Terrestrial Small Mammal Community Structure in an Anthropogenically-Altered Moist Semi-Deciduous Forest Zone of Ghana
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Review of the Hylomyscus Denniae Group (Rodentia: Muridae) in Eastern Africa, with Comments on the Generic Allocation of Epimys Endorobae Heller
PROCEEDINGS OF THE BIOLOGICAL SOCIETY OF WASHINGTON 119(2):293–325. 2006. Review of the Hylomyscus denniae group (Rodentia: Muridae) in eastern Africa, with comments on the generic allocation of Epimys endorobae Heller Michael D. Carleton, Julian C. Kerbis Peterhans, and William T. Stanley (MDC) Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560-0108, U.S.A., e-mail: [email protected]; (JKP) University College, Roosevelt University, Chicago, Illinois 60605, U.S.A.; Department of Zoology, Division of Mammals, The Field Museum of Natural History, Chicago, Illinois 60605, U.S.A., e-mail: [email protected]; (WTS) Department of Zoology, Division of Mammals, The Field Museum of Natural History, Chicago, Illinois 60605, U.S.A., e-mail: [email protected] Abstract.—The status and distribution of eastern African populations currently assigned to Hylomyscus denniae are reviewed based on morpho- logical and morphometric comparisons. Three species are considered valid, each confined largely to wet montane forest above 2000 meters: H. denniae (Thomas, 1906) proper from the Ruwenzori Mountains in the northern Albertine Rift (west-central Uganda and contiguous D. R. Congo); H. vulcanorum Lo¨nnberg & Gyldenstolpe, 1925 from mountains in the central Albertine Rift (southwestern Uganda, easternmost D. R. Congo, Rwanda, and Burundi); and H. endorobae (Heller, 1910) from mountains bounding the Gregory Rift Valley (west-central Kenya). Although endorobae has been interpreted as a small form of Praomys, additional data are presented that reinforce its membership within Hylomyscus and that clarify the status of Hylomyscus and Praomys as distinct genus-group taxa. The 12 species of Hylomyscus now currently recognized are provisionally arranged in six species groups (H. -
Checklist of the Mammals of Indonesia
CHECKLIST OF THE MAMMALS OF INDONESIA Scientific, English, Indonesia Name and Distribution Area Table in Indonesia Including CITES, IUCN and Indonesian Category for Conservation i ii CHECKLIST OF THE MAMMALS OF INDONESIA Scientific, English, Indonesia Name and Distribution Area Table in Indonesia Including CITES, IUCN and Indonesian Category for Conservation By Ibnu Maryanto Maharadatunkamsi Anang Setiawan Achmadi Sigit Wiantoro Eko Sulistyadi Masaaki Yoneda Agustinus Suyanto Jito Sugardjito RESEARCH CENTER FOR BIOLOGY INDONESIAN INSTITUTE OF SCIENCES (LIPI) iii © 2019 RESEARCH CENTER FOR BIOLOGY, INDONESIAN INSTITUTE OF SCIENCES (LIPI) Cataloging in Publication Data. CHECKLIST OF THE MAMMALS OF INDONESIA: Scientific, English, Indonesia Name and Distribution Area Table in Indonesia Including CITES, IUCN and Indonesian Category for Conservation/ Ibnu Maryanto, Maharadatunkamsi, Anang Setiawan Achmadi, Sigit Wiantoro, Eko Sulistyadi, Masaaki Yoneda, Agustinus Suyanto, & Jito Sugardjito. ix+ 66 pp; 21 x 29,7 cm ISBN: 978-979-579-108-9 1. Checklist of mammals 2. Indonesia Cover Desain : Eko Harsono Photo : I. Maryanto Third Edition : December 2019 Published by: RESEARCH CENTER FOR BIOLOGY, INDONESIAN INSTITUTE OF SCIENCES (LIPI). Jl Raya Jakarta-Bogor, Km 46, Cibinong, Bogor, Jawa Barat 16911 Telp: 021-87907604/87907636; Fax: 021-87907612 Email: [email protected] . iv PREFACE TO THIRD EDITION This book is a third edition of checklist of the Mammals of Indonesia. The new edition provides remarkable information in several ways compare to the first and second editions, the remarks column contain the abbreviation of the specific island distributions, synonym and specific location. Thus, in this edition we are also corrected the distribution of some species including some new additional species in accordance with the discovery of new species in Indonesia. -
The Beaver's Phylogenetic Lineage Illuminated by Retroposon Reads
