Imprinted H19 Oncofetal RNA Is a Candidate Tumour Marker for Hepatocellular Carcinoma

Total Page:16

File Type:pdf, Size:1020Kb

Imprinted H19 Oncofetal RNA Is a Candidate Tumour Marker for Hepatocellular Carcinoma J Clin Pathol:Mol Pathol 1998;51:21–25 21 Imprinted H19 oncofetal RNA is a candidate tumour marker for hepatocellular carcinoma I Ariel, H-Q Miao, X-R Ji, T Schneider, D Roll, N de Groot, A Hochberg, S Ayesh Abstract This observation was confirmed recently by Li Aims/Background—To study the expres- et al, who found parallel expression of H19 and sion of the H19 gene in hepatocellular car- insulin-like growth factor 2 (IGF II).15 cinoma. H19 is an imprinted, maternally H19 is one of the few genes that functions as expressed gene, which is tightly linked, RNA molecules,16 similar to Xist,17 the im- both physically and functionally, to the printed gene in the Prader-Willi syndrome paternally expressed insulin-like growth region18 and the 3' untranslated region of á factor 2 (IGF II). IGF II is known to be tropomyosin.19 In these cases, a protein prod- involved in liver carcinogenesis. H19 was uct does not exist, and gene expression can, first discovered in the fetal mouse liver to therefore, be determined only by the presence be under the same regulatory genes as á of RNA transcripts in the tissue. We performed fetoprotein (áFP), a widely used tumour radioactive and non-radioactive in situ hybridi- marker for hepatocellular carcinoma. sation (ISH) for H19 RNA on paraYnwax Methods—Using both radioactive and sections of 18 hepatocellular carcinomas and non-radioactive in situ hybridisation, the examined its expression in both the tumour expression of the H19 gene was compared and adjacent liver tissue (when present in the with the presence of áFP,as demonstrated section). by immunohistochemistry, in 18 cases of Alpha fetoprotein (áFP) is a widely used hepatocellular carcinoma. tumour marker in hepatocellular carcinoma.20 21 Results—H19 expression was present in 13 The expression of áFP mRNA in mice is Department of of 18 cases, whereas staining for áFP was determined by at least two transacting genes, Pathology, Perinatal positive in only nine of 18 cases. Concord- raf and Rif. The former determines the basal Pathology and ance was found in 12 of 18 tumours levels of áFP, while the latter induces its Quantitative Molecular 14 Pathology Unit, (66.7%). In general, the staining pattern expression during regeneration. The H19 Hadassah University for H19 was more diVuse than the immu- gene was first characterised as a locus unlinked Hospital Mount nohistochemical staining for áFP. to áFP, which is also regulated by raf and Rif in Scopus, PO Box 24035, Conclusions—The addition of a non- the liver, but not in other tissues.14 il-91240 Jerusalem, radioactive in situ hybridisation assay for We examined the presence of áFP by immu- Israel H19 RNA to the panel of tumour markers nohistochemical staining, and correlated our I Ariel D Roll used for the histopathological and cyto- findings with the expression of H19 in these logical diagnosis of hepatocellular carci- samples. We found that H19 expression is con- Department of noma might be useful. cordant with the presence or absence of áFP in Biological Chemistry, (J Clin Pathol:Mol Pathol 1998;51:21–25) the tumour in two thirds of the cases, and the Institute for Life ISH for H19 was found to be positive in more Sciences, Hebrew Keywords: hepatocellular carcinoma; H19; cases, although the diVerence was not found to University of á fetoprotein Jerusalem, Jerusalem, be significant in this small series. We suggest Israel that ISH for H19 RNA should be examined T Schneider further, as this molecule might be a useful N de Groot Imprinted genes—genes that are expressed additional tumour marker for the histopatho- A Hochberg from only one allele, depending on the parental logical and cytological diagnosis of hepatocel- S Ayesh origin—are implicated