Печеночники И Антоцеротовые России. Т. 1 / Liverworts And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Reference List Number 24
Australasian Bryological Newsletter Number 52, July 2006 Reference List Number 24 A bryophyte reference list pertaining to the Australasian region. If there are any references, books or theses, which have been overlooked in compiling this list, then please forward such information to the editor ([email protected]) for inclusion in the next reference list. Blackstock, T.H. & Long, D.G. 2003. Heteroscyphus fissistipus (Hook.f. & Taylor)Schiffn. established in south-west Ireland, new to the Northern Hemisphere. Journal of Bryology 24(2): 147-150. Burkitt, J. 2004. Monitoring rehabilitation of a Sphagnum bog in the Snowy Mountains, N.S.W. Australian Plant Conservation Journal 12(4): 4. Cargill, D.C., Renzaglia, K.S., Villarreal, J.C. & Duff, R.J. 2005. Generic concepts within Hornworts: historical review, contemporary insights & future directions. Australian Systematic Botany 18(1): 7-16. Cao, T., Guo, S., Chen, J. & Yu, J. 2005. Ptychomitrium acutifolium Hook.f.et Wils. (Ptychomitriaceae, Musci), a distinct species endemic to Australia. Cryptogamie Bryologie 26(3): 319-325. Carr, D.J. 2005. Two New Bryophytes in Victoria. Proceedings Royal Society of Victoria 117(2): 319- 325. Carrigan, C. & Gibson, M. 2004. Stream-rock bryophytes at cement Creek Turnable, Victoria. Victorian Naturalist 121(4): 153-157 Duckett, J.G., Carafa, A. & Ligrone, R. 2006. A highly differentiated glomeromycotean association with the mucilage-secreting, primitive antipodean liverwort Treubia (Treubiaceae): Clues to the origins of mycorrhizas. American Journal of Botany 93(6): 797-813. Engel, J.J. & Smith Merrill, G.L. 2003. Austral Hepaticae. 35. A taxonomic and phylogenetic study of Telaranea (Lepidoziaceae), with a monograph of the genus in temperate Australasia and commentary on Extra-Australasian taxa. -
Early Land Plants Today: Index of Liverworts & Hornworts 2015–2016
Phytotaxa 350 (2): 101–134 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2018 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.350.2.1 Early Land Plants Today: Index of Liverworts & Hornworts 2015–2016 LARS SÖDERSTRÖM1, ANDERS HAGBORG2 & MATT VON KONRAT2 1 Department of Biology, Norwegian University of Science and Technology, N-7491, Trondheim, Norway; lars.soderstrom@ ntnu.no 2 Department of Research and Education, The Field Museum, 1400 South Lake Shore Drive, Chicago, IL 60605–2496, U.S.A.; [email protected], [email protected] Abstract A widely accessible list of known plant species is a fundamental requirement for plant conservation and has vast uses. An index of published names of liverworts and hornworts between 2015 and 2016 is provided as part of a continued effort in working toward maintaining an updated world checklist of these groups. The list herein includes 64 higher taxon names, 225 specific names, 35 infraspecific names, two infrageneric autonyms and 21 infraspecific autonyms for 2015 and 2016, including also names of fossils and invalid and illegitimate names. Thirty-three older names omitted in the earlier indices are included. Key words: Liverworts, hornworts, index, nomenclature, fossils, new names Introduction Under the auspices of the Early Land Plants Today project, there has been a strong community-driven effort attempting to address the critical need to synthesize the vast nomenclatural, taxonomic and global distributional data for liverworts (Marchantiophyta) and hornworts (Anthocerotophyta) (von Konrat et al. 2010a). These endeavors, building on decades of previous efforts, were critical in providing the foundation to develop a working checklist of liverworts and hornworts worldwide published in 2016 (Söderström et al. -
Phytotaxa, Fungal Symbioses in Bryophytes
