Robocup a Challenge Problem for Artificial Intelligence

Total Page:16

File Type:pdf, Size:1020Kb

Robocup a Challenge Problem for Artificial Intelligence RoboCup A Challenge Problem for Artificial Intelligence Michail G. Lagoudakis Intelligent Systems Laboratory Department of Electronic and Computer Engineering Technical University of Crete Chania, Greece Democritus Summer School 2010 July 2010, Athens, Greece RoboCup: A Challenge Problem for Artificial Intelligence Sunday 17 July 2050 Spain vs Robots Soccer City Stadium Summer School 2010 Michail G. Lagoudakis Page 2 RoboCup: A Challenge Problem for Artificial Intelligence Humans vs. Robots 2010 Summer School 2010 Michail G. Lagoudakis Page 3 RoboCup: A Challenge Problem for Artificial Intelligence Where do we stand today? RoboCup 2010 Humanoid KidSize League Final (Dribblers vs. Fumanoids) Summer School 2010 Michail G. Lagoudakis Page 4 RoboCup: A Challenge Problem for Artificial Intelligence Where do we stand today? RoboCup 2010 Humanoid TeenSize League Final (Nimbro vs. CIT Brains) Summer School 2010 Michail G. Lagoudakis Page 5 RoboCup: A Challenge Problem for Artificial Intelligence Talk Outline RoboCup The Aldebaran Nao Robot Standard Platform League Team Kouretes Kouretes Research Summer School 2010 Michail G. Lagoudakis Page 6 RoboCup Robot Champions! RoboCup: A Challenge Problem for Artificial Intelligence RoboCup RoboCup – international robotic soccer world cup – 1994: idea conceived by Hiroaki Kitano – today: RoboCup federation [ www.robocup.org ] Vision – “By the year 2050, to develop a team of fully autonomous humanoid robots that can win against the human world soccer champions ” – ambitious endeavor similar to sending a man to the moon – "One small step for a ROBOT, one giant leap for mankind." TM Extensions – RoboRescue: search and rescue missions – RoboCup Junior, RoboCup@home, RoboDance Summer School 2010 Michail G. Lagoudakis Page 8 RoboCup: A Challenge Problem for Artificial Intelligence RoboCup Divisions Summer School 2010 Michail G. Lagoudakis Page 9 RoboCup: A Challenge Problem for Artificial Intelligence RoboCup Soccer Leagues Simulation League – 11 vs. 11 independent software agents Small-Size Robot League – 5 vs. 5 small robots up to 18 cm in diameter Middle-Size Robot League – 4 vs. 4 robots up to 50 cm in diameter Standard Platform League – 3 vs. 3 Aldebaran Nao robots – Past: 5 vs. 5 Sony Aibo robots Humanoid Robot League – humanoid robots (kid-size, teen-size, adult) Summer School 2010 Michail G. Lagoudakis Page 10 RoboCup: A Challenge Problem for Artificial Intelligence Why? Landmark project – a project with a very ambitious goal – requires a series of technological breakthrough Examples – it took about 50 years … – … from the first flight of the Wright brothers … – … to the landing of the man on the moon – it took about 50 years … – … from the invention of the first digital computer … – … to win the human world champion in Chess Question – will robots be able to play soccer like Diego Forlan in 50 years? Summer School 2010 Michail G. Lagoudakis Page 11 RoboCup: A Challenge Problem for Artificial Intelligence More Questions Why humanoids? – the world is largely engineered for humans – humanoid robots can share the same environment … – … but, they first need to acquire the same skills! – huge social and industrial impact Why soccer? – everybody in the world knows the problem/task! – it integrates all areas of Artificial Intelligence Chess RoboCup – fully observable – partially observable – causal, static, discrete time – stochastic, dynamic, continuous time – single-agent, alternating – multi-agent, simultaneous Summer School 2010 Michail G. Lagoudakis Page 12 RoboCup: A Challenge Problem for Artificial Intelligence The Challenges of RoboCup What skills do I need to play soccer? – can I see clearly? [ machine vision ] – what do I see and where? [ object and event recognition ] – where am I right now? [ self-localization ] – what do I do next? [ decision making and planning ] – how can I help my teammates? [ multi-agent coordination ] – how can I move effectively? [ motion control ] – am I sure about what is going on? [ uncertainty ] – do I have to do everything? [ integrated solution ] – can I take my time? [ real-time system ] Applicability – autonomous teams of robots in dynamic environments – search and rescue, planetary exploration, surveillance, ... Summer School 2010 Michail G. Lagoudakis Page 13 RoboCup: A Challenge Problem for Artificial Intelligence RoboCup Workflow [Kitano and Asada, 1998] Summer School 2010 Michail G. Lagoudakis Page 14 RoboCup: A Challenge Problem for Artificial Intelligence RoboCup Participation Event Place Teams Countries RoboCup 2010 Singapore, Singapore 400 40 RoboCup 2009 Graz, Austria 350 39 RoboCup 2008 Suzhou, China 397 41 RoboCup 2007 Atlanta, USA 321 33 RoboCup 2006 Bremen, Germany 440 35 RoboCup 2005 Osaka, Japan 330 31 RoboCup 2004 Lisbon, Portugal 345 37 RoboCup 2003 Padua, Italy 238 35 RoboCup 2002 Fukuoka/Busan, Japan 188 29 RoboCup 2001 Seattle, USA 141 22 RoboCup 2000 Melbourne, Australia 110 19 RoboCup 1999 Stockholm, Sweden 85 23 RoboCup 1998 Paris, France 63 19 RoboCup 1997 Nagoya, Japan 38 11 Summer School 2010 Michail G. Lagoudakis Page 15 RoboCup: A Challenge Problem for Artificial Intelligence Local RoboCup Events Japan Open – since 1998 German Open – since 2001 US Open – since 2003 Med Open – since 2010 Other Opens – Iran, China, Brazilian, Latin American, Dutch, Spanish, ... Summer School 2010 Michail G. Lagoudakis Page 16 RoboCup: A Challenge Problem for Artificial Intelligence RoboCup Symposium Symposium – main forum for presenting and discussing scientific contributions – during or after the competition – invited talks – oral and poster presentations Proceedings – Springer LNAI series – Robot Soccer World Cup xxx e-Proceedings – team description papers Summer School 2010 Michail G. Lagoudakis Page 17 RoboCup: A Challenge Problem for Artificial Intelligence RoboCup and Industry Technology transfer – develop and test in RoboCup – apply to real-world problems From the fields of RoboCup … – middle-size league – Minho team from Portugal – omni-directional locomotion … to a commercial product – omni-directional wheelchair – SAR company, Portugal – great maneuverability Summer School 2010 Michail G. Lagoudakis Page 18 The Aldebaran Nao Robot Your humanoid companion! RoboCup: A Challenge Problem for Artificial Intelligence Hello! My name is Nao! Summer School 2010 Michail G. Lagoudakis Page 20 RoboCup: A Challenge Problem for Artificial Intelligence The Story of Nao Concept – low-cost robot for education, research, and entertainment – a replacement robot platform for the Sony Aibo robot Manufacturer – Aldebaran Robotics, Paris, France – small company with a team of 80 people – founder and CEO: Bruno Maisonnier Models – special limited edition for RoboCup (v.1, v.2, v.3, v.3+) – academics edition in the market since 2009 at ~10,000.-€ – full market release in 2010 at ~12,000.-€ Summer School 2010 Michail G. Lagoudakis Page 21 RoboCup: A Challenge Problem for Artificial Intelligence The Evolution of Nao AL-01/02/03 2005 AL-04 2006 AL-05.a 2007 AL-05.b 2007 RoboCup V2 2008 RoboCup V3 2009 RoboCup V3+ 2010 Summer School 2010 Michail G. Lagoudakis Page 22 RoboCup: A Challenge Problem for Artificial Intelligence Nao Parts Summer School 2010 Michail G. Lagoudakis Page 23 RoboCup: A Challenge Problem for Artificial Intelligence Nao Hardware Computer – x86 AMD Geode 500MHz processor – 256 MB SDRAM memory, 2 Gb Flash memory – Embedded Linux (32 bit x86 ELF) operating system – 802.11g wireless LAN and ethernet LAN – speech synthesizer Electronics – chest board for