Pathogenesis of Bacterial Pathogens

Total Page:16

File Type:pdf, Size:1020Kb

Pathogenesis of Bacterial Pathogens FMM/RAS/298: Strengthening capacities, policies and national action plans on prudent and responsible use of antimicrobials in fisheries Bacterial Pathogenesis Larry A. Hanson [email protected] Aquatic AMR Workshop 1: 10-11 April 2017, Mangalore, India Host-Parasite Relationships: Pathogenesis of Infections In any host-pathogen encounter, there are two determinants of the outcome: 1. Virulence of the parasite 2. Resistance of the host In some cases, the host-pathogen relationship is very complex: -Commensal but opportunistic will take advantage of weakened host and invade tissues setting up a potentially life- threatening infection Examples include motile Aeromonads- natural inhabitants of intestine but cause septicemia when fish is immune suppressed o Bacteria cause disease by 2 basic mechanisms: 1-Direct damage of host cells 2-Indirectly by stimulating exaggerated host inflammatory/immune response Virulence factors are molecular components expressed by a pathogen that increases its ability to cause disease Virulence factors can be divided into two categories: • 1. Those that cause damage to the host (toxins) • 2. Those that do not directly damage the host but promote colonization and survival of infecting bacteria A. Bacterial toxins 1. Exotoxin: protein molecule liberated from intact living bacterium. a. They are antigenic and can elicit protective antitoxic antibodies. Many of these toxins can be converted to nontoxic immunizing agents termed toxoids. b. Three roles of exotoxins in disease: i. Ingestion of preformed toxin (botulism) ii. Colonization of wound or surface followed by toxin production (cholera and diphtheria toxins) iii. Exotoxin produced by bacteria in tissues to aid growth and spread (Clostridium perfringens alpha-toxin) d. Types of exotoxins: i. A-B toxins (intracellular acting) 1) Composed of two parts: A and B portions 2) The B portion mediates binding to a specific host cell receptor. 3) After binding to the host cell, the A portion is translocated into host cells and has biological activity against an intracellular target or 4) Examples: a) Diphtheria toxin: ADP-ribosylation of host EF-2; host cells are killed by blocking translation. b) Cholera toxin: ADP-ribosylation of a cAMP regulatory protein, which causes loss of ion regulation, water loss, diarrhea. c) Shiga toxin cleaves host rRNA, which blocks translation and kills the host cell. d) Clostridium botulinum- large subunit targets neurons, small subunit cleave snare proteins inhibiting neurotransmitter release from neurons- causes paralysis BoNT- E in fish (most toxic substance known) ii. Membrane disrupting (surface damaging) 1) Cause damage or disruption of plasma membranes, which leads to osmotic lysis and cell death. Many were originally termed “hemolysins” because they lyse RBCs. 2) Three types of membrane disrupting toxins: a) Enzymes that hydrolyze phospholipids: phospholipase, sphingomyelinase b) Toxins with detergent-like surfactant activity that disrupt by membrane solubilization c) Pore forming toxins (the most common): proteins that insert in the host membrane and form a hydrophilic pore Aeromonas produces up to 4 hemolysins- aerolysin A (AeroA) and Heat labile hemolysin AHH1- work synergistically, also some aeromonads produce the pore forming toxin RtxA Staphylococcus aureus alpha hemolysin, looking down the central pore iii. Superantigens 1) Toxins that bind directly to MHC II on macrophages (without being processed) and form a crosslink with T cell receptors. 2) Crosslinking causes stimulation of up to 1 in 5 T cells in the body (normal antigens cause stimulation of 1 in 10,000). 3) Excessive IL-2 production results from the massive stimulation of T helper cells, 4) Stimulation of other cytokines by IL-2 lead to shock. Example: staphylococcal toxic-shock syndrome iv. Extracellular enzymes: break down host macromolecules. play an important role in disease development by providing a nutrients or aiding in dissemination. Can cause extensive tissue damage Examples: a) Coagulase – clots fibrin, thus protecting the bacteria. b) Hyaluronidases and proteases – aid in the spread of bacteria by degrading extracellular matrix. c) Collagenase – aids in dissemination d) DNase – reduces viscosity of debris from dead cells (may help escape DNA net by neutrophil). A. hydrophila - Express diverse extracellular enzymes can contribute to virulence