in playing an important lular carcinoma. role in the tumorigenesis of certain human Department of neoplasms.1–4 To date, the H19 gene is one of Oncology, Tumor Methods and materials Biology Research Unit, the few genes proved to be imprinted in SAMPLES 56 Hadassah University humans. Although it has been suggested by ParaYn wax blocks of 18 patients with hepato- Hospital, Kiryat other investigators that H19 acts as a tumour cellular carcinoma from the department of Hadassah, Jerusalem, suppressor gene,7 we have shown that it exhib- pathology, Qingdao University School of Israel its oncofetal characteristics, and is re-expressed H-Q Miao Medicine in Qingdao, China were submitted in tumours arising from tissues that express the for the study. The medical charts were 8–11 Department of gene in fetal life. One of the organs that searched for clinical and laboratory data Pathology, Qingdao expresses H19 abundantly from the early including tumour size, serum áFP, and hepati- University School of stages of embryogenesis is the liver.12 13 Expres- tis B serum antigen (HBsAg). Medicine, Qingdao, sion is confined to hepatocytes and mesenchy- We performed radioactive and non- China mal tissues, and is undetectable in haemapoi- X-R Ji radioactive ISH studies for H19 RNA and an etic tissue, one of the main tissue components immunohistochemical study for áFP according 10 13 Correspondence to: in the developing liver. H19 expression is to the following protocols. Dr Ariel. downregulated in most adult tissues, including email: [email protected] the liver, but may reappear in the liver during PREPARATION OF H19 TRANSCRIPTION VECTOR 14 Accepted for publication regeneration. We were the first to document Human H19 gene (800 base pairs) was 4 December 1997 H19 expression in hepatocellular carcinoma.10 subcloned at EcoRI site into Bluescript II KS 22 Ariel, Miao, Ji, et al Table 1 Clinical data of 18 patients with hepatocellular carcinoma and the results of the RADIOACTIVE IN SITU HYBRIDISATION in situ hybridisation for H19 RNA and immunohistochemistry for á fetoprotein The procedure was performed on paraYnwax sections as described in detail previously.10 The Case Sex Age Tumour size HBsAg sáFP áFP H19 slides were examined and photographed using 1 M 47 Multicentric + + + f + d an Axioplan 2 (Carl Zeiss Jena GmbH, Göttin- 2 NANANA NANA+f+d 3 M 49 Biopsy − − + d + d gen, Germany) microscope under bright and 4 M 63 Multicentric + + + f + d dark field illumination. 5 F 44 Multicentric + − − + f The negative controls in this study included 6F644×4×4cm + − − +f 7 NANANA NANA+f+d hybridisation with sense RNA probe and 8 M 45 Multicentric + + − − RNase prehybridisation treatment. Negligible 9 M 59 10 × 10 × 10 cm + + − − signal was observed in all the controls. Positive 10 F 48 Multicentric + + − + f 11 F 49 10 × 10 × 10 cm + + + d − controls consisted of sections of fetal renal and 12 M 55 Multicentric − − − + f liver tissue. 13 M 41 Multicentric + + + d + d 14 M 67 Multicentric − + − + f × × 15 M 40 9 8 6cm + + +d +d PREPARATION OF RIBOPROBE FOR 16 M 63 7 × 7 × 7cm + + − − 17 M 52 22 × 14 × 8cm − − +d +d NON-RADIOACTIVE IN SITU HYBRIDISATION 18 M 49 7 × 7 × 7cm + + − − Digoxigenin labelled in vitro RNA transcripts were produced by labelling with DIG-11-UTP HBsAg, hepatitis B surface antigen; sáFP, serum á fetoprotein; f, focal; d, diVuse; NA, data not available. by SP6, T3, or T7 RNA polymerase in an in vitro transcription reaction (Boehringer Mann- plasmid (Stratagene) behind the T7 and T3 heim). RNA polymerase binding sites. In vitro RNA transcription with T7 RNA polymerase was used to produce antisense H19 cRNA from NON-RADIOACTIVE IN SITU HYBRIDISATION linearised plasmid DNA. Sense H19 RNA pre- Sections were prepared as for radioactive ISH, pared with T3 polymerase was used for and were rehydrated through a series of control. alcohols, followed by a wash in 0.9% NaCl and then a wash in phosphate buVered