controlling devices (Arm9, 10 ms cycle) – USB and I2C links – 6-cell, Li-Ion, 21.6V battery Specifications – weight: 4.3 kg, height: 58 cm Summer School 2010 Michail G. Lagoudakis Page 24 RoboCup: A Challenge Problem for Artificial Intelligence Nao Sensors External – 2 color CCD cameras (640x480, 30 fps, 58°) – 4 ultrasonic sensors (0.15 m – 0.70 m) – pressure sensors (4 FSRs on each foot) – bumper sensors (1 on each foot) – auditory sensors (2 microphones) Proprioceptive – encoders on each joint (12 bit, 0.1 ο precision) – inertial unit (3 accelerometers, 2 gyroscopes) – battery level sensor Summer School 2010 Michail G. Lagoudakis Page 25 RoboCup: A Challenge Problem for Artificial Intelligence Nao Actuators Motion – head (2 degrees of freedom) – 2 arms (4 degrees of freedom) – 2 legs (5 degrees of freedom) – pelvis (1 degree of freedom) – a total of 21 degrees of freedom Light and Sound – light (RGB LEDs in the eyes, chest, feet) – light (10x2 Blue LEDs in the ears) – sound (2 speakers, 2W) Summer School 2010 Michail G. Lagoudakis Page 26 Standard Platform League Where software makes the difference! RoboCup: A Challenge Problem for Artificial Intelligence Standard Platform League Summer School 2010 Michail G. Lagoudakis Page 28 RoboCup: A Challenge Problem for Artificial Intelligence Standard Platform League Concept – all participating teams use the same robotic platform – robots with identical hardware (computer, sensors, actuators) – focus is placed exclusively on software development – promotes the development of effective algorithms Platforms – 1997-2008: Sony Aibo quadruped robots – 2008-today: Aldebaran Nao biped robots History – four-legged league (4LL) [www.tzi.de/legged] – standard platform league (SPL) [www.tzi.de/spl] Summer School 2010 Michail G. Lagoudakis Page 29 RoboCup: A Challenge Problem for Artificial Intelligence 4LL Moments German Open 2007: Impossibles (blue) vs. Kouretes (red) Summer School 2010 Michail G. Lagoudakis Page
Recommended publications
  • Robocup Junior 2000
    Children Learning From Team Robotics - RoboCup Junior 2000 Educational Research Report (short version, without appendices) Elizabeth I. Sklar, Boston College, USA Jeffrey H. Johnson, The Open University, UK Henrik Hautop Lund, University of Southern Denmark, Denmark 5 December 2000 Keywords: Robotics, Children, Education, Curriculum, Design, Technology, Science, Mathematics, RoboCup, RoboCup Jr, RoboCup Junior, RoboFesta Abstract RoboCup Junior (Jr) is a division of the international RoboCup initiative. It involves children participating in various competitive and cooperative robot challenges. Experience at three international venues shows that these challenges generate great excitement and interest from both children and adults. We question whether there is any educational value in these challenges, and this report presents results of a study we conducted in conjunction with the third international event – RoboCup Jr 2000. Our tentative conclusion is that there is enormous educational value for children involved in team robotics, both academically and in terms of their personal development. 1 Introduction It seems self-evident that we must educate our children to understand the technological world in which we live. One technology that is becoming widely applied across many domains and in many subtle forms is robotics. Most of our machines and computer systems are getting “smarter”, and as they do, the distinction between them and the robots of science fiction lessens, in the eyes of the observer. Indeed it may be difficult for an outside observer to distinguish the real mechanisms engaged for controlling robots, the materials used, etc. from fantastic images already implanted in his mind. This has been described as the frame-of-reference problem in autonomous agent design [Pfeifer and Scheier, 1999, pp.
