Exploration of Blood Lipoprotein and Lipid Fraction Profiles in Healthy Subjects Through Integrated Univariate, Multivariate, An

Total Page:16

File Type:pdf, Size:1020Kb

Exploration of Blood Lipoprotein and Lipid Fraction Profiles in Healthy Subjects Through Integrated Univariate, Multivariate, An H OH metabolites OH Article Exploration of Blood Lipoprotein and Lipid Fraction Profiles in Healthy Subjects through Integrated Univariate, Multivariate, and Network Analysis Reveals Association of Lipase Activity and Cholesterol Esterification with Sex and Age Yasmijn Balder 1 , Alessia Vignoli 2,3 , Leonardo Tenori 2,3 , Claudio Luchinat 2,3 and Edoardo Saccenti 1,* 1 Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands; [email protected] 2 Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy; [email protected]fi.it (A.V.); [email protected]fi.it (L.T.); [email protected]fi.it (C.L.) 3 Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine (CIRMMP), Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy * Correspondence: [email protected] Abstract: In this study, we investigated blood lipoprotein and lipid fraction profiles, quantified using nuclear magnetic resonance, in a cohort of 844 healthy blood donors, integrating standard univariate and multivariate analysis with predictive modeling and network analysis. We observed a strong association of lipoprotein and lipid main fraction profiles with sex and age. Our results suggest an Citation: Balder, Y.; Vignoli, A.; age-dependent remodulation of lipase lipoprotein activity in men and a change in the mechanisms Tenori, L.; Luchinat, C.; Saccenti, E. Exploration of Blood Lipoprotein and controlling the ratio between esterified and non-esterified cholesterol in both men and women. Lipid Fraction Profiles in Healthy Subjects through Integrated Keywords: analysis of biological networks; lipid metabolism; lipidomics; metabolomics; nuclear Univariate, Multivariate, and magnetic resonance Network Analysis Reveals Association of Lipase Activity and Cholesterol Esterification with Sex and Age. Metabolites 2021, 11, 326. 1. Introduction https://doi.org/10.3390/metabo11050326 Lipids are the most abundant biological molecules in human plasma [1]. This group of small molecular weight molecules shows large structural and functional variations: Academic Editor: Peter Meikle they are fundamental building blocks of the cell wall and are key components of the cell membrane and other cellular compartments, including the nuclear membrane, the Received: 29 April 2021 endoplasmic reticulum, and the Golgi apparatus, as well as trafficking vesicles such as Accepted: 14 May 2021 Published: 18 May 2021 endosomes and lysosomes [2]. Mammalian cells express tens of thousands of different lipid species and use hundreds Publisher’s Note: MDPI stays neutral of proteins to synthesize, metabolize, and transport them: the diversity of lipids is of the with regard to jurisdictional claims in same order of magnitude as that of proteins, but until recent years they were not studied published maps and institutional affil- as much as proteins [2]. iations. Lipids are transported in the blood by proteins; lipoproteins exist in different densi- ties: chylomicrons, very low-density lipoprotein (VLDL), low-density lipoprotein (LDL), intermediate-density lipoprotein (IDL), and high-density lipoprotein (HDL). These lipopro- teins determine where the lipid is transported to, which contributes to the wide functional variability of the lipidome. Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. It is widely recognized that variations in lipoprotein profiles and metabolism are This article is an open access article associated with metabolic diseases such as diabetes mellitus and cardiovascular diseases, distributed under the terms and and can thus be used to monitor and assess the risk of such diseases. For instance, elevated conditions of the Creative Commons levels of LDL cholesterol [1] and triglycerides [3,4] increase the risk of cardiovascular dis- Attribution (CC BY) license (https:// eases, while high levels of HDL cholesterol are correlated with a low risk of cardiovascular creativecommons.org/licenses/by/ diseases [1,3,5]. Moreover, alterations of lipoprotein profiles have been associated with 4.0/). different types of cancer [6–8] and autoimmune diseases [9–11]. Metabolites 2021, 11, 326. https://doi.org/10.3390/metabo11050326 https://www.mdpi.com/journal/metabolites Metabolites 2021, 11, x FOR PEER REVIEW 2 of 28 levels of LDL cholesterol [1] and triglycerides [3,4] increase the risk of cardiovascular diseases, while high levels of HDL cholesterol are correlated with a low risk of cardiovascular diseases [1,3,5]. Moreover, alterations of lipoprotein profiles have been associated with different types of cancer [6–8] and autoimmune diseases [9–11]. Variations