Plant Growth-Promoting Microbial... 663
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Phytotaxa, Zamia Incognita (Zamiaceae): the Exciting Discovery of a New Gymnosperm
Phytotaxa 2: 29–34 (2009) ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Article PHYTOTAXA Copyright © 2009 • Magnolia Press ISSN 1179-3163 (online edition) Zamia incognita (Zamiaceae): the exciting discovery of a new gymnosperm from Colombia ANDERS J. LINDSTRÖM1 & ÁLVARO IDÁRRAGA2 1Nong Nooch Tropical Botanical Garden, 34/1 Sukhumvit Highway, Najomtien, Sattahip, Chonburi 20250 Thailand 2Universidad de Antioquia, Herbario Universidad de Antioquia (HUA), Medellín, Colombia Abstract Colombia is home to the majority of known South American species of Zamia (Zamiaceae). Although Zamia is now the only recognised genus of extant Cycadales in South America, it shows some complex ecological adaptations that have resulted in several evolutionarily divergent sections within the genus. The recent publication of Flora de Colombia listed 16 species, of which seven are endemic and five were newly described in the very same treatment. Although this treatment was current at the time of publication, recent collections and additional material of little-known species have made an update and further clarification necessary. A new species, Zamia incognita is described here and its relationships are discussed. Key words: Colombia, cycads, gymnosperms, Zamia Introduction The classification of Zamia Linnaeus (1763: 1659), a genus of about 57 species of mainly South and Central American cycads, is still incomplete with new species still to be discovered and described. The relationships are not very well-studied and there are few classifications at the subgeneric level (Schuster, 1932). Most species have been described individually by various authors and not as part of a larger taxonomic treatment or revision. Because of the inaccessibility of many habitats, there are very few specimens of South American species. -
Microbial Inoculants for Improving Crop Quality and Human Health in Africa
fmicb-09-02213 September 17, 2018 Time: 16:40 # 1 View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Covenant University Repository REVIEW published: 19 September 2018 doi: 10.3389/fmicb.2018.02213 Microbial Inoculants for Improving Crop Quality and Human Health in Africa Elizabeth Temitope Alori1 and Olubukola Oluranti Babalola2* 1 Department of Crop and Soil Science, Landmark University, Omu-Aran, Nigeria, 2 Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mahikeng, South Africa Current agricultural practices depend heavily on chemical inputs (such as fertilizers, pesticides, herbicides, etc.) which, all things being equal cause a deleterious effect on the nutritional value of farm product and health of farm workers and consumers. Excessive and indiscriminate use of these chemicals have resulted in food contamination, weed and disease resistance and negative environmental outcomes which together have a significant impact on human health. Application of these chemical inputs promotes the accumulation of toxic compounds in soils. Chemical compounds are absorbed by most crops from soil. Several synthetic fertilizers contain acid radicals, such as hydrochloride and sulfuric radicals, and hence increase the soil acidity and adversely affect soil and plant health. Highly recalcitrant compounds can also be absorbed by some plants. Continuous consumption of such crops can lead to systematic disorders in humans. Quite a number of pesticides and herbicides have carcinogenicity potential. The increasing awareness of health challenges as a result of consumption of poor quality crops has led to a quest for new and improved technologies Edited by: of improving both the quantity and quality of crop without jeopardizing human health. -
Biocontrol of Two Bacterial Inoculant Strains and Their Effects on the Rhizosphere Microbial Community of Field-Grown Wheat