saline (PBS). Basic proteins were removed by incuba- PREPARATION OF RIBOPROBE FOR RADIOACTIVE IN tion in 0.1 N HCl at room temperature for 15 SITU HYBRIDISATION minutes. After a further wash in distilled water, 35S-labelled in vitro RNA transcripts (107 cpm/ sections were treated with 10 µg/ml proteinase µg) were produced using the Amersham RPN K (Sigma, Poole, Dorset, UK) in 50 mM Tris, 2006 Kit and RNA polymerases from Boe- 5 mM EDTA for 30 minutes at 37°C, rinsed in hringer Mannhein (Mannheim, Germany). PBS, and then refixed for five minutes in 4% Linearised plasmids were prepared by diges- paraformaldehyde/PBS. Thereafter, the sec- tion with HindIII (antisense) and EcoRI tions were rinsed in PBS and acetylated for 10 (sense). The fragments were separated from minutes in fresh acetic anhydride diluted 1/400 unincorporated nucleotidases by ethanolic in 0.1 M triethanolamine (Sigma) at pH 8.0. precipitation. The slides were then rinsed in PBS for five Figure 1 (A) Immunohistochemical staining for á fetoprotein in hepatocellular carcinoma. Positive staining is present in single tumour cells (arrows). (B) H19 expression in the same tumour, as demonstrated by digoxigenin labelled in situ hybridisation. Expression is evident in most tumour cells. H19 in hepatocellular carcinoma 23 Figure 2 H19 expression in hepatocellular carcinoma. (A) Bright and (B) dark field. The expression is most prominent at the boundary of the tumour nodule. (In situ hybridisation of 35S-labelled antisense of H19 with haematoxylin and eosin as a counterstain.) minutes and in 0.9% NaCl for another five probe; and hybridisation with hybridisation minutes, dehydrated, and air dried. buVer without the probe. A section of fetal kid- The hybridisation buVer contained 50% ney, which expresses H19 in the metanephric deionised formamide, 0.3 M NaCl, 20 mM blastema, was used as a positive control. Tris-HCl (pH 7.4), 5 mM EDTA, 10 mM × NaH2PO4 (pH 8.0), 10% dextran sulphate, 1 Denhardt’s solution, and 0.5 µg/ml yeast IMMUNOHISTOCHEMISTRY A polyclonal rabbit primary antibody was used tRNA.
Recommended publications
  • What Can We Learn from Gene Expression Profiling of Mouse Oocytes?
    REPRODUCTIONRESEARCH Determinants of maternal pregnancy one-carbon metabolism and newborn human DNA methylation profiles Nina H van Mil1,2,3, Marieke I Bouwland-Both1,3, Lisette Stolk4, Michael M P J Verbiest4, Albert Hofman5, Vincent W V Jaddoe1,5,6, Frank C Verhulst2, Paul H C Eilers7, Andre G Uitterlinden4,5, Eric A P Steegers3, Henning Tiemeier2,5,8 and Re´gine P M Steegers-Theunissen3,† 1The Generation R Study Group, 2Department of Child and Adolescent Psychiatry, 3Department of Obstetrics and Gynecology, 4Department of Internal Medicine, 5Department of Epidemiology, 6Department of Paediatrics, 7Department of Biostatistics and 8Department of Psychiatry, Erasmus MC, University Medical Centre Rotterdam, Dr Molewaterplein 50, 3015 GE Rotterdam, The Netherlands Correspondence should be addressed to R P M Steegers-Theunissen; Email: [email protected] †R P M Steegers-Theunissen is now at Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Centre Rotterdam, The Netherlands Abstract Maternal one-carbon (1-C) metabolism provides methylgroups for fetal development and programing by DNA methylation as one of the underlying epigenetic mechanisms. We aimed to investigate maternal 1-C biomarkers, folic acid supplement use, and MTHFR C677T genotype as determinants of 1-C metabolism in early pregnancy in association with newborn DNA methylation levels of fetal growth and neurodevelopment candidate genes. The participants were 463 mother–child pairs of Dutch national origin from a large population- based birth cohort in Rotterdam, The Netherlands. In early pregnancy (median 13.0 weeks, 90% range 10.4–17.1), we assessed the maternal folate and homocysteine blood concentrations, folic acid supplement use, and the MTHFR C677T genotype in mothers and newborns.