    [Show full text]
  • Development of an Open Humanoid Robot Platform for Research and Autonomous Soccer Playing
    Development of an Open Humanoid Robot Platform for Research and Autonomous Soccer Playing Karl J. Muecke and Dennis W. Hong RoMeLa: Robotics and Mechanisms Lab Virginia Tech Blacksburg, VA 24061 [email protected], [email protected] Abstract This paper describes the development of a fully autonomous humanoid robot for locomotion research and as the first US entry in to RoboCup. DARwIn (Dynamic Anthropomorphic Robot with Intelligence) is a humanoid robot capable of bipedal walking and performing human like motions. As the years have progressed, DARwIn has evolved from a concept to a sophisticated robot platform. DARwIn 0 was a feasibility study that investigated the possibility of making a humanoid robot walk. Its successor, DARwIn I, was a design study that investigated how to create a humanoid robot with human proportions, range of motion, and kinematic structure. DARwIn IIa built on the name ªhumanoidº by adding autonomy. DARwIn IIb improved on its predecessor by adding more powerful actuators and modular computing components. Finally, DARwIn III is designed to take the best of all the designs and incorporate the robot's most advanced motion control yet. Introduction Dynamic Anthropomorphic Robot with Intelligence (DARwIn), a humanoid robot, is a sophisticated hardware platform used for studying bipedal gaits that has evolved over time. Five versions of DARwIn have been developed, each an improvement on its predecessor. The first version, DARwIn 0 (Figure 1a), was used as a design study to determine the feasibility of creating a humanoid robot abd for actuator evaluation. The second version, DARwIn I (Figure 1b), used improved gaits and software.
    [Show full text]
  • Robocupjunior 2021 Soccer Simulation Rules – Final
    RoboCupJunior Soccer Simulation Rules 2021 Soccer TECHNICAL CommitTEE 2020 AND 2021: Soccer TECHNICAL CommitTEE 2019: GeorGIA Gallant USA TAIRO NomurA Japan Javier E. Delgado Moreno Mexico James Riley AustrALIA Hikaru SugiurA Japan Mikail S. ArANI Canada Marco Dankel Germany Javier E. Delgado Moreno Mexico Felipe Nascimento Martins Netherlands Felipe Nascimento Martins Netherlands Marek ˇSuppa Slovakia (CHAIR) Marek ˇSuppa Slovakia (CHAIR) These ARE THE OffiCIAL Soccer Simulation RULES FOR . They ARE RELEASED BY THE THE RoboCupJunior 2021 RoboCupJunior Soccer TECHNICAL CommitTEE (TC). The English VERSION OF THESE RULES HAS PRIORITY OVER ANY TRanslations. TEAMS ARE ADVISED TO CHECK THE RoboCupJunior Soccer SITE HTtps://junior.forum.robocup.org/ FOR OC (Or- GANIZATIONAL Committee) PROCEDURES AND REQUIREMENTS FOR THE INTERNATIONAL competition. Each TEAM IS RESPONSIBLE FOR VERIFYING THE LATEST VERSION OF THE RULES PRIOR TO competition. 1 Instructions ON THE WEBOTS environment, ON HOW TO PROGRAM controllers, AS WELL AS DEMOS AND TUTORIALS CAN BE FOUND ONLINE AT HTtps://robocupjuniortc.github.io/rcj-soccer-sim/. TWO TEAMS OF THREE ROBOTS IN A SIMULATED RoboCupJunior Soccer match. Figure 1 This IS THE fiNAL VERSION OF THE RULES FOR THE RCJ Soccer Simulation Challenge 2021. This VERSION DIFFERS ONLY SLIGHTLY FROM THE DRAFTS PUBLISHED EARLIER THIS year. 1 The CURRENT VERSION OF THESE RULES CAN BE FOUND AT HTtps://robocupjuniortc.github.io/soccer-rules-simulation/rules.htmlIN HTML FORM AND AT HTtps://robocupjuniortc.github.io/soccer-rules-simulation/rules.pdf IN PDF form. Page OF Final Rules AS OF April 28, 2021 1 9 Preface In THE RoboCupJunior Soccer Simulation challenge, TEAMS OF YOUNG ENGINEERS PROGRAM THREE FULLY au- TONOMOUS DIGITAL ROBOTS TO COMPETE AGAINST ANOTHER TEAM IN SIMULATED matches.