in the blood lipid profiles are associated not only with particular Metabolites 2021, 11, 326 pathophysiological statuses but also with sex and age: women tend to have higher2 of 28 levels of triglyceride VLDL than men [12], whereas men have higher total triglycerides and cholesterol levels [13], and the overall concentration of VLDL in men increases with age, while itVariations decreases in in the women blood lipid[5]. profiles are associated not only with particular patho- physiologicalMany more statuses sex- and but age also- lipoprotein with sex and associations age: women are tend being to have discovered higher levels [5,14 of–16]: in thetriglyceride era of precision VLDL medicine, than men [understanding12], whereas men how have sex higher and totalage shape triglycerides the lipidome and choles- can lead to bteroletter levels diagnosis [13], and and the treatment overall concentration of conditions of VLDL that inoccur men more increases frequently with age, in while one it of the twodecreases sexes, present in women sex [-5specific]. symptoms and outcomes, or are characteristic of a specific age groupMany [17] more. sex- and age- lipoprotein associations are being discovered [5,14–16]: in theIn era this of precisionstudy, we medicine, investigate understanding sex- and age how-specific sex and differences age shape the in lipidome the plasma can leadlipidome of 844to better young diagnosis and middle and treatment-aged healthy of conditions blood donors that occur of both more sexes frequently who were in one analyzed of the for two sexes, present sex-specific symptoms and outcomes, or are characteristic of a specific their lipoprotein blood profiles via nuclear magnetic resonance (NMR) spectroscopy age group [17]. [18,19].In this study, we investigate sex- and age-specific differences in the plasma lipidome ofWe 844 youngintegrated and middle-aged standard univariate healthy blood analysis, donors multivariat of both sexese whoexploratory were analyzed analysis, for and predictivetheir lipoprotein modeling blood with profiles systems via nuclear biology magnetic tools resonance to explore (NMR) the spectroscopy relationships [18,19 among]. lipoproteinWe integrated fractions standard using association univariate analysis, networks multivariate and differential exploratory network analysis, analysis and pre-. Since lipoproteindictive modeling concentrations with systems change biology in an tools orchestrated to explore the fashion, relationships the patterns among lipoprotein of associations betweenfractions lipoprotein using association fraction networkss can be andconsidered, differential to networksome extent, analysis. related Since to lipoprotein the underlying structureconcentrations of the biological change in networks an orchestrated [20]. Differences fashion, the in patterns lipoprotein of associations associations between which are lipoprotein fractions can be considered, to some extent, related to the underlying struc- sex- and age-related can indeed point to affected molecular mechanisms since changes ture of the biological networks [20]. Differences in lipoprotein associations which are sex- canand be age-relatedmore significant can indeed than point levels to affectedalone [21,22] molecular, as shown mechanisms in applications since changes to canhealth be , sex, andmore age significantphenotyping than [17,23] levels alone, cardiovascular [21,22], as shown risk [24 in applications–26], and bacterial to health, infections sex, and age [27,28]. phenotypingHere, we report [17,23], the cardiovascular findings of risk this [24 integrated–26], and bacterial analysis infections describing [27 ,28how]. sex and age affect bothHere, the we concentration report the findings and the of correlation this integrated patterns analysis of lipoprotein describing profiles how sex in and healthy subjectage affects, and both we suggest the concentration that lipids and may the be correlation used as an patterns early biomarker of lipoprotein to monitor profiles healthy in aging.healthy subjects, and we suggest that lipids may be used as an early biomarker to monitor healthy aging. 2. Results2. Results AnAn overview overview of of the the lipid lipid fractionsfractions and and lipoprotein lipoprotein distribution distribution in the in overallthe overall study study groupgroup (m (menen and and women) women) is is shown inin Figure Figure1. 1. Age Age characteristics characteristics are givenare given in Table in 1Table. 1. FigureFigure 1. Relative 1. Relative concentration concentration (%) ofof lipoproteins lipoproteins and and lipids lipid (A) ands (A lipid) and main lipid fractions main (B fractions) in the study (B) cohort in the comprising study cohort comprising844 heathy 844 bloodheathy donors blood (661 donors men + 183(661 women). men + Very 183 low-density women).
