bind 9 Imprint copyright 2016 Utimaco IS GmbH Germanusstrasse 4 D-52080 Aachen Germany phone +49 (0)241 / 1696-200 fax +49 (0)241 / 1696-199 web http://hsm.utimaco.com email [email protected] document version 1.2.1 date January 2016 author System Engineering HSM document no. SGCS_IG_BIND9 all rights reserved No part of this documentation may be reproduced in any form (printing, photocopy or according to any other process) without the written approval of Utimaco IS GmbH or be processed, reproduced or distributed using electronic systems. Utimaco IS GmbH reserves the right to modify or amend the documentation at any time without prior notice. Utimaco IS GmbH assumes no liability for typographical errors and damages incurred due to them. All trademarks and registered trademarks are the property of their respective owners. Contents 1 Introduction 4 1.1 Concepts ............................................. 4 2 Requirements 5 2.1 Supported Operating Systems ................................ 5 3 Installation 6 3.1 Install CryptoServer Hardware ................................. 6 3.2 Install CryptoServer Software ................................. 6 4 Procedures 7 4.1 Configure PKCS#11 Environment ............................... 7 4.1.1 Linux ........................................... 7 4.1.2 Microsoft Windows .................................. 7 4.1.3 Adjust Configuration File ............................... 7 4.2 Test PKCS#11 Environment .................................. 8 4.3 Patch and Build OpenSSL ................................... 9 4.3.1 Linux ........................................... 9 4.3.2 Microsoft Windows .................................. 10 4.4 Install BIND Domain Name Server .............................. 12 4.4.1 Linux ........................................... 12 4.4.2 Microsoft Windows .................................. 12 5 Generate Keys and Sign a Domain Zone 14 5.1 ReSigning Domain Zones .................................. -
Getting Started with Berkeley DB Java Edition
Oracle Berkeley DB, Java Edition Getting Started with Berkeley DB Java Edition 12c Release 2 Library Version 12.2.7.5 Legal Notice Copyright © 2002 - 2017 Oracle and/or its affiliates. All rights reserved. This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited. The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing. Berkeley DB, Berkeley DB Java Edition and Sleepycat are trademarks or registered trademarks of Oracle. All rights to these marks are reserved. No third-party use is permitted without the express prior written consent of Oracle. Other names may be trademarks of their respective owners. If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable: U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. -
Analysis of DNS Resolver Performance Measurements Author
Master in System and Network Engineering Analysis of DNS Resolver Performance Measurements Supervisors: Author: Yuri Schaeffer Hamza Boulakhrif [email protected] [email protected] Willem Toorop [email protected] July 13, 2015 Abstract The Domain Name System (DNS) is an essential building block of the Internet. Applica- tions depend on it in order to operate properly. Therefore DNS resolvers are required to perform well, and do whatever they can to provide an answer to a query. In this paper a methodology is devised to measure the performance of the Unbound, BIND, and PowerDNS resolvers. Measurements of these resolvers is required to be objective and not biased. Analysis is conducted on these performance measurements, where the implementations are compared to each other. Corner cases have also been identified and analysed. Acknowledgement I would like to thank NLnet Labs for providing this interesting Research Project. Also the support they provided throughout this project is really appreciated. Especially Willem Toorop and Yuri Schaeffer who answered all of my questions and guided me through this project. Thanks go also to Wouter Wijngaards who answered my questions related to DNS resolvers. The performed measurements during this project were carried out from the SNE lab, at the University of Amsterdam. I would also like to thank Harm Dermois for providing his server in the lab to perform these measurements. Special thanks also go to the SNE staff for their support and guidance. This does not only concern this project but the entire study. Hamza Boulakhrif 1 Contents 1 Introduction 3 1.1 Related Work . .3 1.2 Research Questions . -