Hindawi BioMed Research International Volume 2021, Article ID 8835275, 12 pages https://doi.org/10.1155/2021/8835275 Research Article Biocontrol of Two Bacterial Inoculant Strains and Their Effects on the Rhizosphere Microbial Community of Field-Grown Wheat Xiaohui Wang,1,2 Chao Ji,1 Xin Song,1 Zhaoyang Liu,1 Yue Liu,1 Huying Li,1 Qixiong Gao,1 Chaohui Li,1 Rui Zheng,1 Xihong Han,2 and Xunli Liu 1 1College of Forestry, Shandong Agricultural Universities, No. 61, Daizong Street, Taian, Shandong 271018, China 2Ministry of Agriculture Key Laboratory of Seaweed Fertilizers, Qingdao 266400, China Correspondence should be addressed to Xunli Liu; [email protected] Received 16 September 2020; Revised 4 November 2020; Accepted 26 December 2020; Published 9 January 2021 Academic Editor: Mohamed Salah Abbassi Copyright © 2021 Xiaohui Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Biocontrol by inoculation with beneficial microbes is a proven strategy for reducing the negative effect of soil-borne pathogens. We evaluated the effects of microbial inoculants BIO-1 and BIO-2 in reducing soil-borne wheat diseases and in influencing wheat rhizosphere microbial community composition in a plot test. The experimental design consisted of three treatments: (1) Fusarium graminearum F0609 (CK), (2) F. graminearum + BIO-1 (T1), and (3) F. graminearum F0609 + BIO-2 (T2). The results of the wheat disease investigation showed that the relative efficacies of BIO-1 and BIO-2 were up to 82.5% and 83.9%, respectively. -
Pollination of Cultivated Plants in the Tropics 111 Rrun.-Co Lcfcnow!Cdgmencle
ISSN 1010-1365 0 AGRICULTURAL Pollination of SERVICES cultivated plants BUL IN in the tropics 118 Food and Agriculture Organization of the United Nations FAO 6-lina AGRICULTUTZ4U. ionof SERNES cultivated plans in tetropics Edited by David W. Roubik Smithsonian Tropical Research Institute Balboa, Panama Food and Agriculture Organization of the United Nations F'Ø Rome, 1995 The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. M-11 ISBN 92-5-103659-4 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the copyright owner. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, Publications Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00100 Rome, Italy. FAO 1995 PlELi. uion are ted PlauAr David W. Roubilli (edita Footli-anal ISgt-iieulture Organization of the Untled Nations Contributors Marco Accorti Makhdzir Mardan Istituto Sperimentale per la Zoologia Agraria Universiti Pertanian Malaysia Cascine del Ricci° Malaysian Bee Research Development Team 50125 Firenze, Italy 43400 Serdang, Selangor, Malaysia Stephen L. Buchmann John K. S. Mbaya United States Department of Agriculture National Beekeeping Station Carl Hayden Bee Research Center P. -
Botryosphaeriaceae Associated with Die-Back of Schizolobium Parahyba Trees In
Botryosphaeriaceae associated with die-back of Schizolobium parahyba trees in South Africa and Ecuador J. W. M. Mehl1,3, B. Slippers2, J. Roux1 and M. J. Wingfield1 1Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028 2Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028 3E-mail: [email protected] (for correspondence) Summary Die-back of Schizolobium parahyba var. amazonicum is a serious problem in plantations of these trees in Ecuador. Similar symptoms have also been observed on trees of this species in various parts of South Africa. The most common fungi isolated from disease symptoms on S. parahyba var. amazonicum in both locations were species of the Botryosphaeriaceae. The aim of this study was to identify these fungi from both Ecuador and South Africa, and to test their pathogenicity in greenhouse and field trials. Isolates obtained were grouped based on culture morphology and identified using comparisons of DNA sequence data for the Internal Transcribed Spacer (ITS) and Translation Elongation Factor 1α (TEF-1α) gene regions. The β-tubulin-2 (BT2) locus was also sequenced for some isolates where identification was difficult. Three greenhouse trials were conducted in South Africa along with a field trial in Ecuador. Neofusicoccum parvum was obtained from trees in both areas and was the dominant taxon in South Africa. Lasiodiplodia theobromae was the dominant taxon in Ecuador, probably due to the subtropical climate in the area. Isolates of N. vitifusiforme (from South Africa only), N. -
Livro-Inpp.Pdf