    [Show full text]
  • 2018 RCJ Soccer Rules
    RoboCupJunior Soccer - Rules 2018 RoboCupJunior Soccer Technical Committee RoboCupJunior General Chairs Marek Šuppa (Slovakia) CHAIR Irene Kipnis (Israel) CHAIR Felipe Nascimento (The Netherlands) Roberto Bonilla (Mexico) James Riley (Australia) Nerea de la Riva (Sweden) Javier Delgado (México) Michael Sloan Warren (USA) Trustees representing RoboCupJunior Sarit Salzman (Israel) Amy Eguchi (USA)* Fernando Ribeiro (Portugal) Gerard Elias (Australia) * RoboCup Federation Vice President representing RCJ Gerald Steinbauer (Austria) These are the official Soccer rules for RoboCupJunior 2018. They are released by the RoboCupJunior Soccer Technical Committee. The English version of these rules has priority over any translations. Items in red represent significant rules changes introduced this year. Teams are advised to check the RoboCupJunior Soccer site http://junior.robocup.org/soccer/ for OC (Organizational Committee) procedures and requirements for the international competition. Each team is responsible for verifying the latest version of the rules prior to competition. Preface In the RoboCupJunior soccer challenge, teams of young engineers design, build, and program two fully autonomous mobile robots to compete against another team in matches. The robots must detect a ball and score into a color-coded goal on a special field that resembles a human soccer field. Figure 1: Two teams of two robots with an orange ball on a RoboCupJunior Soccer field. Final Rules as of April 23rd, 2018 Page 1 of 40 To be successful, participants must demonstrate skill in programming, robotics, electronics and mechatronics. Teams are also expected to contribute to the advancement of the community as a whole by sharing their discoveries with other participants and by engaging in good sportsman- ship,regardless of culture, age or result in the competition.
    [Show full text]
  • The French Robocup Team
    RoboCup-99 Team Descriptions 0 NIL League, Team French-Team, pages 0–0 http://www.ep.liu.se/ea/cis/1999/NIL/2/ The French Robocup Team French-Team Kamel BOUCHEFRA, Vincent HUGEL, Patrick BONNIN, Pierre BLAZEVIC, Dominique DUHAUT DD: Paris 6 University PB: Versailles Saint Quentin En Yvelines University VH: Laboratoire de Paris KB, PB: Paris 13 University Abstract. This paper presents the software components designed by the LRP team and which are intended to make the Sony Pet Robots behave as powerful organized soccer players. These components comprise a locomo- tion module, a vision module and a strategy module. The article explains the personal background of the authors, this includes the experience from earlier projects. The key words of this work are the following : Pet Robots, auton- omy, perception, concurrency, strategy. The French RoboCup Team is composed of Dominique DUHAUT, Pierre BLAZEVIC, Patrick BONNIN, Vincent HUGEL and Kamel BOUCHEFRA. Pierre BLAZEVIC and Vincent HUGEL are both in charge of the robotics part of the project. They are the roboticians of our team. Pierre and Vincent have been involved in many competitions and exhibitions, among which the last RoboCup held in july 1998 in Paris. Pierre BLAZEVIC is an Associate Professor at Versailles Saint Quentin En Yvelines University. Vincent HUGEL is a PhD student at LRP (Laboratoire de Paris). Patrick BONNIN is in charge of the vision system. He has been involved in the last RoboCup held in july 1998 in Paris. Patrick BONNIN is an Associate Professor at Paris 13 university. Kamel BOUCHEFRA is a new member in the team, he is in charge of the strategy level within the subject.