Working with Oracle® Solaris 11.4 Directory and Naming Services: LDAP
® Working With Oracle Solaris 11.4 Directory and Naming Services: LDAP Part No: E61012 November 2020 Working With Oracle Solaris 11.4 Directory and Naming Services: LDAP Part No: E61012 Copyright © 2002, 2020, Oracle and/or its affiliates. License Restrictions Warranty/Consequential Damages Disclaimer This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited. Warranty Disclaimer The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing. Restricted Rights Notice If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable: U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any programs embedded, installed or activated on delivered hardware, and modifications of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end users -
BIND 9 the Past, the Present and the Future Ondřej Surý @ ISC FOSDEM 2018, Brussels BIND 9.0: the Past
BIND 9 The Past, The Present and The Future Ondřej Surý @ ISC FOSDEM 2018, Brussels BIND 9.0: The Past • First released in 2000 • Other things from 2000: • gcc 2.95.2 • Linux kernel 2.4.0 • GNOME 1.2 • Qt 2.0 • Window 2000 • First camera phone • Playstation 2 launched • New century started (only in pop- culture and US) Photo by Jacob Wixom on Unsplash BIND 9 Past Releases BIND 9.12: The Present • NSEC Aggressive Use • Serve Stale (TTL Stretching) • Response Policy Interface • Major Refactoring [1] • Speedup factor: 1.25-6 • CDS/CDNSKEY tools • EDDSA Support (when available in OpenSSL) 1. https://www.isc.org/blogs/evan-hunt-presented-the-bind-9-12-refactoring-at-dns-oarc/ Photo by Robert Zunikoff on Unsplash BIND 9: The Future • Open Development • Faster Release Cycle • Reduce Supported Platforms • New Features • More Refactoring Photo by Tom Barrett on Unsplash Open Development • Open (By Default) Issue Tracker • Public Merge Requests • Public Wiki • Public Continuous Integration • (Future) Public Web Forum to discuss BIND and DNS Photo by Roman Kraft on Unsplash ISC GitLab • Work In Progress • Self-hosted Instance • https://gitlab.isc.org/isc-projects/bind9 Faster Release Cycle • Odd Numbers — Development Release • 9.13.x, 9.15.x, 9.17.x • Releases as we go • Best Effort Support • Even Numbers — Stable Release • When Development Release stabilise • 9.13.<last> → 9.14.0 • Supported until next Stable Release = ~ 1 year • Every Second Stable Release — Extended Support Version • Supported until next ESV Release with overlap = 4 years BIND -
Writing Exploit-Resistant Code with Openbsd Lawrence Teo Lteo Openbsd.Org @Lteo
Writing Exploit-Resistant Code with OpenBSD Lawrence Teo lteo openbsd.org @lteo Slides and references at: https://lteo.net/carolinacon15 CarolinaCon 15 - Charlotte, NC - April 27, 2019 A question Innovation’s Black Hole Security vulnerabilities Image Credit: EHT Collaboration https://www.eso.org/public/images/eso1907a/ What is OpenBSD? • Free, multi-platform UNIX-liKe operating system • Founded by Theo de Raadt in 1995 • Secure by default • A research operating system • Two releases per year • You’re very liKely using OpenBSD code everyday • OpenSSH • LibreSSL • tmux • More: openbsd.org/innovations.html • Coolest mascot ever whoami • OpenBSD developer since 2012 • Primarily areas related to networking • PF, networK stacK, libpcap, tcpdump, etc. • Userland stuff, ports, man pages, etc • Co-founder, Calyptix Security • Shipping thousands of OpenBSD-based firewalls from Charlotte since 2006! • Ph.D. from UNC Charlotte (2006) • Research area: Info sharing for intrusion detection Auditing Software vulnerabilities How OpenBSD attacks the software vulnerability problem (my view) Auditing Exploit Software Mitigation vulnerabilities Techniques How OpenBSD attacks the software vulnerability problem (my view) Auditing Exploit Software Mitigation vulnerabilities Techniques Rigorous Development Process How OpenBSD attacks the software vulnerability problem (my view) Licensing Auditing Exploit Software Mitigation vulnerabilities Techniques Rigorous Development Process How OpenBSD attacks the software vulnerability problem (my view) Licensing Education -
