Extrasolar Planetary Magnetic Fields
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born. -
An Extreme Planetary System Around HD 219828 One Long-Period Super Jupiter to a Hot-Neptune Host Star?,??
A&A 592, A13 (2016) Astronomy DOI: 10.1051/0004-6361/201628374 & c ESO 2016 Astrophysics An extreme planetary system around HD 219828 One long-period super Jupiter to a hot-Neptune host star?,?? N. C. Santos1; 2, A. Santerne1, J. P. Faria1; 2, J. Rey3, A. C. M. Correia4; 5, J. Laskar5, S. Udry3, V. Adibekyan1, F. Bouchy3; 6, E. Delgado-Mena1, C. Melo7, X. Dumusque3, G. Hébrard8; 9, C. Lovis3, M. Mayor3, M. Montalto1, A. Mortier10, F. Pepe3, P. Figueira1, J. Sahlmann11, D. Ségransan3, and S. G. Sousa1 1 Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, 4150-762 Porto, Portugal e-mail: [email protected] 2 Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal 3 Observatoire de Genève, Université de Genève, 51 ch. des Maillettes, 1290 Sauverny, Switzerland 4 CIDMA, Departamento de Física, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal 5 ASD, IMCCE-CNRS UMR 8028, Observatoire de Paris, PSL Research University, 77 Av. Denfert-Rochereau, 75014 Paris, France 6 Aix-Marseille Université, CNRS, Laboratoire d’Astrophysique de Marseille UMR 7326, 13388 Marseille Cedex 13, France 7 European Southern Observatory (ESO), 19001 Casilla, Santiago, Chile 8 Observatoire de Haute-Provence, CNRS/OAMP, 04870 Saint-Michel-l’Observatoire, France 9 Institut d’Astrophysique de Paris, UMR 7095 CNRS, Université Pierre & Marie Curie, 98bis boulevard Arago, 75014 Paris, France 10 SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews, KY16 9SS, UK 11 European Space Agency (ESA), Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA Received 24 February 2016 / Accepted 10 May 2016 ABSTRACT Context. -
Naming the Extrasolar Planets
Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named. -
SILICON and OXYGEN ABUNDANCES in PLANET-HOST STARS Erik Brugamyer, Sarah E
The Astrophysical Journal, 738:97 (11pp), 2011 September 1 doi:10.1088/0004-637X/738/1/97 C 2011. The American Astronomical Society. All rights reserved. Printed in the U.S.A. SILICON AND OXYGEN ABUNDANCES IN PLANET-HOST STARS Erik Brugamyer, Sarah E. Dodson-Robinson, William D. Cochran, and Christopher Sneden Department of Astronomy and McDonald Observatory, University of Texas at Austin, 1 University Station C1400, Austin, TX 78712, USA; [email protected] Received 2011 February 4; accepted 2011 June 22; published 2011 August 16 ABSTRACT The positive correlation between planet detection rate and host star iron abundance lends strong support to the core accretion theory of planet formation. However, iron is not the most significant mass contributor to the cores of giant planets. Since giant planet cores are thought to grow from silicate grains with icy mantles, the likelihood of gas giant formation should depend heavily on the oxygen and silicon abundance of the planet formation environment. Here we compare the silicon and oxygen abundances of a set of 76 planet hosts and a control sample of 80 metal-rich stars without any known giant planets. Our new, independent analysis was conducted using high resolution, high signal-to-noise data obtained at McDonald Observatory. Because we do not wish to simply reproduce the known planet–metallicity correlation, we have devised a statistical method for matching the underlying [Fe/H] distributions of our two sets of stars. We find a 99% probability that planet detection rate depends on the silicon abundance of the host star, over and above the observed planet–metallicity correlation. -
AMD-Stability and the Classification of Planetary Systems
A&A 605, A72 (2017) DOI: 10.1051/0004-6361/201630022 Astronomy c ESO 2017 Astrophysics& AMD-stability and the classification of planetary systems? J. Laskar and A. C. Petit ASD/IMCCE, CNRS-UMR 8028, Observatoire de Paris, PSL, UPMC, 77 Avenue Denfert-Rochereau, 75014 Paris, France e-mail: [email protected] Received 7 November 2016 / Accepted 23 January 2017 ABSTRACT We present here in full detail the evolution of the angular momentum deficit (AMD) during collisions as it was described in Laskar (2000, Phys. Rev. Lett., 84, 3240). Since then, the AMD has been revealed to be a key parameter for the understanding of the outcome of planetary formation models. We define here the AMD-stability criterion that can be easily verified on a newly discovered planetary system. We show how