    [Show full text]
  • Role of Insulin-Like Growth Factor Receptor 2 Across Muscle Homeostasis: Implications for Treating Muscular Dystrophy
    cells Review Role of Insulin-Like Growth Factor Receptor 2 across Muscle Homeostasis: Implications for Treating Muscular Dystrophy Yvan Torrente *, Pamela Bella, Luana Tripodi, Chiara Villa and Andrea Farini * Stem Cell Laboratory, Department of Pathophysiology and Transplantation, University of Milan, Unit of Neurology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, 20122 Milan, Italy; [email protected] (P.B.); [email protected] (L.T.); [email protected] (C.V.) * Correspondence: [email protected] (Y.T.); [email protected] (A.F.); Tel.: +39-0255033874 (Y.T.); +39-0255033852 (A.F.) Received: 20 January 2020; Accepted: 11 February 2020; Published: 14 February 2020 Abstract: The insulin-like growth factor 2 receptor (IGF2R) plays a major role in binding and regulating the circulating and tissue levels of the mitogenic peptide insulin-like growth factor 2 (IGF2). IGF2/IGF2R interaction influences cell growth, survival, and migration in normal tissue development, and the deregulation of IGF2R expression has been associated with growth-related disease and cancer. IGF2R overexpression has been implicated in heart and muscle disease progression. Recent research findings suggest novel approaches to target IGF2R action. This review highlights recent advances in the understanding of the IGF2R structure and pathways related to muscle homeostasis. Keywords: IGF2R; muscle homeostasis; inflammation; muscular dystrophy; pericytes 1. Introduction The cation-independent mannose 6-phosphate/insulin-like growth factor 2 receptor (CI-M6P/IGF2R, hereafter IGF2R) is a type-1 transmembrane glycoprotein consisting of a large N-terminal extracytoplasmic domain, which allows it to bind to a wide variety of ligands [1,2]. The IGF2 and M6P ligands [3–5] of IGF2R have distinct but important roles in normal development and mesoderm differentiation [6].
    [Show full text]
  • The Increasing Complexity of the Oncofetal H19 Gene Locus: Functional Dissection and Therapeutic Intervention
    Int. J. Mol. Sci. 2013, 14, 4298-4316; doi:10.3390/ijms14024298 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review The Increasing Complexity of the Oncofetal H19 Gene Locus: Functional Dissection and Therapeutic Intervention Imad Matouk 1,2,*, Eli Raveh 1, Patricia Ohana 1, Rasha Abu Lail 1, Eitan Gershtain 1, Michal Gilon 1, Nathan De Groot 1, Abraham Czerniak 3 and Abraham Hochberg 1 1 Department of Biological Chemistry, Institute of Life Sciences, the Hebrew University of Jerusalem, Jerusalem 91904, Israel; E-Mails: [email protected] (E.R.); [email protected] (P.O.); [email protected] (R.A.L.); [email protected] (E.G.); [email protected] (M.G.); [email protected] (A.H.) 2 Department of Biological Sciences, Faculty of Science and Technology, Al-Quds University, Jerusalem 51000, Israel 3 Department of HPB Surgery “A”, Sheba Medical Center, Tel Hashomer, Tel Aviv 52621, Israel; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +972-2-658-5456. Fax: +972-2-548-6550. Received: 3 December 2012; in revised form: 29 January 2013 / Accepted: 6 February 2013 / Published: 21 February 2013 Abstract: The field of the long non-coding RNA (lncRNA) is advancing rapidly. Currently, it is one of the most popular fields in the biological and medical sciences. It is becoming increasingly obvious that the majority of the human transcriptome has little or no-protein coding capacity. Historically, H19 was the first imprinted non-coding RNA (ncRNA) transcript identified, and the H19/IGF2 locus has served as a paradigm for the study of genomic imprinting since its discovery.