Phytotaxa 9: 238–253 (2010) ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Article PHYTOTAXA Copyright © 2010 • Magnolia Press ISSN 1179-3163 (online edition) Fungal symbioses in bryophytes: New insights in the Twenty First Century SILVIA PRESSEL1*, MARTIN I. BIDARTONDO2, ROBERTO LIGRONE3 & JEFFREY G. DUCKETT1 1Botany Department, The Natural History Museum, Cromwell Road, London SW7 5BD, UK; emails: [email protected] and [email protected] 2Imperial College London and Royal Botanic Gardens, Kew TW9 3DS, UK; email: [email protected] 3Dipartimento di Scienze ambientali, Seconda Università di Napoli, via Vivaldi 43, 81100 Caserta, Italy; email: [email protected] * Corresponding author Abstract Fungal symbioses are one of the key attributes of land plants. The twenty first century has witnessed the increasing use of molecular data complemented by cytological studies in understanding the nature of bryophyte-fungal associations and unravelling the early evolution of fungal symbioses at the foot of the land plant tree. Isolation and resynthesis experiments have shed considerable light on host ranges and very recently have produced an incisive insight into functional relationships. Fungi with distinctive cytology embracing short-lived intracellular fungal lumps, intercellular hyphae and thick-walled spores in Treubia and Haplomitrium are currently being identified as belonging to a more ancient group of fungi than the glomeromycetes, previously assumed to be the most primitive fungi forming symbioses with land plants. Glomeromycetes, like those in lower tracheophytes, are widespread in complex and simple thalloid liverworts. Limited molecular identification of these as belonging to the derived clade Glomus Group A has led to the suggestion of host swapping from tracheophytes. -
Fig. 7. Hagenia-Hypericum Forest at Karisoke Showing Large Bryophyte Cushions, 3100 M
Fig. 7. Hagenia-Hypericum forest at Karisoke showing large bryophyte cushions, 3100 m. 21 Fig. 8. A-B. Hagenia-Hypericum forest at Karisoke, 3100 m. C. Large bryophyte cushions, e.g. Plicanthus giganteus. 22 Fig. 9. A-C. Ericaceous shrub on Mt. Sabinyo, 3300 m. 23 Fig. 10. Ericaceous shrub A-B. Mt. Muhabura, 3400 m; C-D. Mt. Sabinyo, 3300 m. 24 4.2. The Virunga Volcanoes and their altitudinal zonation The Virunga Volcanoes are situated on the borders of D.R. Congo, Uganda and Rwanda. Mt. Karisimbi, at 4507 m, is the highest peak in Rwanda. From 2700 to 3000 m, a secondary Dombeya-forest with scattered Hagenia is developed, followed by a Hagenia-Hypericum belt from 3000 to 3300 m, where large epiphytic moss cushions of Antitricha kilimandscharica, Plicanthus giganteus and Plagiochila colorans are found (Fig. 7, 8). On the saddle of Karisimbi at 3400 m, a moorland with the giant groundsel Dendrosenecio erici-rosenii and Erica johnstonii occurs. Around Lake Muderi and in the crater of Mt. Gahinga, a Sphagnum peat bog with Carex runssorensis is developed (Fig. 12, 13). Above 3400 m, a Dendrosenecio erici-rosenii-Hypericum revolutum subparamo can be observed. The paramo can be divided into two types: the Dendrosenecio erici-rosenii-Lobelia stuhlmannii-paramo from 3600 to 3900 m, and the Dendrosenecio erici-rosenii-Lobelia wollastoni- paramo from 3900 to 4200 m (Fig. 11). Above 4200 m, no giant groundsels are found, and nearly pure meadows of Alchemilla johnstonii are developed (Fig. 14). The summit at 4500 m is covered by an alpine desert, where bryophytes and lichens dominate (Fig. -
Evolution and Networks in Ancient and Widespread Symbioses Between Mucoromycotina and Liverworts
This is a repository copy of Evolution and networks in ancient and widespread symbioses between Mucoromycotina and liverworts. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/150867/ Version: Published Version Article: Rimington, WR, Pressel, S, Duckett, JG et al. (2 more authors) (2019) Evolution and networks in ancient and widespread symbioses between Mucoromycotina and liverworts. Mycorrhiza, 29 (6). pp. 551-565. ISSN 0940-6360 https://doi.org/10.1007/s00572-019-00918-x Reuse This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Mycorrhiza (2019) 29:551–565 https://doi.org/10.1007/s00572-019-00918-x ORIGINAL ARTICLE Evolution and networks in ancient and widespread symbioses between Mucoromycotina and liverworts William R. Rimington1,2,3 & Silvia Pressel2 & Jeffrey G. Duckett2 & Katie J. Field4 & Martin I. Bidartondo1,3 Received: 29 May 2019 /Accepted: 13 September 2019 /Published online: 13 November 2019 # The Author(s) 2019 Abstract Like the majority of land plants, liverworts regularly form intimate symbioses with arbuscular mycorrhizal fungi (Glomeromycotina). -