Recommended publications
  • Lrp1 Modulators
    Last updated on February 14, 2021 Cognitive Vitality Reports® are reports written by neuroscientists at the Alzheimer’s Drug Discovery Foundation (ADDF). These scientific reports include analysis of drugs, drugs-in- development, drug targets, supplements, nutraceuticals, food/drink, non-pharmacologic interventions, and risk factors. Neuroscientists evaluate the potential benefit (or harm) for brain health, as well as for age-related health concerns that can affect brain health (e.g., cardiovascular diseases, cancers, diabetes/metabolic syndrome). In addition, these reports include evaluation of safety data, from clinical trials if available, and from preclinical models. Lrp1 Modulators Evidence Summary Lrp1 has a variety of essential functions, mediated by a diverse array of ligands. Therapeutics will need to target specific interactions. Neuroprotective Benefit: Lrp1-mediated interactions promote Aβ clearance, Aβ generation, tau propagation, brain glucose utilization, and brain lipid homeostasis. The therapeutic effect will depend on the interaction targeted. Aging and related health concerns: Lrp1 plays mixed roles in cardiovascular diseases and cancer, dependent on context. Lrp1 is dysregulated in metabolic disease, which may contribute to insulin resistance. Safety: Broad-spectrum Lrp1 modulators are untenable therapeutics due to the high potential for extensive side effects. Therapies that target a specific Lrp1-ligand interaction are expected to have a better therapeutic profile. 1 Last updated on February 14, 2021 Availability: Research use Dose: N/A Chemical formula: N/A S16 is in clinical trials MW: N/A Half life: N/A BBB: Angiopep is a peptide that facilitates BBB penetrance by interacting with Lrp1 Clinical trials: S16, an Lrp1 Observational studies: sLrp1 levels are agonist was tested in healthy altered in Alzheimer’s disease, volunteers (n=10) in a Phase 1 cardiovascular disease, and metabolic study.
    [Show full text]
  • Elevated Lipoprotein (A) Patient-Centered Education from the National Lipid Association
    Elevated Lipoprotein (a) Patient-Centered Education From the National Lipid Association What is Elevated Lipoprotein (a) ? Apo-B Apo (a) Lipoprotein (a) is a form of Low Density Lipoprotein (LDL) in which another protein, called Apo(a), is attached to each LDL particle as it carries cholesterol around in the body. Having elevated blood levels of Lipoprotein (a) raises a person’s risk of heart attack and stroke beyond what is normally seen from elevated LDL cholesterol alone. This is believed to be due to the Apo(a) protein, which may reduce the body’s ability to break down clots. Elevated Lipoprotein (a) is usually inherited from one parent. About 1 in 4 people in the population are believed to have elevated blood levels of Lipoprotein (a). African Americans may have higher levels. Besides genetics, Lipoprotein (a) levels may result from increased intake of some types of fats, and some medical conditions. Treatment of elevated Lipoprotein (a) is based on a person’s risk of heart attack or stroke. A healthy diet and lifestyle are the first step to reducing heart attack and stroke risk from elevated Lipoprotein (a). Medications also may help. ‘ Statins’ do not lower Lipoprotein (a) levels. However, statins are the most used medication for lowering heart attack and stroke risk in general, and so they are the most used medicine to treat risk from elevated Lipoprotein (a). Niacin can lower Lipoprotein (a) levels by 25-40%, as can PCSK9 inhibitors, but both are used less often. A new medication for lowering Lipoprotein (a) is being tested.
