Streptococcus Pyogenes Exotoxins I and J
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Role of Streptococcal and Staphylococcal Exotoxins and Proteases in Human Necrotizing Soft Tissue Infections
toxins Review The Role of Streptococcal and Staphylococcal Exotoxins and Proteases in Human Necrotizing Soft Tissue Infections Patience Shumba 1, Srikanth Mairpady Shambat 2 and Nikolai Siemens 1,* 1 Center for Functional Genomics of Microbes, Department of Molecular Genetics and Infection Biology, University of Greifswald, D-17489 Greifswald, Germany; [email protected] 2 Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, CH-8091 Zurich, Switzerland; [email protected] * Correspondence: [email protected]; Tel.: +49-3834-420-5711 Received: 20 May 2019; Accepted: 10 June 2019; Published: 11 June 2019 Abstract: Necrotizing soft tissue infections (NSTIs) are critical clinical conditions characterized by extensive necrosis of any layer of the soft tissue and systemic toxicity. Group A streptococci (GAS) and Staphylococcus aureus are two major pathogens associated with monomicrobial NSTIs. In the tissue environment, both Gram-positive bacteria secrete a variety of molecules, including pore-forming exotoxins, superantigens, and proteases with cytolytic and immunomodulatory functions. The present review summarizes the current knowledge about streptococcal and staphylococcal toxins in NSTIs with a special focus on their contribution to disease progression, tissue pathology, and immune evasion strategies. Keywords: Streptococcus pyogenes; group A streptococcus; Staphylococcus aureus; skin infections; necrotizing soft tissue infections; pore-forming toxins; superantigens; immunomodulatory proteases; immune responses Key Contribution: Group A streptococcal and Staphylococcus aureus toxins manipulate host physiological and immunological responses to promote disease severity and progression. 1. Introduction Necrotizing soft tissue infections (NSTIs) are rare and represent a more severe rapidly progressing form of soft tissue infections that account for significant morbidity and mortality [1]. -
Toxic Shock-Like Syndrome Associated with Necrotizing Streptococcus Pyogenes Infection
Henry Ford Hospital Medical Journal Volume 37 Number 2 Article 5 6-1989 Toxic Shock-like Syndrome Associated with Necrotizing Streptococcus Pyogenes Infection Thomas J. Connolly Donald J. Pavelka Eugene F. Lanspa Thomas L. Connolly Follow this and additional works at: https://scholarlycommons.henryford.com/hfhmedjournal Part of the Life Sciences Commons, Medical Specialties Commons, and the Public Health Commons Recommended Citation Connolly, Thomas J.; Pavelka, Donald J.; Lanspa, Eugene F.; and Connolly, Thomas L. (1989) "Toxic Shock- like Syndrome Associated with Necrotizing Streptococcus Pyogenes Infection," Henry Ford Hospital Medical Journal : Vol. 37 : No. 2 , 69-72. Available at: https://scholarlycommons.henryford.com/hfhmedjournal/vol37/iss2/5 This Article is brought to you for free and open access by Henry Ford Health System Scholarly Commons. It has been accepted for inclusion in Henry Ford Hospital Medical Journal by an authorized editor of Henry Ford Health System Scholarly Commons. Toxic Shock-like Syndrome Associated with Necrotizing Streptococcus Pyogenes Infection Thomas J. Connolly,* Donald J. Pavelka, MD,^ Eugene F. Lanspa, MD, and Thomas L. Connolly, MD' Two patients with toxic shock-like syndrome are presented. Bolh patients had necrotizing cellulitis due to Streptococcus pyogenes, and both patients required extensive surgical debridement. The association of Streptococcus pyogenes infection and toxic shock-like syndrome is discussed. (Henry Ford Hosp MedJ 1989:37:69-72) ince 1978, toxin-producing strains of Staphylococcus brought to the emergency room where a physical examination revealed S aureus have been implicated as the cause of the toxic shock a temperature of 40.9°C (I05.6°F), blood pressure of 98/72 mm Hg, syndrome (TSS), which is characterized by fever and rash and respiration of 36 breaths/min, and a pulse of 72 beats/min. -
How Do Pathogenic Microorganisms Develop Cross-Kingdom Host Jumps? Peter Van Baarlen1, Alex Van Belkum2, Richard C