    [Show full text]
  • Instructions to Authors for A4: 21
    Growing up with robots Manuel F. M. Costa *, José F. Fernandes ** *Universidade do Minho, Departamento de Física 4710-057 Braga, Portugal [email protected] **Escola Profissional Cenatex, Guimarães, Portugal Abstract. The ability to understand interact reality every day closer to our lives. The idea of use and control robots and automated machines using the construction of robots or automated or tools is becoming a major need. This is a systems as a pedagogical tool [7] emerged topic rather appealing to our young students. On naturally and is proving to be very effective in the other hand this is a topic involving many science and technology education in different age different subjects of science and technology that or development levels. should be studied in an integrated and The process of conceptualisation design and interrelated way. In this communication we will construction of a robot leads the students to present our experience in implementing teams of positive cognitive development. The students as school students that develop their own robots to to, both, on one hand understand a real dynamic play cooperatively in robotics competitions. The object, mechanism or living being in their pedagogical strategy employed will be presented complexity, and, on the other hand to reproduce as well as the basic characteristics of the robots and integrate those concepts and behaviours in a to be built, the competition rules and the simplified, as needed or required, but effective outcomes of the projects developed in different artificial mechanism. More than a mere schools with students 10 to 18 years old. mechanism it may be considered to be an artificial organism.
    [Show full text]
  • Robocupjunior Rescue Line - Rules 2021 (Draft 01)
    RoboCupJunior Rescue Line - Rules 2021 (Draft 01) RoboCupJunior Rescue Technical Committee 2020 Chair Kai Junge UK Naomi Chikuma Japan Tom Linnemann Germany Ryo Unemoto Japan Elizabeth Mabrey USA Tatiana Pazelli Brazil Alexis Cosette Arizaga Mexico RoboCupJunior General Chairs 2020 Trustees representing RoboCupJunior Chair Nerea de la Riva Iriepa Sweden Amy Eguchi USA Julia Maurer USA Fernando Ribeiro Portugal Shoko Niwa Japan Gerard Elias Australia Gerald Steinbauer Austria Official Resources RoboCupJunior Official Site RoboCupJunior Official Forum https://junior.robocup.org/ https://junior.forum.robocup.org/ Corrections and clarifications to the rules may be posted on the Forum in advance of updating this rule file. It is the responsibility of the teams to review the forum to have a complete vision of these rules. Last updated: 2020-07-14 Page 1 of 21 Before you read the rules Please read through the RoboCupJunior General Rules before proceeding on with these rules, as they are the premise for all rules. The English rules published by the RoboCupJunior Rescue Technical Committee are the only official rules for RoboCupJunior Rescue Line 2021. The translated versions that can be published by each regional committee are only reference information for non-English speakers to better understand the rules. It is the responsibility of the teams to have read and understood the official rules. Scenario The land is simply too dangerous for humans to reach the victims. Your team has been given a difficult task. The robot must be able to carry out a rescue mission in a fully autonomous mode with no human assistance. The robot must be durable and intelligent enough to navigate through treacherous terrain with hills, uneven land and rubble without getting stuck.