GOVERNMENT OF BRAZIL President of Republic Michel Miguel Elias Temer Lulia Minister for Science, Technology, Innovation and Communications Gilberto Kassab MUSEU PARAENSE EMÍLIO GOELDI Director Nilson Gabas Júnior Research and Postgraduate Coordinator Ana Vilacy Moreira Galucio Communication and Extension Coordinator Maria Emilia Cruz Sales Coordinator of the National Research Institute of the Pantanal Maria de Lourdes Pinheiro Ruivo EDITORIAL BOARD Adriano Costa Quaresma (Instituto Nacional de Pesquisas da Amazônia) Carlos Ernesto G.Reynaud Schaefer (Universidade Federal de Viçosa) Fernando Zagury Vaz-de-Mello (Universidade Federal de Mato Grosso) Gilvan Ferreira da Silva (Embrapa Amazônia Ocidental) Spartaco Astolfi Filho (Universidade Federal do Amazonas) Victor Hugo Pereira Moutinho (Universidade Federal do Oeste Paraense) Wolfgang Johannes Junk (Max Planck Institutes) Coleção Adolpho Ducke Museu Paraense Emílio Goeldi Natural resources in wetlands: from Pantanal to Amazonia Marcos Antônio Soares Mário Augusto Gonçalves Jardim Editors Belém 2017 Editorial Project Iraneide Silva Editorial Production Iraneide Silva Angela Botelho Graphic Design and Electronic Publishing Andréa Pinheiro Photos Marcos Antônio Soares Review Iraneide Silva Marcos Antônio Soares Mário Augusto G.Jardim Print Graphic Santa Marta Dados Internacionais de Catalogação na Publicação (CIP) Natural resources in wetlands: from Pantanal to Amazonia / Marcos Antonio Soares, Mário Augusto Gonçalves Jardim. organizers. Belém : MPEG, 2017. 288 p.: il. (Coleção Adolpho Ducke) ISBN 978-85-61377-93-9 1. Natural resources – Brazil - Pantanal. 2. Amazonia. I. Soares, Marcos Antonio. II. Jardim, Mário Augusto Gonçalves. CDD 333.72098115 © Copyright por/by Museu Paraense Emílio Goeldi, 2017. Todos os direitos reservados. A reprodução não autorizada desta publicação, no todo ou em parte, constitui violação dos direitos autorais (Lei nº 9.610). -
PRE-GERMINATION TREATMENTS of PARICÁ (Schizolobium Amazonicum) SEEDS
1090 Bioscience Journal Original Article PRE-GERMINATION TREATMENTS OF PARICÁ (Schizolobium amazonicum) SEEDS TRATAMENTOS PRÉ-GERMINATIVOS EM SEMENTES DE PARICÁ (Schizolobium amazonicum) Estefânia Martins BARDIVIESSO1; Thiago Barbosa BATISTA1; Flávio Ferreira da Silva BINOTTI2; Edilson COSTA2; Tiago Alexandre da SILVA1; Natália de Brito Lima LANNA1; Ana Carolina Picinini PETRONILIO1 1. Paulista State University “Júlio de Mesquita Filho” – College of Agricultural Science, Department of Crop Science, Botucatu, SP, Brazil. [email protected]; 2. Mato Grosso do Sul State University, Cassilândia, MS, Brazil. ABSTRACT: Paricá seeds have dormancy and, even after mechanical scarification, these seeds show slow and uneven germination. Pre-germination treatments can be used to increase seed germination performance. Thus, the aimed to evaluate the physiological potential and initial growth of paricá seeds after pre-germination treatments, using different substances as plant regulators and nutrients, in addition to mechanical scarification. The experimental design was completely randomized, in a 2x7 factorial scheme, consisting of the following pre-germination treatments: mechanical scarification (10% and 50% of the seed coat) and seed pre-soaking [control-water, KNO3 0.2%, Ca(NO3)2 0.2%, gibberellin 0.02%, cytokinin 0.02%, and mixture of gibberellin + cytokinin (1:1)] besides a control group without pre-soaking, with four replicates. The study evaluated germination and emergence rates, germination and emergence speed indices, collar diameter, plant height, seedling dry mass, hypocotyl and seedling length, and electrical conductivity. It was observed that pre-soaking the seeds in gibberellin after mechanical scarification at 50% as a pre-germination treatment resulted in seeds with higher vigor expression and greater initial seedling growth. -
The Flower Flies and the Unknown Diversity of Drosophilidae (Diptera): a Biodiversity Inventory in the Brazilian Fauna