Molecular mechanisms of pathogenicity: how do pathogenic microorganisms develop cross-kingdom host jumps? Peter van Baarlen1, Alex van Belkum2, Richard C. Summerbell3, Pedro W. Crous3 & Bart P.H.J. Thomma1 1Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands; 2Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands; and 3CBS Fungal Biodiversity Centre, Utrecht, The Netherlands Correspondence: Bart P.H.J. Thomma, Abstract Downloaded from https://academic.oup.com/femsre/article/31/3/239/2367343 by guest on 27 September 2021 Laboratory of Phytopathology, Wageningen University, Binnenhaven 5, 6709 PD It is common knowledge that pathogenic viruses can change hosts, with avian Wageningen, The Netherlands. Tel.: 10031 influenza, the HIV, and the causal agent of variant Creutzfeldt–Jacob encephalitis 317 484536; fax: 10031 317 483412; as well-known examples. Less well known, however, is that host jumps also occur e-mail: [email protected] with more complex pathogenic microorganisms such as bacteria and fungi. In extreme cases, these host jumps even cross kingdom of life barriers. A number of Received 3 July 2006; revised 22 December requirements need to be met to enable a microorganism to cross such kingdom 2006; accepted 23 December 2006. barriers. Potential cross-kingdom pathogenic microorganisms must be able to First published online 26 February 2007. come into close and frequent contact with potential hosts, and must be able to overcome or evade host defences. Reproduction on, in, or near the new host will DOI:10.1111/j.1574-6976.2007.00065.x ensure the transmission or release of successful genotypes. -
Nasopharyngeal Infection by Streptococcus Pyogenes Requires Superantigen-Responsive Vβ-Specific T Cells
Nasopharyngeal infection by Streptococcus pyogenes requires superantigen-responsive Vβ-specific T cells Joseph J. Zeppaa, Katherine J. Kaspera, Ivor Mohorovica, Delfina M. Mazzucaa, S. M. Mansour Haeryfara,b,c,d, and John K. McCormicka,c,d,1 aDepartment of Microbiology and Immunology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada; bDepartment of Medicine, Division of Clinical Immunology & Allergy, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5A5, Canada; cCentre for Human Immunology, Western University, London, ON N6A 5C1, Canada; and dLawson Health Research Institute, London, ON N6C 2R5, Canada Edited by Philippa Marrack, Howard Hughes Medical Institute, National Jewish Health, Denver, CO, and approved July 14, 2017 (received for review January 18, 2017) The globally prominent pathogen Streptococcus pyogenes secretes context of invasive streptococcal disease is extremely dangerous, potent immunomodulatory proteins known as superantigens with a mortality rate of over 30% (10). (SAgs), which engage lateral surfaces of major histocompatibility The role of SAgs in severe human infections has been well class II molecules and T-cell receptor (TCR) β-chain variable domains established (5, 11, 12), and specific MHC-II haplotypes are known (Vβs). These interactions result in the activation of numerous Vβ- risk factors for the development of invasive streptococcal disease specific T cells, which is the defining activity of a SAg. Although (13), an outcome that has been directly linked to SAgs (14, 15). streptococcal SAgs are known virulence factors in scarlet fever However, how these exotoxins contribute to superficial disease and and toxic shock syndrome, mechanisms by how SAgs contribute colonization is less clear. -
Streptococcus Pyogenes- Membrane-Disrupting + Erythrogenic Toxin Superantigens
Game Plan Lecture Lab Disease pathogenesis Finish Minor Unknowns Portals of entry Staph, Strep and Enteric Mechanisms of pathogenicity Unknowns Toxins Next Class: Lab Exam Bacterial strategies for pathogenicity and virulence 1. Portals of entry 2. Infectious dose 3. Adherence 4. Penetration, evasion and damage 5. Portals of exit 1. Portals of entry 1. Portals of entry 2. Infectious Dose- ID50 Portal of entry ID50 for B. anthracis Skin 10-50 endospores Inhalation 10,000-20,000 endospores Ingestion 250,000-1,000,000 endospores Organism ID50 Ebola virus 1-10 particles (non-human primates) Influenza virus 100- 1000 particles (humans) 3. Adherence 1. Capsules 2. Pili and fimbriae 3. Biofilms 3. Other adhesins - Glycoproteins - Lipoproteins Figure 15.1 - Overview 4. Penetration, evasion and damage- exoenzymes and other substances 1. Hyaluronidase 2. Coagulase 3. Kinase 4. IgA protease 