AMD-stability can be used to establish a classification of the multiplanet systems in order to exhibit the planetary systems that are long-term stable because they are AMD-stable, and those that are AMD-unstable which then require some additional dynamical studies to conclude on their stability. The AMD-stability classification is applied to the 131 multiplanet systems from The Extrasolar Planet Encyclopaedia database for which the orbital elements are sufficiently well known. Key words. chaos – celestial mechanics – planets and satellites: dynamical evolution and stability – planets and satellites: formation – planets and satellites: general 1. Introduction motion resonances (MMR, Wisdom 1980; Deck et al. 2013; Ramos et al. 2015) could justify the Hill-type criteria, but the The increasing number of planetary systems has made it nec- results on the overlap of the MMR island are valid only for close essary to search for a possible classification of these planetary orbits and for short-term stability. -
A Search for Multi-Planet Systems Using the Hobby-Eberly Telescope
A Search for Multi-Planet Systems Using the Hobby-Eberly Telescope1 Robert A. Wittenmyer2,3, Michael Endl2, William D. Cochran2, Harold F. Levison4, Gregory W. Henry5 [email protected] ABSTRACT Extrasolar multiple-planet systems provide valuable opportunities for testing the- ories of planet formation and evolution. The architectures of the known multiple- planet systems demonstrate a fascinating level of diversity, which motivates the search for additional examples of such systems in order to better constrain their formation and dynamical histories. Here we describe a comprehensive investiga- tion of 22 planetary systems in an effort to answer three questions: 1) Are there additional planets? 2) Where could additional planets reside in stable orbits? and 3) What limits can these observations place on such objects? We find no evidence for additional bodies in any of these systems; indeed, these new data do not support three previously announced planets (HD 20367b: Udry et al. 2003, HD 74156d: Bean et al. 2008, and 47 UMa c: Fischer et al. 2002). The dynamical simulations show that nearly all of the 22 systems have large regions in which additional planets could exist in stable orbits. The detection-limit computations indicate that this study is sensitive to close-in Neptune-mass planets for most of the systems targeted. We conclude with a discussion on the implications of these non-detections. arXiv:0903.0652v1 [astro-ph.EP] 3 Mar 2009 Subject headings: stars: planetary systems – extrasolar planets 1Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the Uni- versity of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians- Universit¨at M¨unchen, and Georg-August-Universit¨at G¨ottingen. -
A New Neptune-Mass Planet Orbiting HD 219828
A&A 467, 721–727 (2007) Astronomy DOI: 10.1051/0004-6361:20066845 & c ESO 2007 Astrophysics A new Neptune-mass planet orbiting HD 219828 C. Melo1,N.C.Santos2,3,4,W.Gieren5, G. Pietrzynski5,M.T.Ruiz6,S.G.Sousa2,7,8, F. Bouchy9,C.Lovis3, M. Mayor3,F.Pepe3,D.Queloz3, R. da Silva3,andS.Udry3 1 European Southern Observatory, Casilla 19001, Santiago 19, Chile e-mail: [email protected] 2 Centro de Astronomia e Astrofísica da Universidade de Lisboa, Observatório Astronómico de Lisboa, Tapada da Ajuda, 1349-018 Lisboa, Portugal 3 Observatoire de Genève, 51 ch. des Maillettes, 1290 Sauverny, Switzerland 4 Centro de Geofisica de Évora, Rua Romão Ramalho 59, 7002-554 Évora, Portugal 5 Universidad de Concepcion, Departamento de Fisica, Casilla 160-C, Concepcion, Chile 6 Departamento de Astronomia, Universidad de Chile, Casilla Postal 36D, Santiago, Chile 7 Centro de Astrofísica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal 8 Departamento de Matemática Aplicada, Faculdade de Ciências da Universidade do Porto, Portugal 9 Institut d’Astrophysique de Paris, 98bis Bd. Arago, 75014 Paris, France Received 30 November 2006 / Accepted 28 January 2007 ABSTRACT Two years ago a new benchmark for the planetary survey was set with the discoveries of three extrasolar planets with masses be- low 20 M⊕. In particular, the serendipitous discovery of the 14 M⊕ planet around µ Ara found with HARPS with a semi-amplitude of only 4 m s−1 put in evidence the tremendous potential of HARPS for the search of this class of very low-mass planets. -
Quantization of Planetary Systems and Its Dependency on Stellar Rotation Jean-Paul A