Divergence Times and the Evolution of Morphological Complexity in an Early Land Plant Lineage (Marchantiopsida) with a Slow Molecular Rate
Research Divergence times and the evolution of morphological complexity in an early land plant lineage (Marchantiopsida) with a slow molecular rate Juan Carlos Villarreal A.1,3,4, Barbara J. Crandall-Stotler2, Michelle L. Hart1, David G. Long1 and Laura L. Forrest1 1Royal Botanic Gardens Edinburgh, 20A Inverleith Row, Edinburgh, EH3 5LR, UK; 2Department of Plant Biology, Southern Illinois University, Carbondale, IL 62901, USA; 3Present address: Smithsonian Tropical Research Institute, Ancon, 0843-03092 Panama, Republic of Panama; 4Present address: Departement de Biologie, Universite Laval, Quebec, Canada G1V 0A6 Summary Authors for correspondence: We present a complete generic-level phylogeny of the complex thalloid liverworts, a lineage Juan Carlos Villarreal A that includes the model system Marchantia polymorpha. The complex thalloids are remark- Tel: +1418 656 3180 able for their slow rate of molecular evolution and for being the only extant plant lineage to Email: [email protected] differentiate gas exchange tissues in the gametophyte generation. We estimated the diver- Laura L. Forrest gence times and analyzed the evolutionary trends of morphological traits, including air cham- Tel: + 44(0) 131248 2952 bers, rhizoids and specialized reproductive structures. Email: [email protected] A multilocus dataset was analyzed using maximum likelihood and Bayesian approaches. Received: 29 June 2015 Relative rates were estimated using local clocks. Accepted: 15 September 2015 Our phylogeny cements the early branching in complex thalloids. Marchantia is supported in one of the earliest divergent lineages. The rate of evolution in organellar loci is slower than New Phytologist (2015) for other liverwort lineages, except for two annual lineages. -
On the Phylogeny and Taxonomy of Pallaviciniales
Arctoa (2015) 24: 98-123 doi: 10.15298/arctoa.24.12 ON THE PHYLOGENY AND TAXONOMY OF PALLAVICINIALES (MARCHANTIOPHYTA), WITH OVERVIEW OF RUSSIAN SPECIES ФИЛОГЕНИЯ И ТАКСОНОМИЯ ПОРЯДКА PALLAVICINIALES (MARCHANTIOPHYTA) С ОБЗОРОМ РОССИЙСКИХ ВИДОВ YURY S. MAMONTOV1,2, NADEZHDA A. KONSTANTINOVA3, ANNA A. VILNET3 & VADIM A. BAKALIN4,5 ЮРИЙ С. МАМОНТОВ1,2, НАДЕЖДА А. КОНСТАНТИНОВА3, АННА А. ВИЛЬНЕТ3, ВАДИМ А. БАКАЛИН4,5 Abstract Integrative analysis of expanded sampling of Pallaviciniales revealed the heterogeneity of Moercki- aceae. The new family Cordaeaceae Mamontov, Konstant., Vilnet & Bakalin is described based on morphology and molecular phylogenetic data. It includes one genus Cordaea Nees with two species, C. flotoviana (= Moerckia flotoviana), the type of the genus, and C. erimona (Steph.) Mamontov, Konstant., Vilnet & Bakalin comb. nov. Descriptions and illustrations of all species of the order known from Russia including newly reported Pallavicinia subciliata and provisional P. levieri are provided. Identification key for Pallaviciniales known from Russia and adjacent areas is given. Резюме В результате комплексного молекулярно-генетического и сравнительно-морфологического анализа расширенной выборки порядка Pallaviciniales выявлена гетерогенность сем. Moercki- aceae. Из него выделено новое семейство Cordaeaceae Mamontov, Konstant., Vilnet & Bakalin, включающее один род Cordaea Nees и два вида, C. flotoviana Nees (тип рода) и C. erimona (Steph.) Mamontov, Konstant., Vilnet & Bakalin comb. nov. Приведен ключ для определения видов порядка, встречающихся в России и на прилегающих территориях, даны описания и иллюстрации известных в России видов порядка, включая впервые выявленную для страны Pallavicinia subciliata, а также провизорно приводимую P. levieri, обнаруженную в республике Корея. KEYWORDS: Pallaviciniales, molecular phylogeny, taxonomy, Moerckiaceae, Cordaeaceae, Russia INTRODUCTION aration” of Moerckia that “supports Schuster’s (1992) Pallaviciniales W. -
The Hornworts and Liverworts List of Romania