including collagenase, elastase, enolase, lipases (heat stable lipase, pla and Plc), metallo protease, and serine protease, Rnase R. 2. Endotoxin- released when cells die: lipopolysaccharide (LPS) produced by gram- negative bacteria. In gram-positive bacteria peptidoglycan and teichoic acids. a. LPS is bound by LPS binding proteins in plasma, which then binds CD14. This complex binds Toll-like receptor 4 (TLR4) on macrophages and monocytes. TLR2 binds teichoic acids. TLR1 binds peptidoglycan. b. Macrophages and monocytes release cytokines (IL-1, IL-6, IL-8, TNF alpha, Platelet Activating Factor), which subsequently trigger prostaglandin and leukotriene release c. The complement and coagulation cascades are activated. e. endotoxic shock occurs when bacterial products reach high enough levels in the blood to trigger complement activation, cytokine release, and coagulation cascade activation in many parts of the body. Circulatory system collapse followed by multiple organ system failure occurs. B. Bacterial invasion of host tissues 1. Host damage is caused during invasion by either: a. direct disruption of function b. an exaggerated immune response that compromises tissue function. 2. The invasive bacteria are classified as: a. Facultative Intracellular Parasites i. FIPs are not confined to cells ii. Some can multiply in professional phagocytic cells. iii. When a balance is established between the bacterium and phagocyte, the bacteria may survive in this intracellular state for months or years (example: Mycobacterium). b. Obligate Intracellular Parasites; can only propagate inside host cells. Examples include chlamydia and rickettsia c. Extracellular parasites, which cause tissue damage while they are outside phagocytes and other cells and do not have the ability to survive long periods in cells. 3. Steps in bacterial invasion: a. Motility i. Flagella are the best characterized; adapted for low viscosity fluids. ii. Other types of motility: corkscrew type (Spirochetes--best in viscous solutions), gliding motility (Flavobacterium columnare and cytophagas, myxobacteria--movement over solid surfaces). iii. Chemotaxis is directional swimming using a gradient (especially nutrients). A. hydrophila produce lateral flagella for surface movement and polar flagella for movement in suspension. Glycosylation of polar flagella involved in biofilm formation, binding to cells and mucosal adherence b. Adherence i. Two common strategies: fimbriae and monomeric protein adhesins. ii. Fimbriae (pili): receptors are usually carbohydrate residues of glycoproteins or glycolipids. Attachment is more fragile. Highly specific binding, often mediated by adhesins, can be blocked by antibodies, often specific for host tissue type/location. iii. Monomeric protein adhesins: mediated by cell surface proteins, tighter binding to host cell, may recognize proteins on host cell surface, may follow looser fimbrial attachment. Aeromonas-bundle-forming pilus (encoded by bfp) is a critical internal colonizing factor c. Invasion of host cells (intracellular pathogens) i. Some invasive bacteria have mechanisms for entering host cells that are not naturally phagocytic. ii. Two types of bacterial-mediated invasion: a. Zippering: bacteria present ligands on their surface allowing them to bind to host cells and initiate the entry process. It is similar to FcR- and CR3- mediated phagocytosis, which is characterized by the formation of inclusion shaped by the bacteria they ingest (Yersinia pestis Ail). b. Triggering: bacteria inject effectors into host cells via T3SS to regulate phagocytosis (Salmonella). iii. Following attachment to host cells, pathogens cause changes in host cell cytoskeleton (actin) that cause the pathogen to be internalized. iv. Some pathogens can utilize actin fibers intracellularly to move through host cells (transcytosis). v. Invasins may also mediate uptake of bacteria into professional phagocytic cells in a way that bypasses normal phagosome formation. d. Manipulation of host cell functions i. Bacterial pathogens are often very manipulative of host cell functions; both extracellular and intracellular pathogens will cause host cells to perform functions favorable to the pathogen. a. For example, leukotoxin produced by Mannheimia haemolytica (extracellular pathogen) induces cytokine secretion. b. Listeria monocytogenes (intracellular pathogen) produces a protein that mobilizes actin to propel bacteria through the cell and into neighboring cells. ii. Some bacterial pathogens have a specialized type III secretion system (TTSS) that forms a needle-like structure that injects effector proteins directly into the host cell cytoplasm. a. In some cases, these effector proteins serve as receptors in the host membrane for bacterial attachment. b. In some cases, these effector proteins can mobilize cytoskeleton to cause phagocytosis. c. In some cases, effector proteins can induce or prevent apoptosis. Aeromonas express type II, III and VI secretion systems III and VI can inject effector proteins into host cells (II is for extracellular release of proteins). 