Quantization of Planetary Systems and its Dependency on Stellar Rotation Jean-Paul A. Zoghbi∗ ABSTRACT With the discovery of now more than 500 exoplanets, we present a statistical analysis of the planetary orbital periods and their relationship to the rotation periods of their parent stars. We test whether the structure of planetary orbits, i.e. planetary angular momentum and orbital periods are ‘quantized’ in integer or half-integer multiples with respect to the parent stars’ rotation period. The Solar System is first shown to exhibit quantized planetary orbits that correlate with the Sun’s rotation period. The analysis is then expanded over 443 exoplanets to statistically validate this quantization and its association with stellar rotation. The results imply that the exoplanetary orbital periods are highly correlated with the parent star’s rotation periods and follow a discrete half-integer relationship with orbital ranks n=0.5, 1.0, 1.5, 2.0, 2.5, etc. The probability of obtaining these results by pure chance is p<0.024. We discuss various mechanisms that could justify this planetary quantization, such as the hybrid gravitational instability models of planet formation, along with possible physical mechanisms such as inner discs magnetospheric truncation, tidal dissipation, and resonance trapping. In conclusion, we statistically demonstrate that a quantized orbital structure should emerge naturally from the formation processes of planetary systems and that this orbital quantization is highly dependent on the parent stars rotation periods. Key words: planetary systems: formation – star: rotation – solar system: formation 1. INTRODUCTION The discovery of now more than 500 exoplanets has provided the opportunity to study the various properties of planetary systems and has considerably advanced our understanding of planetary formation processes. -
THE LARGE-SCALE MAGNETIC FIELDS of PLANET-HOSTING SOLAR-TYPE STARS a Thesis Submitted by Matthew W. Mengel, M.Phil., G.D.Inf.Tec
THE LARGE-SCALE MAGNETIC FIELDS OF PLANET-HOSTING SOLAR-TYPE STARS A Thesis Submitted by Matthew W. Mengel, M.Phil., G.D.Inf.Tech, B.Inf.Tech. For the Award of Doctor of Philosophy 2017 Abstract Stellar magnetic fields and their associated phenomena influence stellar be- haviour and evolution, and potentially have significant impacts on any surrounding planetary system. However, the nature of star-planet interactions is unclear, especially the potential impact on a star of a closely orbiting massive planet with a powerful mag- netic field. This thesis presents a spectropolarimetric survey of the large-scale magnetic fields of planet-hosting solar-type stars. While little evidence is found for a systematic dif- ference in the magnetic field characteristics of planet-hosting stars compared with the population of solar-type stars, a small positive correlation is indicated between the magnitude of the tidal effects of the planet on the star and the magnetic field strength. Nevertheless, further spectropolarimetric observations of hot Jupiter hosting systems are required to confirm this tentative relationship. For the particular case of a moderately active star with a thin convective zone and a closely orbiting hot Jupiter (τ Boötis) presented here, a remarkably rapid magnetic cycle with a period of ∼ 240 d is discovered. For stars with shallow convective en- velopes, this is an unusual occurrence and suggests a possible role for planetary tidal or magnetic interaction with the star’s convective zone and magnetic dynamo. More observations are required to verify this possible star-planet interaction and to extend the work to other similar systems as they come to light from exoplanet surveys. -
Elemental Abundances of Solar Sibling Candidates
The Astrophysical Journal, 787:154 (17pp), 2014 June 1 doi:10.1088/0004-637X/787/2/154 C 2014. The American Astronomical Society. All rights reserved. Printed in the U.S.A. ELEMENTAL ABUNDANCES OF SOLAR SIBLING CANDIDATES I. Ram´ırez1, A. T. Bajkova2, V. V. Bobylev2,3, I. U. Roederer4, D. L. Lambert1, M. Endl1, W. D. Cochran1, P. J. MacQueen1, and R. A. Wittenmyer5,6 1 McDonald Observatory and Department of Astronomy, University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, Texas 78712-1205, USA 2 Central (Pulkovo) Astronomical Observatory of RAS, 65/1, Pulkovskoye Chaussee, St. Petersburg 196140, Russia 3 Sobolev Astronomical Institute, St. Petersburg State University, Bibliotechnaya pl. 