www.nature.com/scientificreports OPEN The Beaver’s Phylogenetic Lineage Illuminated by Retroposon Reads Liliya Doronina1,*, Andreas Matzke1,*, Gennady Churakov1,2, Monika Stoll3, Andreas Huge3 & Jürgen Schmitz1 Received: 13 October 2016 Solving problematic phylogenetic relationships often requires high quality genome data. However, Accepted: 25 January 2017 for many organisms such data are still not available. Among rodents, the phylogenetic position of the Published: 03 March 2017 beaver has always attracted special interest. The arrangement of the beaver’s masseter (jaw-closer) muscle once suggested a strong affinity to some sciurid rodents (e.g., squirrels), placing them in the Sciuromorpha suborder. Modern molecular data, however, suggested a closer relationship of beaver to the representatives of the mouse-related clade, but significant data from virtually homoplasy- free markers (for example retroposon insertions) for the exact position of the beaver have not been available. We derived a gross genome assembly from deposited genomic Illumina paired-end reads and extracted thousands of potential phylogenetically informative retroposon markers using the new bioinformatics coordinate extractor fastCOEX, enabling us to evaluate different hypotheses for the phylogenetic position of the beaver. Comparative results provided significant support for a clear relationship between beavers (Castoridae) and kangaroo rat-related species (Geomyoidea) (p < 0.0015, six markers, no conflicting data) within a significantly supported mouse-related clade (including Myodonta, Anomaluromorpha, and Castorimorpha) (p < 0.0015, six markers, no conflicting data). Most of an organism’s phylogenetic history is fossilized in their heritable genomic material. Using data from genome sequencing projects, particularly informative regions of this material can be extracted in sufficient num- bers to resolve the deepest history of speciation. -
The Impact of Civil War on Forest Wildlife in West Africa: Mammals in Gola Forest, Sierra Leone J Eremy A
The impact of civil war on forest wildlife in West Africa: mammals in Gola Forest, Sierra Leone J eremy A. Lindsell,Erik K lop and A lhaji M. Siaka Abstract Human conflicts may sometimes benefit wildlife et al., 1996). However, the generality of this argument has by depopulating wilderness areas but there is evidence been challenged and recent evidence, especially from forest- from Africa that the impacts tend to be negative. The based conflicts in Africa, suggests a negative impact from forested states of West Africa have experienced much over-harvesting of wildlife, degradation of habitats and recent human conflict but there have been no assessments pollution, and the prevention of a range of necessary of impacts on the wildlife. We conducted surveys of conservation and protection activities (Dudley et al., mammals in the 710-km2 Gola Forest reserves to assess 2002; McNeely, 2003). Understanding the effects of conflict the impact of the 1991–2001 civil war in Sierra Leone. Gola on wildlife has important implications for the way conser- is the most important remaining tract of lowland forest in vation agencies work in conflict areas (Plumptre et al., the country and a key site for the conservation of the 2000; Hanson et al., 2009), especially how effectively they highly threatened forests of the Upper Guinea region. We can respond at the cessation of hostilities (Draulans & Van found that Gola has survived well despite being in the Krunkelsven, 2002; McNeely, 2003) because the period of heart of the area occupied by the rebels. We recorded 44 time immediately after war is often crucial (Dudley et al., species of larger mammal, including 18 threatened, near- 2002). -
Establishment of a Genetically Confirmed Breeding Colony of Mastomys Natalensis from Wild-Caught Founders from West Africa