4. Obtaining nutrients a. Pathogenic bacteria have intricate methods to obtain
Recommended publications
  • The Role of Streptococcal and Staphylococcal Exotoxins and Proteases in Human Necrotizing Soft Tissue Infections
    toxins Review The Role of Streptococcal and Staphylococcal Exotoxins and Proteases in Human Necrotizing Soft Tissue Infections Patience Shumba 1, Srikanth Mairpady Shambat 2 and Nikolai Siemens 1,* 1 Center for Functional Genomics of Microbes, Department of Molecular Genetics and Infection Biology, University of Greifswald, D-17489 Greifswald, Germany; [email protected] 2 Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, CH-8091 Zurich, Switzerland; [email protected] * Correspondence: [email protected]; Tel.: +49-3834-420-5711 Received: 20 May 2019; Accepted: 10 June 2019; Published: 11 June 2019 Abstract: Necrotizing soft tissue infections (NSTIs) are critical clinical conditions characterized by extensive necrosis of any layer of the soft tissue and systemic toxicity. Group A streptococci (GAS) and Staphylococcus aureus are two major pathogens associated with monomicrobial NSTIs. In the tissue environment, both Gram-positive bacteria secrete a variety of molecules, including pore-forming exotoxins, superantigens, and proteases with cytolytic and immunomodulatory functions. The present review summarizes the current knowledge about streptococcal and staphylococcal toxins in NSTIs with a special focus on their contribution to disease progression, tissue pathology, and immune evasion strategies. Keywords: Streptococcus pyogenes; group A streptococcus; Staphylococcus aureus; skin infections; necrotizing soft tissue infections; pore-forming toxins; superantigens; immunomodulatory proteases; immune responses Key Contribution: Group A streptococcal and Staphylococcus aureus toxins manipulate host physiological and immunological responses to promote disease severity and progression. 1. Introduction Necrotizing soft tissue infections (NSTIs) are rare and represent a more severe rapidly progressing form of soft tissue infections that account for significant morbidity and mortality [1].
    [Show full text]
  • How Do Pathogenic Microorganisms Develop Cross-Kingdom Host Jumps? Peter Van Baarlen1, Alex Van Belkum2, Richard C
    Molecular mechanisms of pathogenicity: how do pathogenic microorganisms develop cross-kingdom host jumps? Peter van Baarlen1, Alex van Belkum2, Richard C. Summerbell3, Pedro W. Crous3 & Bart P.H.J. Thomma1 1Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands; 2Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands; and 3CBS Fungal Biodiversity Centre, Utrecht, The Netherlands Correspondence: Bart P.H.J. Thomma, Abstract Downloaded from https://academic.oup.com/femsre/article/31/3/239/2367343 by guest on 27 September 2021 Laboratory of Phytopathology, Wageningen University, Binnenhaven 5, 6709 PD It is common knowledge that pathogenic viruses can change hosts, with avian Wageningen, The Netherlands. Tel.: 10031 influenza, the HIV, and the causal agent of variant Creutzfeldt–Jacob encephalitis 317 484536; fax: 10031 317 483412; as well-known examples. Less well known, however, is that host jumps also occur e-mail: [email protected] with more complex pathogenic microorganisms such as bacteria and fungi. In extreme cases, these host jumps even cross kingdom of life barriers. A number of Received 3 July 2006; revised 22 December requirements need to be met to enable a microorganism to cross such kingdom 2006; accepted 23 December 2006. barriers. Potential cross-kingdom pathogenic microorganisms must be able to First published online 26 February 2007. come into close and frequent contact with potential hosts, and must be able to overcome or evade host defences. Reproduction on, in, or near the new host will DOI:10.1111/j.1574-6976.2007.00065.x ensure the transmission or release of successful genotypes.