2, St. Petersburg 198504, Russia 4 Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109, USA 5 School of Physics, UNSW Australia, Sydney 2052, Australia 6 Australian Centre for Astrobiology, University of New South Wales, UNSW Kensington Campus, Sydney 2052, Australia Received 2014 February 14; accepted 2014 April 7; published 2014 May 14 ABSTRACT Dynamical information along with survey data on metallicity and in some cases age have been used recently by some authors to search for candidates of stars that were born in the cluster where the Sun formed. We have acquired high-resolution, high signal-to-noise ratio spectra for 30 of these objects to determine, using detailed elemental abundance analysis, if they could be true solar siblings. Only two of the candidates are found to have solar chemical composition. Updated modeling of the stars’ past orbits in a realistic Galactic potential reveals that one of them, HD 162826, satisfies both chemical and dynamical conditions for being a sibling of the Sun. -
Determining the True Mass of Radial-Velocity Exoplanets with Gaia 9 Planet Candidates in the Brown-Dwarf/Stellar Regime and 27 Confirmed Planets
Astronomy & Astrophysics manuscript no. exoplanet_mass_gaia c ESO 2020 September 30, 2020 Determining the true mass of radial-velocity exoplanets with Gaia 9 planet candidates in the brown-dwarf/stellar regime and 27 confirmed planets F. Kiefer1; 2, G. Hébrard1; 3, A. Lecavelier des Etangs1, E. Martioli1; 4, S. Dalal1, and A. Vidal-Madjar1 1 Institut d’Astrophysique de Paris, Sorbonne Université, CNRS, UMR 7095, 98 bis bd Arago, 75014 Paris, France 2 LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, 5 place Jules Janssen, 92195 Meudon, France? 3 Observatoire de Haute-Provence, CNRS, Universiteé d’Aix-Marseille, 04870 Saint-Michel-l’Observatoire, France 4 Laboratório Nacional de Astrofísica, Rua Estados Unidos 154, 37504-364, Itajubá - MG, Brazil Submitted on 2020/08/20 ; Accepted for publication on 2020/09/24 ABSTRACT Mass is one of the most important parameters for determining the true nature of an astronomical object. Yet, many published exoplan- ets lack a measurement of their true mass, in particular those detected thanks to radial velocity (RV) variations of their host star. For those, only the minimum mass, or m sin i, is known, owing to the insensitivity of RVs to the inclination of the detected orbit compared to the plane-of-the-sky. The mass that is given in database is generally that of an assumed edge-on system (∼90◦), but many other inclinations are possible, even extreme values closer to 0◦ (face-on). In such case, the mass of the published object could be strongly underestimated by up to two orders of magnitude. -
Evidence for Enhanced Chromospheric Ca II H and K Emission in Stars with Close-In Extrasolar Planets
A&A 540, A82 (2012) Astronomy DOI: 10.1051/0004-6361/201118247 & c ESO 2012 Astrophysics Evidence for enhanced chromospheric Ca II H and K emission in stars with close-in extrasolar planets T. Krejcovᡠ1 and J. Budaj2 1 Department of Theoretical Physics and Astrophysics, Masaryk University, Kotlárskᡠ2, 61137 Brno, Czech Republic e-mail: [email protected] 2 Astronomical Institute, Slovak Academy of Sciences, 05960 Tatranská Lomnica, Slovak Republic e-mail: [email protected] Received 11 October 2011 / Accepted 13 February 2012 ABSTRACT Context. The planet-star interaction is manifested in many ways. It has been found that a close-in exoplanet causes small but mea- surable variability in the cores of a few lines in the spectra of several stars, which corresponds to the orbital period of the exoplanet. Stars with and without exoplanets may have different properties. Aims. The main goal of our study is to search for the influence that exoplanets might have on atmospheres of their host stars. Unlike the previous studies, we do not study changes in the spectrum of a host star or differences between stars with and without exoplanets. We aim to study a large number of stars with exoplanets and the current level of their chromospheric activity and to look for a possible correlation with the exoplanetary properties. Methods. To analyse the chromospheric activity of stars, we exploited our own and publicly available archival spectra, measured the equivalent widths of the cores of Ca II H and K lines, and used them to trace their activity. Subsequently, we searched for their dependence on the orbital parameters and the mass of the exoplanet.