Study of Packet Level UDP Performance of NAT44, NAT64 and Ipv6 Using Iperf in the Context of Ipv6 Migration
Study of packet level UDP performance of NAT44, NAT64 and IPv6 using iperf in the context of IPv6 migration Vitruvius John D. Barayuga William Emmanuel S. Yu Institute of Computing Studies Department of Information Systems and Computer Science Ilocos Sur Polytechnic State College Ateneo de Manila Univeristy Santa Maria, Ilocos Sur, Philippines Quezon City [email protected] [email protected] Abstract— The Internet Assigned Number Authority (IANA) The initial design specification did not take into account the allocated the last of the available /8's of the IPv4 address space to need for the protocol to handle video-on-demand services, or the Regional Internet Registries (RIR's) on February 2011. It other types of large scale data, also with the advent of mobile could not be denied that IPv6 is the Internet of the next communications, set top boxes that have internet access taking generation, however its utilization and implementation in a wide presence in the home, each device requires an IP address, each scale had brought hesitation to the users since it will take time device requires an IP address. and there are concerns that need to be explored in the future. However, the need for a new technology is not paramount; Hence, this paper will lead the way for the acceptance of Internet the current 30-year-old technology has been modified to Protocol version 6 (IPv6) migration in the Philippines using a coincide with new ideas and ways of working. For a similar Network Address Translation (NAT) that there is an sustainable network to be developed and evolve over the next apparent means to be taken into consideration and NAT IPv6 to IPv4 (NAT64) can be a good choice for computer networks with few years a seamless migration over to IPv6 needs to be made. -
Fortios™ Handbook - Ipv6
IPv6 FortiOS™ Handbook - IPv6 5.6.3 FORTINET DOCUMENT LIBRARY http://docs.fortinet.com FORTINET VIDEO GUIDE http://video.fortinet.com FORTINET BLOG https://blog.fortinet.com CUSTOMER SERVICE & SUPPORT https://support.fortinet.com http://cookbook.fortinet.com/how-to-work-with-fortinet-support/ FORTIGATE COOKBOOK http://cookbook.fortinet.com FORTINET TRAINING SERVICES http://www.fortinet.com/training FORTIGUARD CENTER http://www.fortiguard.com FORTICAST http://forticast.fortinet.com END USER LICENSE AGREEMENT http://www.fortinet.com/doc/legal/EULA.pdf FORTINET PRIVACY POLICY https://www.fortinet.com/corporate/about-us/privacy.html FEEDBACK Email: [email protected] Wednesday, January 24, 2018 FortiOS™ Handbook - IPv6 01-560-112805-20180124 TABLE OF CONTENTS Change Log 5 Introduction 6 IPv6 packet structure 7 Jumbograms and jumbo payloads 7 Fragmentation and reassembly 7 Benefits of IPv6 7 What's new for IPv6 in FortiOS 5.6 8 IPv6 (5.6.3) 8 IPv6 RADIUS support (402437, 439773) 8 Added support for IPv6 Fortisandbox (424290) (447153) 8 IPv6 captive portal support (435435) 8 FortiGate can reply to an anycast probe from the interface’s unicast address (308872) 8 Secure Neighbor Discovery (355946) 8 Add multicast-PMTU to allow FGT to send ICMPv6 Too Big Message (373396) 10 IPv6 Features 11 IPv6 policies 11 IPv6 policy routing 12 IPv6 security policies 13 IPv6 explicit web proxy 14 VIP64 15 IPv6 Network Address Translation 20 NAT64 and DNS64 (DNS proxy) 20 NAT66 23 NAT64 and NAT66 session failover 25 NAT46 25 ICMPv6 26 ICMPv6 Types and Codes