viruses Article Establishment of a Genetically Confirmed Breeding Colony of Mastomys natalensis from Wild-Caught Founders from West Africa David Safronetz 1,*,†, Kyle Rosenke 1, Robert J. Fischer 2,‡, Rachel A. LaCasse 3, Dana P. Scott 3, Greg Saturday 3, Patrick W. Hanley 3, Ousmane Maiga 4, Nafomon Sogoba 4, Tom G. Schwan 2 and Heinz Feldmann 1,* 1 Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA; [email protected] 2 Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA; fi[email protected] (R.J.F.); [email protected] (T.G.S.) 3 Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA; [email protected] (R.A.L.); [email protected] (D.P.S.); [email protected] (G.S.); [email protected] (P.W.H.) 4 International Center for Excellence in Research (ICER-Mali), Faculty of Medicine and Odonto Stomatology, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali; [email protected] (O.M.); [email protected] (N.S.) * Correspondence: [email protected] (D.S.); [email protected] (H.F.) † Current address: Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada. Citation: Safronetz, D.; Rosenke, K.; ‡ Current Address: Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy Fischer, R.J.; LaCasse, R.A.; Scott, D.P.; and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA. -
J. Bio. & Env. Sci
J. Bio. & Env. Sci. 2014 Journal of Biodiversity and Environmental Sciences (JBES) ISSN: 2220-6663 (Print) 2222-3045 (Online) Vol. 4, No. 3, p. 323-333, 2014 http://www.innspub.net RESEARCH PAPER OPEN ACCESS Preliminary checklist and aspects of the ecology of small mammals at the University of Ghana Botanical Garden, Accra Plains, Ghana Benjamin Y. Ofori1,2*, Reuben A. Garshon1, Jones, K. Quartey3, Daniel K. Attuquayefio1 1Department of Animal Biology and Conservation Science, University of Ghana, Legon, Accra, Ghana 2Department of Biological Sciences, Macquarie University, North Ryde, Macquarie Pack, NSW 2019, Sydney, Australia 3Centre for African Wetlands, University of Ghana, Legon, Accra, Ghana Article published on March 22, 2014 Key words: African hedgehog, biodiversity conservation unit, rodents, shrews, Southern Outlier dry forest. Abstract Despite serving as a teaching, research and biodiversity conservation facility for over 60 years, the faunal composition at the University of Ghana Botanical Garden (UGBG) is virtually unknown. This study documents the richness, abundance, diversity, distribution and conservation status of small mammals at the UGBG. The methodology involved live-trapping using Sherman live-traps. Overall, 39 individuals belonging to three mammalian orders (Rodentia, Soricomorpha and Erinaceomorpha) and seven species, comprising of four rodents, two shrews and one hedgehog were recorded in 1,080 trap-nights. Overall trapping success and species diversity (Shannon-Wiener H’ and Simpson’s 1-D) indices were therefore 3.61%, 1.59 and 0.76, respectively. Species richness and diversity were highest (four species; Hʹ = 1.33, 1-D = 0.72) in shrubland and lowest (two species; Hʹ = 0.48, 1-D = 0.3) in grassland. -
Gliding Behavior of Japanese Giant Flying Squirrels (Petaurista Leucogenys)
Journal of Mammalogy, 83(2):553-562, 2002 GLIDING BEHAVIOR OF JAPANESE GIANT FLYING SQUIRRELS (PETAURISTA LEUCOGENYS) BRIAN J. STAFFORD,* RICHARD W. THORINGTON, JR., AND TAKEO KAWAMICHI Department of Anatomy, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059 (BJS) Division of Mammals, Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560-0108 (BJS, RWT) Department of Biology, Osaka City University, Sugimoto, Osaka, Sumiyoshi-ku 558•8585, Japan (TK) Gliding behavior of Japanese giant flying squirrels, Petaurista leucogenys, was studied at Nara Park, Japan. We observed 150 glides. We were able to calculate glide ratios on 57 glides and airspeeds on 29 glides. Glide ratios (distance/faltitude lost]) averaged 1.87, and a glide ratio of 3•3.5 seems to represent an upper performance limit for P. leucogenys. Airspeeds (4.39•9.47 m/s) were substantially lower than reported in other studies, and glide angles were higher (17.74•34.99°). Aspect ratios of the animals in mid-glide averaged 1.42. Key words: aerodynamics, flying squirrels, gliding, locomotion, musasabi, Petaurista, Pteromyinae Gliding is a common adaptation in mam- 1990; Jackson 2000; Russell and Dijkstra mals. It has evolved independently in at 2001; Scholey 1986; Stafford 1999; Thor- least 6 extant taxa: Volitantia (the dermop- ington et al. 1996 and references therein). terans and bats), Pteromyinae (true gliding Morphological studies of flying squirrels in- squirrels), Anomaluridae (scaly-tail "flying clude examinations of skeletal proportions squirrels"), Acrobates (feather-tail gliders), (Stafford 1999; Thorington and Heaney Petaurus (lesser gliding possums), and Pe- 1981), myology (Endo et al. -