bioRxiv preprint doi: https://doi.org/10.1101/402834; this version posted August 29, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The flower flies and the unknown diversity of Drosophilidae (Diptera): a biodiversity inventory in the Brazilian fauna Hermes J. Schmitz1 and Vera L. S. Valente2 1 Universidade Federal da Integração-Latino-Americana, Foz do Iguaçu, PR, Brazil; [email protected] 2 Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; [email protected] Abstract Diptera is a megadiverse order, reaching its peak of diversity in Neotropics, although our knowledge of dipteran fauna of this region is grossly deficient. This applies even for the most studied families, as Drosophilidae. Despite its position of evidence, most aspects of the biology of these insects are still poorly understood, especially those linked to natural communities. Field studies on drosophilids are highly biased to fruit-breeders species. Flower-breeding drosophilids, however, are worldwide distributed, especially in tropical regions, although being mostly neglected. The present paper shows results of a biodiversity inventory of flower-breeding drosophilids carried out in Brazil, based on samples of 125 plant species, from 47 families. Drosophilids were found in flowers of 56 plant species, of 18 families. The fauna discovered showed to be highly unknown, comprising 28 species, 12 of them (>40%) still undescribed. -
Softening-Up Mannan-Rich Cell Walls
Softening-up mannan-rich cell walls Maria del Carmen Rodríguez-Gacio , Raquel Iglesias-Fernández , Pilar Carbonero and Ángel J. Matilla Abstract The softening and degradation of the cell wall (CW), often mannan enriched, is involved in several processes during development of higher plants, such as meristematic growth, fruit ripening, programmed cell death, and endosperm rupture upon germination. Mannans are also the predominant hemicellulosic CW polymers in many genera of green algae. The endosperm CWs of dry seeds often contain mannan polymers, sometimes in the form of galactomannans (Gal-mannans). The endo-p-mannanases (MANs) that catalyse the random hydrolysis of the (3-linkage in the mannan backbone are one of the main hydrolytic enzymes involved in the loosening and remodelling of CWs. In germinating seeds, the softening of the endosperm seed CWs facilitates the emergence of the elongating radicle. Hydrolysis and mobilization of endosperm Gal-mannans by MANs also provides a source of nutrients for early seedling growth, since Gal-mannan, besides its structural role, serves as a storage polysaccharide. Therefore, the role of mannans and of their hydrolytic enzymes is decisive in the life cycle of seeds. This review updates and discusses the significance of mannans and MANs in seeds and explores the increasing biotechnological potential of MAN enzymes. Introduction Photosynthetic eukaryotes have a carbohydrate-rich cell Structurally, the PCW is made up of proteins and a scaf wall (CW), which is a highly complex and dynamic cell folding of cellulose [p(l—>4)-glucan chains organized in compartment that performs various mechanical and bio para-crystalline microfibrils] embedded in a matrix of cross- chemical functions and protects the cell from extreme linking hemicellulosic glycans and pectins. -
Trends in Soil Microbial Inoculants Research: a Science Mapping Approach to Unravel Strengths and Weaknesses of Their Application
agriculture Article Trends in Soil Microbial Inoculants Research: A Science Mapping Approach to Unravel Strengths and Weaknesses of Their Application Loredana Canfora 1 , Corrado Costa 2 , Federico Pallottino 2 and Stefano Mocali 3,* 1 Council for Agricultural Research and Analysis of the Agricultural Economy, Research Centre for Agriculture and Environment, 00182 Roma, Italy; [email protected] 2 Council for Agricultural Research and Analysis of the Agricultural Economy, Research Centre for Engineering and Agro-Food Processing, 00015 Monterotondo, Italy; [email protected] (C.C.); [email protected] (F.P.) 3 Council for Agricultural Research and Analysis of the Agricultural Economy, Research Centre for Agriculture and Environment, 50125 Cascine del Riccio, Italy * Correspondence: [email protected] Abstract: Microbial inoculants are widely accepted as potential alternatives or complements to chemical fertilizers and pesticides in agriculture. However, there remains a lack of knowledge regarding their application and effects under field conditions. Thus, a quantitative description of the scientific literature related to soil microbial inoculants was conducted, adopting a science mapping approach to observe trends, strengths, and weaknesses of their application during the period of 2000–2020 and providing useful insights for future research. Overall, the study retrieved 682 publications with an increasing number during the 2015–2020 period, confirming China, India, and the U.S. as leading countries in microbial inoculants research. Over the last decade, the research Citation: Canfora, L.; Costa, C.; field emphasized the use of microbial consortia rather than single strains, with increasing attention Pallottino, F.; Mocali, S. Trends in Soil Microbial Inoculants Research: A paid to sustainability and environmental purposes by means of multidisciplinary approaches. -