    [Show full text]
  • Genetic Engineering and Sustainable Crop Disease Management: Opportunities for Case-By-Case Decision-Making
    sustainability Review Genetic Engineering and Sustainable Crop Disease Management: Opportunities for Case-by-Case Decision-Making Paul Vincelli Department of Plant Pathology, 207 Plant Science Building, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA; [email protected] Academic Editor: Sean Clark Received: 22 March 2016; Accepted: 13 May 2016; Published: 20 May 2016 Abstract: Genetic engineering (GE) offers an expanding array of strategies for enhancing disease resistance of crop plants in sustainable ways, including the potential for reduced pesticide usage. Certain GE applications involve transgenesis, in some cases creating a metabolic pathway novel to the GE crop. In other cases, only cisgenessis is employed. In yet other cases, engineered genetic changes can be so minimal as to be indistinguishable from natural mutations. Thus, GE crops vary substantially and should be evaluated for risks, benefits, and social considerations on a case-by-case basis. Deployment of GE traits should be with an eye towards long-term sustainability; several options are discussed. Selected risks and concerns of GE are also considered, along with genome editing, a technology that greatly expands the capacity of molecular biologists to make more precise and targeted genetic edits. While GE is merely a suite of tools to supplement other breeding techniques, if wisely used, certain GE tools and applications can contribute to sustainability goals. Keywords: biotechnology; GMO (genetically modified organism) 1. Introduction and Background Disease management practices can contribute to sustainability by protecting crop yields, maintaining and improving profitability for crop producers, reducing losses along the distribution chain, and reducing the negative environmental impacts of diseases and their management.
    [Show full text]
  • Zoonotic Diseases Fact Sheet
    ZOONOTIC DISEASES FACT SHEET s e ion ecie s n t n p is ms n e e s tio s g s m to a a o u t Rang s p t tme to e th n s n m c a s a ra y a re ho Di P Ge Ho T S Incub F T P Brucella (B. Infected animals Skin or mucous membrane High and protracted (extended) fever. 1-15 weeks Most commonly Antibiotic melitensis, B. (swine, cattle, goats, contact with infected Infection affects bone, heart, reported U.S. combination: abortus, B. suis, B. sheep, dogs) animals, their blood, tissue, gallbladder, kidney, spleen, and laboratory-associated streptomycina, Brucellosis* Bacteria canis ) and other body fluids causes highly disseminated lesions bacterial infection in tetracycline, and and abscess man sulfonamides Salmonella (S. Domestic (dogs, cats, Direct contact as well as Mild gastroenteritiis (diarrhea) to high 6 hours to 3 Fatality rate of 5-10% Antibiotic cholera-suis, S. monkeys, rodents, indirect consumption fever, severe headache, and spleen days combination: enteriditis, S. labor-atory rodents, (eggs, food vehicles using enlargement. May lead to focal chloramphenicol, typhymurium, S. rep-tiles [especially eggs, etc.). Human to infection in any organ or tissue of the neomycin, ampicillin Salmonellosis Bacteria typhi) turtles], chickens and human transmission also body) fish) and herd animals possible (cattle, chickens, pigs) All Shigella species Captive non-human Oral-fecal route Ranges from asymptomatic carrier to Varies by Highly infective. Low Intravenous fluids primates severe bacillary dysentery with high species. 16 number of organisms and electrolytes, fevers, weakness, severe abdominal hours to 7 capable of causing Antibiotics: ampicillin, cramps, prostration, edema of the days.