Quaternary Murid Rodents of Timor Part I: New Material of Coryphomys Buehleri Schaub, 1937, and Description of a Second Species of the Genus
QUATERNARY MURID RODENTS OF TIMOR PART I: NEW MATERIAL OF CORYPHOMYS BUEHLERI SCHAUB, 1937, AND DESCRIPTION OF A SECOND SPECIES OF THE GENUS K. P. APLIN Australian National Wildlife Collection, CSIRO Division of Sustainable Ecosystems, Canberra and Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History ([email protected]) K. M. HELGEN Department of Vertebrate Zoology National Museum of Natural History Smithsonian Institution, Washington and Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History ([email protected]) BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY Number 341, 80 pp., 21 figures, 4 tables Issued July 21, 2010 Copyright E American Museum of Natural History 2010 ISSN 0003-0090 CONTENTS Abstract.......................................................... 3 Introduction . ...................................................... 3 The environmental context ........................................... 5 Materialsandmethods.............................................. 7 Systematics....................................................... 11 Coryphomys Schaub, 1937 ........................................... 11 Coryphomys buehleri Schaub, 1937 . ................................... 12 Extended description of Coryphomys buehleri............................ 12 Coryphomys musseri, sp.nov.......................................... 25 Description.................................................... 26 Coryphomys, sp.indet.............................................. 34 Discussion . .................................................... -
Inger Damon M.D., Ph.D
Status of human monkeypox, epidemiology and research…comparisons with smallpox… considerations for emerging orthopoxviruses Inger Damon M.D., Ph.D. Chief, Poxvirus and Rabies Branch SEC2010 August 24, 2010 National Center for Emerging and Zoonotic Infectious Diseases Division of High Consequence Pathogens and Pathology Timeline • First observed in captive primate colonies – 8 outbreaks1958-1968 – isolated and characterized from primate tissues – 1 outbreak in exposed zoo animals (anteater and primates) – No transmission to humans • First human disease 1970 – surveillance activities of smallpox eradication program – W. Africa (rare cases, no secondary human to human transmission) – Zaire (DRC) • Active surveillance Zaire (DRC) 1981-1986 (338 cases) – Majority cases virologically confirmed – Human to human transmission • Ongoing outbreaks reported from DRC 1996-present – Largely retrospective analyses – Minority cases virologically confirmed, use orthopoxvirus serostatus determination – Over 500 cases reported • First human disease reported outside of Africa, in the U.S. 2003 • Enhanced surveillance DRC RoC Monkeypox: the virus • Species of Orthopoxvirus genus -Member of the Poxvirus family – Other Orthopoxviruses that infect humans – zoonotic except variola • Cowpox, vaccinia, variola • Ectromelia (mousepox), taterapox (gerbilpox) not known to infect humans – Large (~200 kb) complex double stranded DNA virus, cytoplasmic life cycle, brick shaped morphology – 95% nucleotide identity amongst species – 93% conservation of AA of antigens on -
Diversification of Muroid Rodents Driven by the Late Miocene Global Cooling Nelish Pradhan University of Vermont
University of Vermont ScholarWorks @ UVM Graduate College Dissertations and Theses Dissertations and Theses 2018 Diversification Of Muroid Rodents Driven By The Late Miocene Global Cooling Nelish Pradhan University of Vermont Follow this and additional works at: https://scholarworks.uvm.edu/graddis Part of the Biochemistry, Biophysics, and Structural Biology Commons, Evolution Commons, and the Zoology Commons Recommended Citation Pradhan, Nelish, "Diversification Of Muroid Rodents Driven By The Late Miocene Global Cooling" (2018). Graduate College Dissertations and Theses. 