    [Show full text]
  • Src Tyrosine Kinase Mediates Stimulation of Raf-1 and Mitogen-Activated Protein Kinase by the Tumor Promoter Thapsigargin'
    ICANCERRESEARCH57.3168-3173, August 1. 19971 Src Tyrosine Kinase Mediates Stimulation of Raf-1 and Mitogen-activated Protein Kinase by the Tumor Promoter Thapsigargin' Tsung-Shu Oliver Chao,2 Mark Abe, Marc B. Hershenson, Ignatius Gomes, and Marsha Rich Rosner@ The Ben May Institute for Cancer Research and Departments of Pharmacological and Physiological SciencesiT-S. 0. C., 1.G., M. R. R.j and Pediatrics fM. A., M. B. H.). University of Chicago. Chicago. Illinois 60637 ABSTRACT signal-regulated kinase, or ERK). This activation is independent of @ protein kinase C or Ca2 influx (2) but requires the presence of Raf-l Thapsigargin is a non-phorbol ester-type tumor promoter that elevates (7). The activation of MAP kinase can lead to the specific phospho the intracellular Ca2@ (Ca@2') levels by blocking the microsomal Ca2@ rylation of EGF receptor on threonine 669 (8, 9) as well as a subse ATPase. At present, the consequence of this Ca@2@increaseand the nature quent stimulation of a membrane-associated phosphatase (10). These of the tumorigenicity of thapsigargin still remain to be elucidated. Previ ously, we demonstrated that thapsigargin activates the mitogen-activated events appear to underlie the negative regulation of EGF receptor by protein (MAP) kinase via Ca@2' but independently of protein kinase C or both phorbol ester (11) and thapsigargin action (10, 12, 13). More Ca2―Influx.Here, we show that thapsIgar@n also rapidly stimulates the over, they suggest that the MAP kinase signaling pathway can play a Src tyrosine kinase. Transfection of a v-Src gene into a hippocampal cell role in mediating the cellular influence of thapsigargin.
    [Show full text]
  • (Lncrna) in the Regulation of Hypoxia-Inducible Factor (HIF) in Cancer
    non-coding RNA Review Long-Noncoding RNA (lncRNA) in the Regulation of Hypoxia-Inducible Factor (HIF) in Cancer Dominik A. Barth 1,2 , Felix Prinz 1, Julia Teppan 1, Katharina Jonas 1 , Christiane Klec 1 and Martin Pichler 1,2,* 1 Research Unit of Non-Coding RNAs and Genome Editing in Cancer, Division of Clinical Oncology, Department of Internal Medicine, Comprehensive Cancer Center Graz; Medical University of Graz, 8036 Graz, Austria; [email protected] (D.A.B.); [email protected] (F.P.); [email protected] (J.T.); [email protected] (K.J.); [email protected] (C.K.) 2 Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA * Correspondence: [email protected] Received: 15 May 2020; Accepted: 3 July 2020; Published: 6 July 2020 Abstract: Hypoxia is dangerous for oxygen-dependent cells, therefore, physiological adaption to cellular hypoxic conditions is essential. The transcription factor hypoxia-inducible factor (HIF) is the main regulator of hypoxic metabolic adaption reducing oxygen consumption and is regulated by gradual von Hippel-Lindau (VHL)-dependent proteasomal degradation. Beyond physiology, hypoxia is frequently encountered within solid tumors and first drugs are in clinical trials to tackle this pathway in cancer. Besides hypoxia, cancer cells may promote HIF expression under normoxic conditions by altering various upstream regulators, cumulating in HIF upregulation and enhanced glycolysis and angiogenesis, altogether promoting tumor proliferation and progression. Therefore, understanding the underlying molecular mechanisms is crucial to discover potential future therapeutic targets to evolve cancer therapy. Long non-coding RNAs (lncRNA) are a class of non-protein coding RNA molecules with a length of over 200 nucleotides.