    [Show full text]
  • Chapter 2 Disease and Disease Transmission
    DISEASE AND DISEASE TRANSMISSION Chapter 2 Disease and disease transmission An enormous variety of organisms exist, including some which can survive and even develop in the body of people or animals. If the organism can cause infection, it is an infectious agent. In this manual infectious agents which cause infection and illness are called pathogens. Diseases caused by pathogens, or the toxins they produce, are communicable or infectious diseases (45). In this manual these will be called disease and infection. This chapter presents the transmission cycle of disease with its different elements, and categorises the different infections related to WES. 2.1 Introduction to the transmission cycle of disease To be able to persist or live on, pathogens must be able to leave an infected host, survive transmission in the environment, enter a susceptible person or animal, and develop and/or multiply in the newly infected host. The transmission of pathogens from current to future host follows a repeating cycle. This cycle can be simple, with a direct transmission from current to future host, or complex, where transmission occurs through (multiple) intermediate hosts or vectors. This cycle is called the transmission cycle of disease, or transmission cycle. The transmission cycle has different elements: The pathogen: the organism causing the infection The host: the infected person or animal ‘carrying’ the pathogen The exit: the method the pathogen uses to leave the body of the host Transmission: how the pathogen is transferred from host to susceptible person or animal, which can include developmental stages in the environment, in intermediate hosts, or in vectors 7 CONTROLLING AND PREVENTING DISEASE The environment: the environment in which transmission of the pathogen takes place.
    [Show full text]
  • Nasopharyngeal Infection by Streptococcus Pyogenes Requires Superantigen-Responsive Vβ-Specific T Cells
    Nasopharyngeal infection by Streptococcus pyogenes requires superantigen-responsive Vβ-specific T cells Joseph J. Zeppaa, Katherine J. Kaspera, Ivor Mohorovica, Delfina M. Mazzucaa, S. M. Mansour Haeryfara,b,c,d, and John K. McCormicka,c,d,1 aDepartment of Microbiology and Immunology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada; bDepartment of Medicine, Division of Clinical Immunology & Allergy, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5A5, Canada; cCentre for Human Immunology, Western University, London, ON N6A 5C1, Canada; and dLawson Health Research Institute, London, ON N6C 2R5, Canada Edited by Philippa Marrack, Howard Hughes Medical Institute, National Jewish Health, Denver, CO, and approved July 14, 2017 (received for review January 18, 2017) The globally prominent pathogen Streptococcus pyogenes secretes context of invasive streptococcal disease is extremely dangerous, potent immunomodulatory proteins known as superantigens with a mortality rate of over 30% (10). (SAgs), which engage lateral surfaces of major histocompatibility The role of SAgs in severe human infections has been well class II molecules and T-cell receptor (TCR) β-chain variable domains established (5, 11, 12), and specific MHC-II haplotypes are known (Vβs). These interactions result in the activation of numerous Vβ- risk factors for the development of invasive streptococcal disease specific T cells, which is the defining activity of a SAg. Although (13), an outcome that has been directly linked to SAgs (14, 15). streptococcal SAgs are known virulence factors in scarlet fever However, how these exotoxins contribute to superficial disease and and toxic shock syndrome, mechanisms by how SAgs contribute colonization is less clear.
    [Show full text]
  • Ask a Scientist: How Do People Become Infected with Germs?
    One way to think about how living things get sick is to imagine a triangle. The three corners represent the environment... ...the host... All three aspects of this triangle must come ...and the cause of the disease, together for disease to occur. Disease the Agent. agents can be non-infectious or infectious. Non-infectious agents are non-living things that are toxic to the host, like radiation or chemicals... ...while infectious agents are organisms that invade a host to survive. Only infectious agents can spread, or transmit, between hosts. Infectious disease agents, otherwise known as pathogens, A person can become infected with a must infect a host pathogen when in the same environment in order to grow, or as the agent... replicate. Human pathogens, like viruses, bacteria, and parasites, evolved to infect people. Their survival is dependent on quickly invading, making more of themselves, and efficiently transmitting to others. If a pathogen gets past a host’s defenses, it will attempt to infect the host and begin replicating itself. ...and don’t have enough protection in the form The subsequent battle between Many cells will be destroyed as of physical barriers or the germs and the body’s germs kill them through replicating pre-existing immunity. immune system will cause the and as collateral damage from the symptoms of illness. activated immune cells. That’s just how one person gets infected, but how does disease spread? Well, if sick people go around sneezing and coughing without covering their mouth or frequently washing their hands... ...they are actually spreading pathogens all over the environment around them.