907. https://scholarworks.uvm.edu/graddis/907 This Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. DIVERSIFICATION OF MUROID RODENTS DRIVEN BY THE LATE MIOCENE GLOBAL COOLING A Dissertation Presented by Nelish Pradhan to The Faculty of the Graduate College of The University of Vermont In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Specializing in Biology May, 2018 Defense Date: January 8, 2018 Dissertation Examination Committee: C. William Kilpatrick, Ph.D., Advisor David S. Barrington, Ph.D., Chairperson Ingi Agnarsson, Ph.D. Lori Stevens, Ph.D. Sara I. Helms Cahan, Ph.D. Cynthia J. Forehand, Ph.D., Dean of the Graduate College ABSTRACT Late Miocene, 8 to 6 million years ago (Ma), climatic changes brought about dramatic floral and faunal changes. Cooler and drier climates that prevailed in the Late Miocene led to expansion of grasslands and retreat of forests at a global scale. -
Functional Morphology of the Trunk and Paw Pad Skin of the African Palm Squirrel (Epixerus Ebii)
Iraqi Journal of Veterinary Sciences, Vol. 34, No. 2, 2020 (417-425) Functional morphology of the trunk and paw pad skin of the African palm squirrel (Epixerus ebii) C.S. Ibe1, A. Elezue2, E. Ikpegbu3 and U.C. Nlebedum4 Department of Veterinary Anatomy, Michael Okpara University of Agriculture Umudike, Nigeria 1 [email protected], 2 [email protected], 3 [email protected], 4 [email protected] (Received August 28, 2019; Accepted December 3, 2019; Available online July 27, 2020) Abstract The study was initiated to contribute to the meager knowledge of the anatomy of the African palm squirrel. Skin of the trunk and paw pads was the subject of interest. Basic gross and histological techniques were employed. The dorsal fur was grey with golden brown free endings, while the ventral fur was greyish white. The fur covered the entire trunk, extended through the dorsal surface of the distal carpal joint to the dorsal surface of the digits. Five digital pads, three inter-digital pads and two metacarpal pads were observed on the forefoot. There was no observable digital pad on the hind foot; four inter-digital and two metacarpal pads were observed. Surface grooves were evident in the cornified layer of the trunk skin, but not in the paw pad skin. The mean thickness of the cornified layer of the epidermis of the palmar pad was 75.54±3.45 μm, while the entire epidermis was 102.32±4.23 μm thick. The non-cornified layer of the trunk skin was made of only three distinct layers, as the stratum lucidum was not evident. -
La Biodiversité En Côte D'ivoire : Etat Des Lieux Et Facteurs De Menace
La biodiversité en Côte d’Ivoire : Etat des lieux et facteurs de menace 5 Biodiversity of Côte d’Ivoire: Current state and threats L’une des caractéristiques les plus fascinantes de la nature est la diversité des êtres vivants dont elle regorge. La biodiversité est définit simplement comme la diversité de toutes les formes du vivant, incluant la diversité génétique, spécifique et écosystémique. Elle constitue la toile de la vie terrestre et aquatique dont nous sommes partie intégrante et dont nous dépendons totalement pour notre bien être et notre survie. Elle atteint son maximum dans les régions tropicales dont les forêts abritent plus de 50 % de la diversité biologique mondiale. En Côte d’Ivoire, la conservation de la biodiversité est une question majeure au regard de son importance et des menaces fréquentes qui pèsent sur elle. En effet, de par la diversité et la particularité de sa flore et de sa faune, la Côte d’Ivoire fait partie des zones prioritaires de conservationhot ( spot de biodiversité) en Afrique de l’Ouest. Cependant cette diversité biologique est fortement menacée par de nombreux facteurs dont les plus importants sont la déforestation, l’agriculture non durable, le braconnage, la pollution et les changements climatiques. Ces menaces qui affectent considérablement aussi bien les écosystè- mes que les organismes vivants qu’ils abritent, ont un effet déterminant sur l’économie et la qualité de la vie humaine. Ce chapitre a pour objectif de faire un état des lieux de la biodiversité en Côte d’Ivoire et d’identifier les facteurs pouvant menacer sa conservation. Il comprend trois parties qui s’articulent autour des composantes essentielles de la biodiversité.