    [Show full text]
  • H19 Lncrna Controls Gene Expression of the Imprinted Gene Network by Recruiting MBD1
    H19 lncRNA controls gene expression of the Imprinted Gene Network by recruiting MBD1 Paul Monniera,b, Clémence Martineta, Julien Pontisc, Irina Stanchevad, Slimane Ait-Si-Alic, and Luisa Dandoloa,1 aGenetics and Development Department, Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 8104, University Paris Descartes, Institut Cochin, Paris 75014, France; bUniversity Paris Pierre and Marie Curie, Paris 75005, France; cUniversity Paris Diderot, Sorbonne Paris Cité, Laboratoire Epigénétique et Destin Cellulaire, CNRS UMR 7216, Paris 75013, France; and dWellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom Edited by Marisa Bartolomei, University of Pennsylvania, Philadelphia, PA, and accepted by the Editorial Board November 11, 2013 (received for review May 30, 2013) The H19 gene controls the expression of several genes within the this control is transcriptional or posttranscriptional and whether Imprinted Gene Network (IGN), involved in growth control of the these nine targets are direct or indirect targets remain elusive. embryo. However, the underlying mechanisms of this control re- Several lncRNAs interact with chromatin-modifying com- main elusive. Here, we identified the methyl-CpG–binding domain plexes and appear to exert a transcriptional control by targeting fi protein 1 MBD1 as a physical and functional partner of the H19 local chromatin modi cations at discrete genomic regions (8, 9). long noncoding RNA (lncRNA). The H19 lncRNA–MBD1 complex is In the case of imprinted clusters, the DMRs controlling the ex- fi pression of imprinted genes exhibit parent-of-origin epigenetic required for the control of ve genes of the IGN.
    [Show full text]
  • Mediated Multidrug Resistance (MDR) in Cancer
    A Thesis Entitled: Differential Effects of Dopamine D3 Receptor Antagonists in Modulating ABCG2 - Mediated Multidrug Resistance (MDR) in Cancer by Noor A. Hussein Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Master of Science in Pharmaceutical Sciences Degree in Pharmacology and Toxicology _________________________________________ Dr. Amit K. Tiwari, Committee Chair _________________________________________ Dr. Frank Hall , Committee Member _________________________________________ Dr. Zahoor Shah, Committee Member _________________________________________ Dr. Caren Steinmiller, Committee Member _________________________________________ Dr. Amanda Bryant-Friedrich, Dean College of Graduate Studies The University of Toledo May 2017 Copyright 2017, Noor A. Hussein This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of Differential Effects of Dopamine D3 Receptor Antagonists in Modulating ABCG2 - Mediated Multidrug Resistance (MDR) by Noor A. Hussein Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Master of Science in Pharmaceutical Sciences Degree in Pharmacology and Toxicology The University of Toledo May 2017 The G2 subfamily of the ATP-binding cassette transporters (ABCG2), also known as the breast cancer resistance protein (BRCP), is an efflux transporter that plays an important role in protecting the cells against endogenous and exogenous toxic substances. The ABCG2 transporters are also highly expressed in the blood brain barrier (BBB), providing protection against specific toxic compounds. Unfortunately, their overexpression in cancer cells results in the development of multi-drug resistance (MDR), and thus, chemotherapy failure. Dopamine3 receptor (D3R) antagonists were shown to have excellent anti-addiction properties in preclinical animal models but produced limited clinical success with the lead molecule.