    [Show full text]
  • Impact of Bacterial Toxins in the Lungs
    toxins Review Impact of Bacterial Toxins in the Lungs 1,2,3, , 4,5, 3 2 Rudolf Lucas * y, Yalda Hadizamani y, Joyce Gonzales , Boris Gorshkov , Thomas Bodmer 6, Yves Berthiaume 7, Ueli Moehrlen 8, Hartmut Lode 9, Hanno Huwer 10, Martina Hudel 11, Mobarak Abu Mraheil 11, Haroldo Alfredo Flores Toque 1,2, 11 4,5,12,13, , Trinad Chakraborty and Jürg Hamacher * y 1 Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; hfl[email protected] 2 Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; [email protected] 3 Department of Medicine and Division of Pulmonary Critical Care Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; [email protected] 4 Lungen-und Atmungsstiftung, Bern, 3012 Bern, Switzerland; [email protected] 5 Pneumology, Clinic for General Internal Medicine, Lindenhofspital Bern, 3012 Bern, Switzerland 6 Labormedizinisches Zentrum Dr. Risch, Waldeggstr. 37 CH-3097 Liebefeld, Switzerland; [email protected] 7 Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada; [email protected] 8 Pediatric Surgery, University Children’s Hospital, Zürich, Steinwiesstrasse 75, CH-8032 Zürch, Switzerland; [email protected] 9 Insitut für klinische Pharmakologie, Charité, Universitätsklinikum Berlin, Reichsstrasse 2, D-14052 Berlin, Germany; [email protected] 10 Department of Cardiothoracic Surgery, Voelklingen Heart Center, 66333
    [Show full text]
  • Neglected Tropical Diseases in The
    Qian et al. Infectious Diseases of Poverty (2019) 8:86 https://doi.org/10.1186/s40249-019-0599-4 SCOPING REVIEW Open Access Neglected tropical diseases in the People’s Republic of China: progress towards elimination Men-Bao Qian1, Jin Chen1, Robert Bergquist2, Zhong-Jie Li3, Shi-Zhu Li1, Ning Xiao1, Jürg Utzinger4,5 and Xiao-Nong Zhou1* Abstract Since the founding of the People’s Republic of China in 1949, considerable progress has been made in the control and elimination of the country’s initial set of 11 neglected tropical diseases. Indeed, elimination as a public health problem has been declared for lymphatic filariasis in 2007 and for trachoma in 2015. The remaining numbers of people affected by soil-transmitted helminth infection, clonorchiasis, taeniasis, and echinococcosis in 2015 were 29.1 million, 6.0 million, 366 200, and 166 100, respectively. In 2017, after more than 60 years of uninterrupted, multifaceted schistosomiasis control, has seen the number of cases dwindling from more than 10 million to 37 600. Meanwhile, about 6000 dengue cases are reported, while the incidence of leishmaniasis, leprosy, and rabies are down at 600 or fewer per year. Sustained social and economic development, going hand-in-hand with improvement of water, sanitation, and hygiene provide the foundation for continued progress, while rigorous surveillance and specific public health responses will consolidate achievements and shape the elimination agenda. Targets for poverty elimination and strategic plans and intervention packages post-2020 are important opportunities for further control and elimination, when remaining challenges call for sustainable efforts. Keywords: Control, Elimination, People's Republic of China, Neglected tropical diseases Multilingual abstracts deprived urban settings [1, 2].