5. Siderophores 4. Penetration, evasion and damage- TOXINS Exotoxins Exotoxin Source Mostly Gram + (can be Gram -) Metabolic product By-products of growing cell Chemistry Protein, water soluble, heat labile Fever? No Neutralized by antitoxin Yes LD50 Small - Very potent 1 mg of Clostridium botulinum toxin can kill 1 million guinea pigs Types of Exotoxins: 1. A-B toxins Ex. Clostridium botulinum toxin Botulinum toxin (BOTOX) prevents acetylcholine release at neuromuscular junction http://www.botoxmedical.com/Blepharospasm/MechanismOfAction BOTOX: medical applications Blepharospasm Joseph Jankovic, M.D., professor of neurology, Baylor College of Medicine, Houston, Texas Hyperhidrosis BOTOX: cosmetic applications Types of Exotoxins: 2. Membrane disrupting or cytolytic toxins Ex. Hemolysins and leukocidins Types of Exotoxins: 3. Superantigens Ex. Staphylococcal and Streptococcal toxins that cause toxic shock syndrome Types of Exotoxins: 4. -
Impact of Bacterial Toxins in the Lungs
toxins Review Impact of Bacterial Toxins in the Lungs 1,2,3, , 4,5, 3 2 Rudolf Lucas * y, Yalda Hadizamani y, Joyce Gonzales , Boris Gorshkov , Thomas Bodmer 6, Yves Berthiaume 7, Ueli Moehrlen 8, Hartmut Lode 9, Hanno Huwer 10, Martina Hudel 11, Mobarak Abu Mraheil 11, Haroldo Alfredo Flores Toque 1,2, 11 4,5,12,13, , Trinad Chakraborty and Jürg Hamacher * y 1 Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; hfl[email protected] 2 Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; [email protected] 3 Department of Medicine and Division of Pulmonary Critical Care Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; [email protected] 4 Lungen-und Atmungsstiftung, Bern, 3012 Bern, Switzerland; [email protected] 5 Pneumology, Clinic for General Internal Medicine, Lindenhofspital Bern, 3012 Bern, Switzerland 6 Labormedizinisches Zentrum Dr. Risch, Waldeggstr. 37 CH-3097 Liebefeld, Switzerland; [email protected] 7 Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada; [email protected] 8 Pediatric Surgery, University Children’s Hospital, Zürich, Steinwiesstrasse 75, CH-8032 Zürch, Switzerland; [email protected] 9 Insitut für klinische Pharmakologie, Charité, Universitätsklinikum Berlin, Reichsstrasse 2, D-14052 Berlin, Germany; [email protected] 10 Department of Cardiothoracic Surgery, Voelklingen Heart Center, 66333 -
A Novel Superantigen Isolated from Pathogenic Strains of Streptococcus Pyogenes with Aminoterminal Homology to Staphylococcal Enterotoxins B and C
A novel superantigen isolated from pathogenic strains of Streptococcus pyogenes with aminoterminal homology to staphylococcal enterotoxins B and C. J A Mollick, … , D Grossman, R R Rich J Clin Invest. 1993;92(2):710-719. https://doi.org/10.1172/JCI116641. Research Article Streptococcus pyogenes (group A Streptococcus) has re-emerged in recent years as a cause of severe human disease. Because extracellular products are involved in streptococcal pathogenesis, we explored the possibility that a disease isolate expresses an uncharacterized superantigen. We screened culture supernatants for superantigen activity with a major histocompatibility complex class II-dependent T cell proliferation assay. Initial fractionation with red dye A chromatography indicated production of a class II-dependent T cell mitogen by a toxic shock-like syndrome (TSLS) strain. The amino terminus of the purified streptococcal superantigen was more homologous to the amino termini of staphylococcal enterotoxins B, C1, and C3 (SEB, SEC1, and SEC3), than to those of pyrogenic exotoxins A, B, C or other streptococcal toxins. The molecule, designated SSA, had the same pattern of class II isotype usage as SEB in T cell proliferation assays. However, it differed in its pattern of human T cell activation, as measured by quantitative polymerase chain reaction with V beta-specific primers. SSA activated human T cells that express V beta 1, 3, 15 with a minor increase of V beta 5.2-bearing cells, whereas SEB activated V beta 3, 12, 15, and 17-bearing T cells. Immunoblot analysis of 75 disease isolates from several localities detected SSA production only in group A streptococci, and found that SSA is apparently confined to only three clonal […] Find the latest version: https://jci.me/116641/pdf A Novel Superantigen Isolated from Pathogenic Strains of Streptococcus pyogenes with Aminoterminal Homology to Staphylococcal Enterotoxins B and C Joseph A. -