    [Show full text]
  • The Expression of the Imprinted Genes H19 and IGF-2 in Choriocarcinoma Cell Lines
    Oncogene (1997) 15, 169 ± 177 1997 Stockton Press All rights reserved 0950 ± 9232/97 $12.00 The expression of the imprinted genes H19 and IGF-2 in choriocarcinoma cell lines. Is H19 a tumor suppressor gene? O Lustig-Yariv1, E Schulze2, D Komitowski3, V Erdmann4, T Schneider4, N de Groot1 and A Hochberg1 1The Department of Biological Chemistry, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; 2The Zoologisches Institut-Entwicklungs biologie, Gottingen University, Gottingen, Germany; 3The Department of Histodiagnostics & Pathomorphology, DKFZ, Heidelberg, Germany; 4The Department of Chemistry, Institute for Biochemistry, Freie Universitat, Berlin, Germany H19 is a paternally imprinted gene with unknown nearly all precursors of mRNAs). It is bound in 28S function. It is located in close proximity to the cytoplasmic RNPs and not to ribosomes (Brannan et maternally imprinted IGF-2 gene on chromosome al., 1990). Its function is enigmatic. Genetic analysis of 11p15.5. In this study no consistent relationship between the 11p15.5 region revealed a frequent correlation the expression of these two genes in clones derived from between the loss of the maternally inherited 11p15.5 JEG-3 and JAr cell lines could be detected. Nor could a region and many cases of Wilm's tumor (Junien, 1992) consistent relationship be detected between the expres- and some embryonal rhabdomyosarcomas (Scrable et sion levels of these two genes and between certain al., 1990). These correlations and other experimental characteristic tumorigenic properties of these clones. We ®ndings can be explained by assuming the existence of included in this study clones, expressing low H19 levels, a paternally imprinted (maternally expressed) tumor which after transfection with an H19 expression suppressor gene in this chromosomal area.
    [Show full text]
  • Long Noncoding RNA H19 Regulates the Therapeutic Efficacy Of
    Song et al. Stem Cell Research & Therapy (2020) 11:420 https://doi.org/10.1186/s13287-020-01940-z RESEARCH Open Access Long noncoding RNA H19 regulates the therapeutic efficacy of mesenchymal stem cells in rats with severe acute pancreatitis by sponging miR-138-5p and miR-141-3p Guodong Song1†, Jia Zhou1,2†, Ruimei Song1†, Dalu Liu1, Weidi Yu1, Wangcheng Xie1, Zhilong Ma2, Jian Gong1, Hongbo Meng1, Tingsong Yang1* and Zhenshun Song1* Abstract Background: Patients with severe acute pancreatitis (SAP), which is characterized by high morbidity and mortality, account for an increasing medical burden worldwide. We previously found that mesenchymal stem cells (MSCs) could attenuate SAP and that expression of long noncoding RNA H19 (LncRNA H19) was upregulated in rats receiving MSCs. In the present study, we investigated the mechanisms of LncRNA H19 regulating the therapeutic efficacy of MSCs in the alleviation of SAP. Methods: MSCs transfected with LncRNA H19 overexpression and knockdown plasmids were intravenously injected into rats 12 h after sodium taurocholate (NaT) administration to induce SAP. Results: Overexpressing LncRNA H19 in MSCs significantly enhanced the anti-inflammatory capacity of the MSCs, inhibited autophagy via promotion of focal adhesion kinase (FAK)-associated pathways, and facilitated cell proliferation by increasing the level of β-catenin in rats with SAP. LncRNA H19 functioned as a competing endogenous RNA by sponging miR-138-5p and miR-141-3p. Knocking down miR-138-5p in MSCs increased the expression of protein tyrosine kinase 2 (PTK2, encoding FAK) to suppress autophagy, while downregulating miR-141-3p enhanced the level of β-catenin to promote cell proliferation.