    [Show full text]
  • Chemical Strategies to Target Bacterial Virulence
    Review pubs.acs.org/CR Chemical Strategies To Target Bacterial Virulence † ‡ ‡ † ‡ § ∥ Megan Garland, , Sebastian Loscher, and Matthew Bogyo*, , , , † ‡ § ∥ Cancer Biology Program, Department of Pathology, Department of Microbiology and Immunology, and Department of Chemical and Systems Biology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, United States ABSTRACT: Antibiotic resistance is a significant emerging health threat. Exacerbating this problem is the overprescription of antibiotics as well as a lack of development of new antibacterial agents. A paradigm shift toward the development of nonantibiotic agents that target the virulence factors of bacterial pathogens is one way to begin to address the issue of resistance. Of particular interest are compounds targeting bacterial AB toxins that have the potential to protect against toxin-induced pathology without harming healthy commensal microbial flora. Development of successful antitoxin agents would likely decrease the use of antibiotics, thereby reducing selective pressure that leads to antibiotic resistance mutations. In addition, antitoxin agents are not only promising for therapeutic applications, but also can be used as tools for the continued study of bacterial pathogenesis. In this review, we discuss the growing number of examples of chemical entities designed to target exotoxin virulence factors from important human bacterial pathogens. CONTENTS 3.5.1. C. diphtheriae: General Antitoxin Strat- egies 4435 1. Introduction 4423 3.6. Pseudomonas aeruginosa 4435 2. How Do Bacterial AB Toxins Work? 4424 3.6.1. P. aeruginosa: Inhibitors of ADP Ribosyl- 3. Small-Molecule Antivirulence Agents 4426 transferase Activity 4435 3.1. Clostridium difficile 4426 3.7. Bordetella pertussis 4436 3.1.1. C.
    [Show full text]
  • Staphylococcal Enterotoxins
    Toxins 2010, 2, 2177-2197; doi:10.3390/toxins2082177 OPEN ACCESS toxins ISSN 2072-6651 www.mdpi.com/journal/toxins Review Staphylococcal Enterotoxins Irina V. Pinchuk 1, Ellen J. Beswick 2 and Victor E. Reyes 3,* 1 Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555-0655, USA; E-Mail: [email protected] 2 Department of Molecular Genetics & Microbiology, University of New Mexico, Albuquerque, NM 87131, USA; E-Mail: [email protected] 3 Departments of Pediatrics and Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555-0366, USA * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-409-772-3824; Fax: +1-409-772-1761. Received: 29 June 2010; in revised form: 9 August 2010 / Accepted: 12 August 2010 / Published: 18 August 2010 Abstract: Staphylococcus aureus (S. aureus) is a Gram positive bacterium that is carried by about one third of the general population and is responsible for common and serious diseases. These diseases include food poisoning and toxic shock syndrome, which are caused by exotoxins produced by S. aureus. Of the more than 20 Staphylococcal enterotoxins, SEA and SEB are the best characterized and are also regarded as superantigens because of their ability to bind to class II MHC molecules on antigen presenting cells and stimulate large populations of T cells that share variable regions on the chain of the T cell receptor. The result of this massive T cell activation is a cytokine bolus leading to an acute toxic shock. These proteins are highly resistant to denaturation, which allows them to remain intact in contaminated food and trigger disease outbreaks.
    [Show full text]
  • Working to Overcome the Global Impact of Neglected Tropical Diseases Annexe I
    Working to Overcome the Global Impact of Neglected Tropical Diseases Annexe I Working to overcome the global impact of neglected tropical diseases First WHO report on neglected tropical diseases WHO Library Cataloguing-in-Publication Data First WHO report on neglected tropical diseases: working to overcome the global impact of neglected tropical diseases. 1 Tropical medicine - trends. 2 Endemic diseases. 3 Poverty areas. 4. Parasitic diseases. 5 Developing countries. 6. Annual reports. I. World Health Organization ISBN 978 92 4 1564090 (NLM Classification: WC 680) Working to overcome the global impact of neglected tropical diseases was produced under the overall direction and supervision of Dr Lorenzo Savioli (Director, WHO Department of Control of Neglected Tropical Diseases) and Dr Denis Daumerie (Programme Manager, WHO Department of Control of Neglected Tropical Diseases), with contributions from staff serving in the department. Regional directors and members of their staff provided support and advice. Valuable inputs in the form of contributions, peer reviews and suggestions were received by members of the Strategic and Technical Advisory Group for Neglected Tropical Diseases. The report was edited by Professor David W.T. Crompton, assisted by Mrs Patricia Peters. © World Health Organization 2010 All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; e-mail: [email protected]).
    [Show full text]