Chemical Strategies to Target Bacterial Virulence
Review pubs.acs.org/CR Chemical Strategies To Target Bacterial Virulence † ‡ ‡ † ‡ § ∥ Megan Garland, , Sebastian Loscher, and Matthew Bogyo*, , , , † ‡ § ∥ Cancer Biology Program, Department of Pathology, Department of Microbiology and Immunology, and Department of Chemical and Systems Biology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, United States ABSTRACT: Antibiotic resistance is a significant emerging health threat. Exacerbating this problem is the overprescription of antibiotics as well as a lack of development of new antibacterial agents. A paradigm shift toward the development of nonantibiotic agents that target the virulence factors of bacterial pathogens is one way to begin to address the issue of resistance. Of particular interest are compounds targeting bacterial AB toxins that have the potential to protect against toxin-induced pathology without harming healthy commensal microbial flora. Development of successful antitoxin agents would likely decrease the use of antibiotics, thereby reducing selective pressure that leads to antibiotic resistance mutations. In addition, antitoxin agents are not only promising for therapeutic applications, but also can be used as tools for the continued study of bacterial pathogenesis. In this review, we discuss the growing number of examples of chemical entities designed to target exotoxin virulence factors from important human bacterial pathogens. CONTENTS 3.5.1. C. diphtheriae: General Antitoxin Strat- egies 4435 1. Introduction 4423 3.6. Pseudomonas aeruginosa 4435 2. How Do Bacterial AB Toxins Work? 4424 3.6.1. P. aeruginosa: Inhibitors of ADP Ribosyl- 3. Small-Molecule Antivirulence Agents 4426 transferase Activity 4435 3.1. Clostridium difficile 4426 3.7. Bordetella pertussis 4436 3.1.1. C. -
Staphylococcal Enterotoxins
Toxins 2010, 2, 2177-2197; doi:10.3390/toxins2082177 OPEN ACCESS toxins ISSN 2072-6651 www.mdpi.com/journal/toxins Review Staphylococcal Enterotoxins Irina V. Pinchuk 1, Ellen J. Beswick 2 and Victor E. Reyes 3,* 1 Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555-0655, USA; E-Mail: [email protected] 2 Department of Molecular Genetics & Microbiology, University of New Mexico, Albuquerque, NM 87131, USA; E-Mail: [email protected] 3 Departments of Pediatrics and Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555-0366, USA * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-409-772-3824; Fax: +1-409-772-1761. Received: 29 June 2010; in revised form: 9 August 2010 / Accepted: 12 August 2010 / Published: 18 August 2010 Abstract: Staphylococcus aureus (S. aureus) is a Gram positive bacterium that is carried by about one third of the general population and is responsible for common and serious diseases. These diseases include food poisoning and toxic shock syndrome, which are caused by exotoxins produced by S. aureus. Of the more than 20 Staphylococcal enterotoxins, SEA and SEB are the best characterized and are also regarded as superantigens because of their ability to bind to class II MHC molecules on antigen presenting cells and stimulate large populations of T cells that share variable regions on the chain of the T cell receptor. The result of this massive T cell activation is a cytokine bolus leading to an acute toxic shock. These proteins are highly resistant to denaturation, which allows them to remain intact in contaminated food and trigger disease outbreaks. -
Speb) Boosts the Contact System Via Binding of Alpha-1 Antitrypsin Louise Meinert Niclasen, Johan G
Streptococcal pyrogenic exotoxin B (SpeB) boosts the contact system via binding of alpha-1 antitrypsin Louise Meinert Niclasen, Johan G. Olsen, Robert Dagil, Zhang Qing, Ole E Sørensen, Birthe B. Kragelund To cite this version: Louise Meinert Niclasen, Johan G. Olsen, Robert Dagil, Zhang Qing, Ole E Sørensen, et al.. Strep- tococcal pyrogenic exotoxin B (SpeB) boosts the contact system via binding of alpha-1 antitrypsin. Biochemical Journal, Portland Press, 2011, 434 (1), pp.123-132. 