    [Show full text]
  • Search and Rescue CISC1003
    Search and Rescue CISC1003 https://www.youtube.com/watch?v=mz9sMor67IU https://www.israelrescuecoalition.org/israel-search-and-rescue-units/ Search and Rescue • Search and Rescue Robots Urban Search and Rescue • After major disasters/attacks, rescue teams face challenges: • Rescue teams work in dangerous and unknown environments • To save lives and to recover the damage. • Assessing the situation correctly plays a key role during these operations. http://www.technokontrol.com/en/products/elite-search-rescue.php Urban Search and Rescue • Success of search and rescue, recovery strategies require: • Reliable information, good organization and efficient use of resources. • Reliable information is hard to acquire when infrastructure (communications, roads, hospitals) damage is high. https://www.sciencedirect.com/science/article/pii/S1566253513000687 Disasters and Attacks • Earthquakes • Hurricanes • Tsunami • Terrorist Attacks Disasters and Attacks https://www.nbcnews.com/news/world/mexico-earthquake-death-toll-climbs-rescuers-race-find-survivors- rubble-n803301 Problems faced during rescue operations • Time constraints (limited time): • According to statistics, most of the victims were rescued during the first 72 hours after an earthquake. • Time may vary but response time is important in all types of disasters. • Hostile environment: • Disasters may initiate fires, building collapses and other incidents • May compromise the security of people in the area. http://fluidsurveys.com/fluidsurveys-v5-1-feature-formatting http://www.af.mil/News/Article-Display/Article/473345/airmen-soldiers-sharpen-search-and-rescue-skills-together/ Problems faced during rescue operations • Most of the decisions must be made with incomplete information. These may include: • Location of the victims • Reliability of existing Infrastructure: Roads, communication infrastructure etc.
    [Show full text]
  • Robocuppers! Attention! Your Technical Innovation Will Be Evaluated Prior to by Robocup Junior Rescue Organizing Committee the Start of the Field Competition
    ROBOCUP JUNIOR RESCUE Robocup Junior Rescue July 11, 2014 WELCOME! NEWSLETTER #1 OPEN TECHNICAL EVALUATION Welcome RoboCuppers! Attention! Your technical innovation will be evaluated prior to by RoboCup Junior Rescue Organizing Committee the start of the field competition. We will focus on it the first days starting on the setup day (July 20th) at Once again, it is an honor for us to share, released by the RCJ Rescue Technical the evening on the working area. with the best teams around the world, the Committee and have priority over any experience of the RoboCupJunior world cup translation. Do not forget to bring your robot, poster, and the engineering journal printed out. Be prepared to championship. This time we will meet in the If you have any question please contact them explain about your work! beautiful city of João Pessoa, Brazil. How through the International RCJ Community quickly the time passes since we had the Forum at http://www.rcjcommunity.org/ opportunity to see each other in our 2013 edition at Eindhoven, the Netherlands and Inspection for others this will be a great first experience. As stated in the RoboCupJunior Rescue 2014 The Organizing Committee have worked rules under the 2.4 Inspection section, all the hard in the contest to be a great source of teams have to comply with: knowledge and experience for each one of “2.4.5 All teams will need to email a you. Here you will have the opportunity to technical document containing the major list test the hard work carried out in recent of hardware and software components […]” RCJ 2014 Members months.
    [Show full text]
  • Rescue Simulation (Former Cospace) 2021 Rules – Final
    RoboCupJunior Simulation (former CoSpace) – Rules 2021 RoboCupJunior Rescue Technical Committee 2020 RoboCupJunior General Chairs Kai Junge (UK) CHAIR Nerea de la Riva (Sweden) CHAIR Naomi Chikuma (Japan) Julia Maurer (USA) Tom Linnemann (Germany) Shoko Niwa (Japan) Ryo Unemoto (Japan) Elizabeth Mabrey (USA) Trustees representing RoboCupJunior Tatiana Pazelli (Brazil) Amy Eguchi (USA) Alexis Cosette Arizaga (Mexico) Fernando Ribeiro (Portugal) Gerard Elias (Australia) Gerald Steinbauer (Austria) Please read through the RoboCupJunior General Rules before proceeding on with this rule, as it is the premise for all rules. These are the official rules for RoboCupJunior Rescue Simulation 2021. They are released by the RoboCupJunior Rescue Technical Committee (TC). The English rules have priority over any translations. Additions from the 2020 rules are highlighted by a "NEW" indicator in front of the section/subsection/subsubsection, dependent on the change. Grammatical corrections, rearrangements of rules, and minor clarifications will not be indicated. It is the responsibility of the teams to have read and understood the official rules. Summary of notable changes to the rules ● Removal of the Preliminary level. All of the individual competition will be performed identically to the former Advanced level. ● Removal of the use of real robots. ● Teams are not allowed to change their AI/program after submission for each round. Final Rules as of Sept 27th, 2020 Page 1 of 31 Preface In Rescue Simulation, teams have to develop and program appropriate strategies for virtual and autonomous robots to navigate through the virtual world to collect objects while competing with another team’s robot that is searching and collecting objects in the same virtual world.