THE HORNWORTS AND LIVERWORTS LIST OF ROMANIA In this paper we present the list of hornworts and liverworts from Romania which includes our recent reports: Frullania parvistipula, Haplomitrium hoohri, Lophozia opacifolia, Marsupella commutata, Pallavicinia lyellii, and Pleurocladula albescens var. albescens. The species Anthoceros agrestis is reported as new to Romania. Key words: hornworts, liverworts, Romania. INTRODUCTION The bryological researches made on Romanian hornworts and liverworts, in 200 years approximately, were followed by huge data storage and now the list hqs 2 19 records. The most important list, that has 200 records, was published by Mihai G. (9). New lists were recently published (2, 10). MATERIAL AND METHODS . The nomenclature and systematic classification is in accordance with Schuster 1992 (15), Paton 1999 (12), Grolle & Long 2000 (9, Crandall-Stotler & Stotler 2000 (1) and Soderstrom, Urmi & VAfia 2002 (17). For the threatened species, that are in the Red List of bryophytes in Europe, we use the following abbreviations: K = insufficiently known species, R = rare species, V = vulnerable species and with E = endangered species (4). In the paper we use the following symbols: o = occurrence reported but the source does not discriminate between the taxa in a complex; ? = occurrence doubtful; .F = endemic taxon in Europe (I 7). RESULTS AND DISCUSSION The hornworts and liverworts list of Romania has 219 records (209 species, 4 subspecies and 6 varieties). The list includes the recent reports: Cephaloziella . baumgarteni, C. massalongi, C. spinigera, Frullania parvistipula, Haplomitrium 1 hookeri, Lophozia opacifolia, Mmupella commutata, Pallavicinia lyellii and Pleurocladula albescens var. albescens (we note with * our recent reports). REV. ROUM. -
(Haplomitriopsida Liverworts) and Mucoromycotina Fungi and Its Response to Simulated Palaeozoic Changes in Atmospheric CO2
Research First evidence of mutualism between ancient plant lineages (Haplomitriopsida liverworts) and Mucoromycotina fungi and its response to simulated Palaeozoic changes in atmospheric CO2 Katie J. Field1, William R. Rimington2,3,4, Martin I. Bidartondo2,3, Kate E. Allinson1, David J. Beerling1, Duncan D. Cameron1, Jeffrey G. Duckett4, Jonathan R. Leake1 and Silvia Pressel4 1Department of Animal and Plant Sciences, Western Bank, University of Sheffield, Sheffield, S10 2TN, UK; 2Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK; 3Jodrell Laboratory, Royal Botanic Gardens, Kew, TW9 3DS, UK; 4Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK Summary Author for correspondence: The discovery that Mucoromycotina, an ancient and partially saprotrophic fungal lineage, Katie J. Field associates with the basal liverwort lineage Haplomitriopsida casts doubt on the widely held Tel: +44(0)114 2220093 view that Glomeromycota formed the sole ancestral plant–fungus symbiosis. Whether this Email: k.field@sheffield.ac.uk association is mutualistic, and how its functioning was affected by the fall in atmospheric CO2 Received: 3 June 2014 concentration that followed plant terrestrialization in the Palaeozoic, remains unknown. Accepted: 6 August 2014 We measured carbon-for-nutrient exchanges between Haplomitriopsida liverworts and Mucoromycotina fungi under simulated mid-Palaeozoic (1500 ppm) and near-contemporary New Phytologist (2014) (440 ppm) CO2 concentrations using isotope tracers, and analysed -
BRYOPHYTES .Pdf
Diversity of Microbes and Cryptogams Bryophyta Geeta Asthana Department of Botany, University of Lucknow, Lucknow – 226007 India Date of submission: May 11, 2006 Version: English Significant Key words: Bryophyta, Hepaticopsida (Liverworts), Anthocerotopsida (Hornworts), , Bryopsida (Mosses). 1 Contents 1. Introduction • Definition & Systematic Position in the Plant Kingdom • Alternation of Generation • Life-cycle Pattern • Affinities with Algae and Pteridophytes • General Characters 2. Classification 3. Class – Hepaticopsida • General characters • Classification o Order – Calobryales o Order – Jungermanniales – Frullania o Order – Metzgeriales – Pellia o Order – Monocleales o Order – Sphaerocarpales o Order – Marchantiales – Marchantia 4. Class – Anthocerotopsida • General Characters • Classification o Order – Anthocerotales – Anthoceros 5. Class – Bryopsida • General Characters • Classification o Order – Sphagnales – Sphagnum o Order – Andreaeales – Andreaea o Order – Takakiales – Takakia o Order – Polytrichales – Pogonatum, Polytrichum o Order – Buxbaumiales – Buxbaumia o Order – Bryales – Funaria 6. References 2 Introduction Bryophytes are “Avascular Archegoniate Cryptogams” which constitute a large group of highly diversified plants. Systematic position in the plant kingdom The plant kingdom has been classified variously from time to time. The early systems of classification were mostly artificial in which the plants were grouped for the sake of convenience based on (observable) evident characters. Carolus Linnaeus (1753) classified -