    [Show full text]
  • Increased Prebeta-High Density Lipoprotein, Apolipoprotein AI, And
    Increased prebeta-high density lipoprotein, apolipoprotein AI, and phospholipid in mice expressing the human phospholipid transfer protein and human apolipoprotein AI transgenes. X Jiang, … , J L Breslow, A R Tall J Clin Invest. 1996;98(10):2373-2380. https://doi.org/10.1172/JCI119050. Research Article Human plasma phospholipid transfer protein (PLTP) circulates bound to high density lipoprotein (HDL) and mediates both net transfer and exchange of phospholipids between different lipoproteins. However, its overall function in lipoprotein metabolism is unknown. To assess the effects of increased plasma levels of PLTP, human PLTP transgenic mice were established using the human PLTP gene driven by its natural promoter. One line of PLTP transgenic mice with moderate expression of PLTP mRNA and protein was obtained. The order of human PLTP mRNA expression in tissues was: liver, kidney, brain, small intestine > lung > spleen > heart, adipose tissue. Western blotting using a human PLTP monoclonal antibody revealed authentic human PLTP (Mr 80 kD) in plasma. Plasma PLTP activity was increased by 29% in PLTP transgenic mice. However, plasma lipoprotein analysis, comparing PLTP transgenic mice to control littermates, revealed no significant changes in the plasma lipoprotein lipids or apolipoproteins. Since previous studies have shown that human cholesteryl ester transfer protein and lecithin:cholesterol acyltransferase only function optimally in human apoAI transgenic mice, the human PLTP transgenic mice were cross-bred with human apoAI transgenic mice. In the human apoAI transgenic background, PLTP expression resulted in increased PLTP activity (47%), HDL phospholipid (26%), cholesteryl ester (24%), free cholesterol (37%), and apoAI (22%). There was a major increase of apoAI in prebeta-HDL (56%) and […] Find the latest version: https://jci.me/119050/pdf Increased Pre␤-high Density Lipoprotein, Apolipoprotein AI, and Phospholipid in Mice Expressing the Human Phospholipid Transfer Protein and Human Apolipoprotein AI Transgenes Xian-cheng Jiang,* Omar L.
    [Show full text]
  • Handout 11 Lipoprotein Metabolism
    Handout 11 Lipoprotein Metabolism ANSC/NUTR 618 LIPIDS & LIPID METABOLISM Lipoprotein Metabolism I. Chylomicrons (exogenous pathway) A. 83% triacylglycerol, 2% protein, 8% cholesterol plus cholesterol esters, 7% phospholipid (esp. phosphatidylcholine) B. Secreted as nascent chylomicrons from mucosal cells with ApoB48 and ApoA1 C. Acquire ApoC1, C2, and C3 in blood (from high-density lipoproteins) 1. ApoC1 activates lecithin:cholesterol acyltransferase (LCAT; in blood) and ApoC2 activates lipoprotein lipase. ApoC3 prevents uptake by the liver. 2. Required for conversion of chylomicrons to remnant particles. D. Triacylgycerols are removed from chylomicrons at extrahepatic tissues by lipoprotein lipase (LPL). E. Chylomicron remnants are taken up by the LDL-receptor-related protein (LRP). Exceptions: In birds, the lymphatic system is poorly developed. Instead, pro-microns are formed, which enter the hepatic portal system (like bile salts) and are transported directly to the liver. 1 Handout 11 Lipoprotein Metabolism Ruminants do not synthesis chylomicrons primarily due to low fat intake. Rather, their dietary fats are transported from the small intestine as very low-density lipoproteins. F. Lipoprotein lipase 1. Lipoprotein lipase is synthesized by various cells (e.g., adipose tissue, cardiac and skeletal muscle) and secreted to the capillary endothelial cells. a. LPL is bound to the endothelial cells by a heparin sulfate bond. b. LPL requires lipoproteins (i.e., apoC2) for activity, hence the name. 2. TAG within the chylomicrons and VLDL are hydrolyzed to NEFA, glycerol, and 2-MAG. a. NEFA and 2-MAG are taken up the tissues and reesterified to TAG b. Glycerol is taken up by the liver for metabolism and converted to G-3-P by glycerol kinase (not present in adipose tissue).
    [Show full text]
  • Apoe Lipidation As a Therapeutic Target in Alzheimer's Disease
    International Journal of Molecular Sciences Review ApoE Lipidation as a Therapeutic Target in Alzheimer’s Disease Maria Fe Lanfranco, Christi Anne Ng and G. William Rebeck * Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Road NW, Washington, DC 20057, USA; [email protected] (M.F.L.); [email protected] (C.A.N.) * Correspondence: [email protected]; Tel.: +1-202-687-1534 Received: 6 August 2020; Accepted: 30 August 2020; Published: 1 September 2020 Abstract: Apolipoprotein E (APOE) is the major cholesterol carrier in the brain, affecting various normal cellular processes including neuronal growth, repair and remodeling of membranes, synaptogenesis, clearance and degradation of amyloid β (Aβ) and neuroinflammation. In humans, the APOE gene has three common allelic variants, termed E2, E3, and E4. APOE4 is considered the strongest genetic risk factor for Alzheimer’s disease (AD), whereas APOE2 is neuroprotective. To perform its normal functions, apoE must be secreted and properly lipidated, a process influenced by the structural differences associated with apoE isoforms. Here we highlight the importance of lipidated apoE as well as the APOE-lipidation targeted therapeutic approaches that have the potential to correct or prevent neurodegeneration. Many of these approaches have been validated using diverse cellular and animal models. Overall, there is great potential to improve the lipidated state of apoE with the goal of ameliorating APOE-associated central nervous system impairments. Keywords: apolipoprotein E; cholesterol; lipid homeostasis; neurodegeneration 1. Scope of This Review In this review, we will first consider the role of apolipoprotein E (apoE) in lipid homeostasis in the central nervous system (CNS).