    [Show full text]
  • The Long Noncoding RNA H19 Controls Endothelial Cell Functions by STAT3 Repression
    The long noncoding RNA H19 controls endothelial cell functions by STAT3 repression Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften Vorgelegt beim Fachbereich Biowissenschaften (FB15) der Johann Wolfgang Goethe-Universität in Frankfurt am Main von Patrick Hofmann aus Weinheim (Bergstraße) Frankfurt 2017 (D 30) Vom Fachbereich Biowissenschaften (FB 15) der Johann Wolfgang Goethe-Universität als Dissertation angenommen Dekan: Prof. Dr. Meike Piepenbring Gutachter: Prof. Dr. Stefanie Dimmeler Prof. Dr. Amparo Acker-Palmer Datum der Disputation: Table of contents 1. Introduction ..................................................................................................................................... 1 1.1 The mammalian cardiovascular system .................................................................................. 1 1.1.1 The circulatory system of mammals.................................................................................... 1 1.1.2 Angiogenesis ........................................................................................................................ 3 1.1.3 Shear Stress ......................................................................................................................... 5 1.1.4 Atherosclerosis .................................................................................................................... 6 1.2 Aging .......................................................................................................................................
    [Show full text]
  • Understanding IGF-II Action Through Insights Into Receptor Binding and Activation
    cells Review Understanding IGF-II Action through Insights into Receptor Binding and Activation Andrew J. Blyth 1, Nicholas S. Kirk 2,3 and Briony E. Forbes 1,* 1 Department of Medical Biochemistry, Flinders Health and Medical Research Institute, Flinders University, Bedford Park 5042, Australia; andrew.blyth@flinders.edu.au 2 Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Victoria, Australia; [email protected] 3 Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville 3050, Victoria, Australia * Correspondence: briony.forbes@flinders.edu.au Received: 18 September 2020; Accepted: 7 October 2020; Published: 12 October 2020 Abstract: The insulin-like growth factor (IGF) system regulates metabolic and mitogenic signaling through an intricate network of related receptors and hormones. IGF-II is one of several hormones within this system that primarily regulates mitogenic functions and is especially important during fetal growth and development. IGF-II is also found to be overexpressed in several cancer types, promoting growth and survival. It is also unique in the IGF system as it acts through both IGF-1R and insulin receptor isoform A (IR-A). Despite this, IGF-II is the least investigated ligand of the IGF system. This review will explore recent developments in IGF-II research including a structure of IGF-II bound to IGF-1R determined using cryo-electron microscopy (cryoEM). Comparisons are made with the structures of insulin and IGF-I bound to their cognate receptors. Finally discussed are outstanding questions in the mechanism of action of IGF-II with the goal of developing antagonists of IGF action in cancer.
    [Show full text]
  • Assessment of the CTCF Binding Sites and Repeat-Positions Upstream
    bioRxiv preprint doi: https://doi.org/10.1101/250407; this version posted January 19, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Assessment of the CTCF Binding Sites and Repeat-Positions Upstream the Human H19 Gene Minou Bina Department of Chemistry, Purdue University, West Lafayette IN 47907 USA Key words: genomic imprinting, ICR, Imprinted Control Region, H19, IGF2, cohesin, CTCF, RAD21, SMC3 Correspondence: [email protected] ________________________________________________________________________________ ABSTRACT The human H19 and IGF2 genes share an Imprinting Control Region (ICR) that regulates gene expression in a parent-of-origin dependent manner. Understanding of the ICR sequence organization is critical to accurate localization of disease-associated abnormalities including Beckwith-Wiedemann and Silver- Russell syndromes. Previous studies established that the ICR of the H19 - IGF2 imprinted domain included several repeated DNA segments. Using BLAST, BLAT, and Clustal Omega, I conducted detailed sequence comparisons to evaluate the annotation of the unique-repeats upstream of the H19 transcription start site (TSS) and to investigate the extent of similarities among the various repeats. Initial analyses confirmed the existence of two DNA segments consisting of two types of repeats (A and B). However, I find that one of the repeats (B7) is unlikely to be a partial repeat. I provide the genomic positions of the various repeats in the build hg19 of the human genome. I also evaluated the previously predicted CTCF sites (1 to 7) in the context of the ENCODE data: including the positions of DNase I HS clusters and results of ChIP assays.
    [Show full text]