Oil Body Structure and Ecological Distribution of Selected Species of Tropical Andean Jungermanniales
Studies on Colombian cryptogams. IIA. Hepaticae - Oil body structure and ecological distribution of selected species of tropical Andean Jungermanniales BY S.R. Gradsteini, A.M. Cleef and M.H. Fulford (Communicated by Prof. F. A. Stafleu at the meeting of September 24, 1977) INTRODUCTION This is the second & Florschütz-de Waard paper (Florschütz 1974) in the series of reports on cryptogams of Colombia, especially the high Andean bryophytes and lichens, in the framework of recent phytosocio- and studies in the M. and T. logical ecological area by A. Cleef van der Hammen (Amsterdam) and his collaborators. The aim of these studies is to prepare comprehensive descriptions of the various Andean biota of Colombia as a basis for an evaluation of the biological diversity of the Andean of Colombia. This deals with the environment paper Hepaticae or liverworts and focuses on the structureof the oil bodies in the liverwortcell and the geographical and ecological distribution of the species. There are few papers on tropical Andean liverworts. The classical work by Spruce (1884-85) included liverworts of the Ecuadorian and Peruvian A Manual Andes. large number of Andean taxa are treated in Fulford’s of the leafy liverworts of Latin America (Fulford 1963, 1966, 1968, 1976) and the latter has been our main source of data on distribution of species. Some ecological notes on tropical Andean taxa are found in the works of Herzog (1934, 1955), Robinson (1967) and Winkler (1976), who for the first time presented a synthesis of liverwort species distributionin relation to Andeanvegetation typology in a limitedarea in Northern Colombia. -
On Clevea Pusilla (Steph.) Rubasinghe & D.G. Long
Arctoa (2013) 22: 131-133 ON CLEVEA PUSILLA (STEPH.) RUBASINGHE & D.G. LONG (CLEVEACEAE, MARCHANTIOPHYTA) IN ASIA О CLEVEA PUSILLA (STEPH.) RUBASINGHE & D.G. LONG (CLEVEACEAE, MARCHANTIOPHYTA) В АЗИИ EUGENY A. BOROVICHEV1,2 & VADIM A. BAKALIN3,4 ЕВГЕНИЙ А. БОРОВИЧЕВ1,2, ВАДИМ А. БАКАЛИН3,4 Abstract Identification of a small collection of thallose liverworts from Inner Mongolia (China) has revealed Clevea pusilla (Steph.) Rubasinghe & D.G. Long, the species new for the province, rare and poorly known Himalaya-East Asian taxon variably treated in the current literature. A morphological descrip- tion, illustrations and differentiating characters from closely related C. nana (Shimizu & S. Hatt.) Borovich. & Bakalin and C. spathysii (Lindenb.) Müll. Frib. are provided. Резюме Обработка небольшой коллекции слоевищных печеночников порядка Marchantiales из Внутренней Монголии (Китай) позволила выявить новый для этой провинции, редкий и малоизученный вид - Clevea pusilla (Steph.) Rubasinghe & D.G. Long, объем которого, в настоящее время, крайне дискуссионен. Приводятся морфологическое описание, отличия от C. nana (Shimizu & S. Hatt.) Borovich. & Bakalin и C. spathysii (Lindenb.) Müll. Frib. и оригинальные иллюстрации. KEYWORDS: Hepaticeae, Clevea, taxonomy, China. The Cleveaceae is a small family including 4 genera tori (1954) described Athalamia glauco-virens Shimizu worldwide. It has been recently revised by Rubasinghe & S.Hatt. Because of the prevailing point of view on the (2011) and Rubasinghe et al. (2011a), who resurrected identity of Gollaniella, Clevea and Athalamia, Shimizu Clevea as the genus closely related, but different from and Hattori (1954) transferred Gollaniella nana and Cle- Athalamia. That revision provides a global pattern of spe- vea chinensis to the genus Athalamia and regarded them cies distribution, however, in some regions the genus re- as closely related, but different species.