    [Show full text]
  • Robocup Rescue 2016 Team Description Paper Romansa (South Korea)
    ROBOCUP RESCUE 2016 TDP COLLECTION 1 RoboCup Rescue 2016 Team Description Paper RoManSa (South Korea) Yi Taek Kim, Han Soul Kim, Su Yeon Lee, Hyeon Seok Lee, Dong Hoon Baek, Hyun Gon Kim, Tae Min Hwang and Ju Hoon Back (advisor) Info The RoboCup Rescue competition requires a lot of abilities Team Name: RoManSa which can overcome unknown environments. So, we used Team Institution: Kwang Woon University ‘Turtlebot’ open platform which was made by Yujin Robot Team Leader: Yi Taek Kim company in South Korea. First, we connected our robot to Team URL: None ‘Turtlebot’ electronically so that ROSA and ‘Turtlebot’ could operate together. In addition, we made our robot’s main driving part with four modules which make it possible to Abstract. To begin with, robot that we developed has separate each other easily. Second, we designed the free rubber track on both side. Sub-rubber tracks are designed to movement of six robot arm which can help operator to find help robot to easily go ramp terrain and hazardous victim. 6DOF manipulator was made up of eight ‘Dynamixel’ environments. In addition, installation of rubber sponge on which generates continuous torque (5.3Nm). Third, we used each rubber track increases friction which can help to run well. motor’s revolutions, depth camera (‘Kinect’) and LIDAR in Therefore, ROSA can pass the harsh environment and stairs order to implement SLAM (Simultaneous Localization and through enough motor’s torque and friction between robot and Mapping) for our robot. Lastly, our team used CCD camera ground. Besides, ROSA’s two middle rubber tracks are able to module upon 6DOF-arm to recognize QR code and victim easily separate into four parts, and these modules have advantages which can adjust size of robot in different disaster Therefore, most of all, we are going to participate in yellow, situations.
    [Show full text]
  • Playing Robotic Soccer Based on an Explicit World Model
    AI Magazine Volume 21 Number 1 (2000) (© AAAI) Articles The CS Freiburg Team Playing Robotic Soccer Based on an Explicit World Model Jens-Steffen Gutmann, Wolfgang Hatzack, Immanuel Herrmann, Bernhard Nebel, Frank Rittinger, Augustinus Topor, and Thilo Weigel I Robotic soccer is an ideal task to demonstrate new reacting on mostly uninterpreted sensor input techniques and explore new problems. Moreover, as in pure behavior-based (Werger et al. 1998) problems and solutions can easily be communicat- or reinforcement learning approaches (Suzuki ed because soccer is a well-known game. Our et al. 1998), soccer seems to be a game that has intention in building a robotic soccer team and a structure that requires more than just react- participating in RoboCup-98 was, first, to demon- ing on uninterpreted sensor input. Our claim strate the usefulness of the self-localization meth- ods we have developed. Second, we wanted to is justified by the fact that the two winning show that playing soccer based on an explicit teams in the simulation and the small-size world model is much more effective than other league in RoboCup-97 used this approach methods. Third, we intended to explore the prob- (Burkhard, Hannebauer, and Wendler 1998; lem of building and maintaining a global team Veloso et al. 1998). Further evidence for our world model. As has been demonstrated by the claim is the performance of our team at performance of our team, we were successful with RoboCup-98, which won the competition in the first two points. Moreover, robotic soccer gave the middle-size league.
    [Show full text]