Notas Científicas Occurrence of Quesada Gigas on Schizolobium Amazonicum Trees in Maranhão and Pará States, Brazil
Occurrence of Quesada gigas on Schizolobium amazonicum 943 Notas Científicas Occurrence of Quesada gigas on Schizolobium amazonicum trees in Maranhão and Pará States, Brazil José Cola Zanuncio(1), Fabrício Fagundes Pereira(1), Teresinha Vinha Zanuncio(1), Nilza Maria Martinelli(2), Tobias Baruc Moreira Pinon(1) and Edylene Marota Guimarães(1) (1)Universidade Federal de Viçosa, Dep. de Biologia Animal/BIoagro, Avenida P.H. Rolfs, s/no, CEP 36571-000 Viçosa, MG. E-mail: [email protected], [email protected]. (2)Universidade Estadual Paulista, Dep. de Fitossanidade, Via de Acesso Paulo Donato Castellane, s/no, CEP 14884-900 Jaboticabal, SP. E-mail: [email protected] Abstract – An infestation of Quesada gigas Olivier (Hemiptera: Cicadidae) on “paricá” Schizolobium amazonicum (Huber) Ducken (Fabales: Fabaceae) was reported in the Municipalities of Itinga, Maranhão State and Paragominas, Pará State. Nymphs of this insect on roots and adults and exuvias on trunks of the plant were observed. Exit holes of nymphs in the soil were also observed. The occurrence of Q. gigas on S. amazonicum shows the damage potential of this species and the necessity of developing integrated management programs for species of this group, specially in reforested areas with “paricá”. Index terms: Cicadidae, cicada, reforestation, soil pest, paricá. Ocorrência de Quesada gigas em Schizolobium amazonicum em municípios do Maranhão e do Pará Resumo – Há relatos sobre a infestação de Quesada gigas Olivier (Hemiptera: Cicadidae) em paricá Schizolobium amazonicum (Huber) Ducken (Fabales: Fabaceae) nos municípios de Itinga, Estado do Maranhão e Paragominas, Estado do Pará. Observaram-se ninfas nas raízes e adultos e exúvias nos troncos da planta. -
Microbial-Assisted Wheat Iron Biofortification Using Endophytic
ORIGINAL RESEARCH published: 03 August 2021 doi: 10.3389/fnut.2021.704030 Microbial-Assisted Wheat Iron Biofortification Using Endophytic Bacillus altitudinis WR10 Zhongke Sun 1,2*, Zonghao Yue 1, Hongzhan Liu 1, Keshi Ma 1 and Chengwei Li 2* 1 College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China, 2 College of Biological Engineering, Henan University of Technology, Zhengzhou, China Microbial-assisted biofortification attracted much attention recently due to its sustainable and eco-friendly nature for improving nutrient content in wheat. An endophytic strain Bacillus altitudinis WR10, which showed sophistical regulation of iron (Fe) homeostasis in wheat seedlings, inspired us to test its potential for enhancing Fe biofortification in wheat grain. In this study, assays in vitro indicated that WR10 has versatile plant growth-promoting (PGP) traits and bioinformatic analysis predicted its non-pathogenicity. Two inoculation methods, namely, seed soaking and soil spraying, with 107 cfu/ml WR10 Edited by: Om Prakash Gupta, cells were applied once before sowing of wheat (Triticum aestivum L. cv. Zhoumai 36) in Indian Institute of Wheat and Barley the field. After wheat maturation, evaluation of yield and nutrients showed a significant Research (ICAR), India increase in the mean number of kernels per spike (KPS) and the content of total nitrogen Reviewed by: (N), potassium (K), and Fe in grains. At the grain filling stage, the abundance of Bacillus Radha Prasanna, Indian Agricultural Research Institute spp. and the content of N, K, and Fe in the root, the stem, and the leaf were also increased (ICAR), India in nearly all tissues, except Fe in the stem and the leaf.