10.1042/BJ20100984. hal-00560689 HAL Id: hal-00560689 https://hal.archives-ouvertes.fr/hal-00560689 Submitted on 29 Jan 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Biochemical Journal Immediate Publication. Published on 16 Nov 2010 as manuscript BJ20100984 Streptococcal pyrogenic exotoxin B (SpeB) boosts the contact system via binding of alpha‐1 antitrypsin Louise Meinert Niclasen1, Johan G. Olsen1, Robert Dagil1, Zhang Qing2, Ole E. Sørensen2*, Birthe B. Kragelund1* 1University of Copenhagen, Department of Biology, Structural Biology and NMR Laboratory, Ole Maaloes Vej 5, DK‐2200 Copenhagen N, Denmark 2Lund University, Department of Clinical Sciences, Division of Infection Medicine, BMC, B14, Tornavägen 10, SE‐221 84 Lund, Sweden *Corresponding authors E‐mail: [email protected] E‐mail: [email protected] Short (page heading) running title: SpeB enhances bacterial killing THIS IS NOT THE VERSION OF RECORD - see doi:10.1042/BJ20100984 Accepted Manuscript 1 Licenced copy. -
The Evolving Field of Biodefence: Therapeutic Developments and Diagnostics
REVIEWS THE EVOLVING FIELD OF BIODEFENCE: THERAPEUTIC DEVELOPMENTS AND DIAGNOSTICS James C. Burnett*, Erik A. Henchal‡,Alan L. Schmaljohn‡ and Sina Bavari‡ Abstract | The threat of bioterrorism and the potential use of biological weapons against both military and civilian populations has become a major concern for governments around the world. For example, in 2001 anthrax-tainted letters resulted in several deaths, caused widespread public panic and exerted a heavy economic toll. If such a small-scale act of bioterrorism could have such a huge impact, then the effects of a large-scale attack would be catastrophic. This review covers recent progress in developing therapeutic countermeasures against, and diagnostics for, such agents. BACILLUS ANTHRACIS Microorganisms and toxins with the greatest potential small-molecule inhibitors, and a brief review of anti- The causative agent of anthrax for use as biological weapons have been categorized body development and design against biotoxins is and a Gram-positive, spore- using the scale A–C by the Centers for Disease Control mentioned in TABLE 1. forming bacillus. This aerobic and Prevention (CDC). This review covers the discovery organism is non-motile, catalase and challenges in the development of therapeutic coun- Anthrax toxin. The toxin secreted by BACILLUS ANTHRACIS, positive and forms large, grey–white to white, non- termeasures against select microorganisms and toxins ANTHRAX TOXIN (ATX), possesses the ability to impair haemolytic colonies on sheep from these categories. We also cover existing antibiotic innate and adaptive immune responses1–3,which in blood agar plates. treatments, and early detection and diagnostic strategies turn potentiates the bacterial infection. -
Streptococcal Superantigen-Induced Expansion of Human Tonsil T Cells
bioRxiv preprint doi: https://doi.org/10.1101/395608; this version posted August 19, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Streptococcal superantigen-induced expansion of human tonsil T cells leads to altered T follicular helper cell phenotype, B cell death, and reduced immunoglobulin release Frances J. Davies, Carl Olme, Nicola N. Lynskey, Claire E. Turner1, Shiranee Sriskandan*. Department of Medicine, Imperial College, Hammersmith Hospital, London, UK *Author for correspondence [email protected] 1Current affiliation Molecular Biology & Biotechnology, University of Sheffield, U.K. Keywords Superantigen Group A Streptococcus, Streptococcus pyogenes, TfH SPEA, scarlet fever toxin, erythrogenic toxin, tonsil, antibody Footnotes This work was presented in part at the 49th Interscience Conference on Antimicrobial Agents and Chemotherapy, San Francisco, 2009; the 13th Annual British Infection Society Meeting.2010, London doi https://doi.org/10.1016/j.jinf.2010.09.009 and the XVIII Lancefield International Symposium on Streptococci and Streptococcal Diseases, Palermo, 2011 and doctoral thesis (2012, Imperial College) https://spiral.imperial.ac.uk/handle/10044/1/9660 Funding This work was funded by the Medical Research Council (UK) through a Clinical Research Training Fellowship to FJD (G0601399). Acknowledgements The authors would like to extend their thanks to Mr Shula and his associated surgical team for participation in the ICHT Tissue Bank. FD and SS acknowledge the support of the NIHR Biomedical Research Centre (BRC) awarded to Imperial College NHS Healthcare Trust and the NIHR BRC-supported ICHT Tissue Bank.