    [Show full text]
  • The Low-Density Lipoprotein Receptor-Related Protein 1 (LRP1) Mediates the Endocytosis of the Cellular Prion Protein David R Taylor, Nigel M Hooper
    The low-density lipoprotein receptor-related protein 1 (LRP1) mediates the endocytosis of the cellular prion protein David R Taylor, Nigel M Hooper To cite this version: David R Taylor, Nigel M Hooper. The low-density lipoprotein receptor-related protein 1 (LRP1) mediates the endocytosis of the cellular prion protein. Biochemical Journal, Portland Press, 2006, 402 (1), pp.17-23. 10.1042/BJ20061736. hal-00478699 HAL Id: hal-00478699 https://hal.archives-ouvertes.fr/hal-00478699 Submitted on 30 Apr 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Biochemical Journal Immediate Publication. Published on 8 Dec 2006 as manuscript BJ20061736 The low-density lipoprotein receptor-related protein 1 (LRP1) mediates the endocytosis of the cellular prion protein David R. Taylor and Nigel M. Hooper* Proteolysis Research Group Institute of Molecular and Cellular Biology Faculty of Biological Sciences and Leeds Institute of Genetics, Health and Therapeutics University of Leeds Leeds LS2 9JT UK * To whom correspondence should be addressed: tel. +44 113 343 3163; fax. +44 113 343 3167; e-mail: [email protected] Running title: LRP1 mediates the endocytosis of PrP Key words: amyloid precursor protein, copper, endocytosis, low-density lipoprotein receptor-related protein-1, prion, receptor associated protein.
    [Show full text]
  • Postprandial Lipoprotein Metabolism: VLDL Vs Chylomicrons
    UC Davis UC Davis Previously Published Works Title Postprandial lipoprotein metabolism: VLDL vs chylomicrons. Permalink https://escholarship.org/uc/item/9wx8p0x5 Journal Clinica chimica acta; international journal of clinical chemistry, 412(15-16) ISSN 0009-8981 Authors Nakajima, Katsuyuki Nakano, Takamitsu Tokita, Yoshiharu et al. Publication Date 2011-07-01 DOI 10.1016/j.cca.2011.04.018 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Clinica Chimica Acta 412 (2011) 1306–1318 Contents lists available at ScienceDirect Clinica Chimica Acta journal homepage: www.elsevier.com/locate/clinchim Invited critical review Postprandial lipoprotein metabolism: VLDL vs chylomicrons Katsuyuki Nakajima a,b,d,e,i,⁎, Takamitsu Nakano a,b, Yoshiharu Tokita a, Takeaki Nagamine a, Akihiro Inazu c, Junji Kobayashi d, Hiroshi Mabuchi d, Kimber L. Stanhope e, Peter J. Havel e, Mitsuyo Okazaki f,g, Masumi Ai h,i, Akira Tanaka g,i a School of Health Sciences, Faculty of Medicine, Gunma University, Maebashi, Gunma, Japan b Otsuka Pharmaceuticals Co., Ltd, Tokushima, Japan c Department of Laboratory Sciences, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan d Department of Lipidology and Division of Cardiology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan e Department of Molecular Biosciences, School of Veterinary Medicine and Department of Nutrition, University of California, Davis, CA, USA f Skylight Biotech Inc., Akita, Japan g Department of Vascular Medicine and
    [Show full text]
  • The Role of Low-Density Lipoprotein Receptor-Related Protein 1 in Lipid Metabolism, Glucose Homeostasis and Inflammation
    International Journal of Molecular Sciences Review The Role of Low-Density Lipoprotein Receptor-Related Protein 1 in Lipid Metabolism, Glucose Homeostasis and Inflammation Virginia Actis Dato 1,2 and Gustavo Alberto Chiabrando 1,2,* 1 Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina; [email protected] 2 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba X5000HUA, Argentina * Correspondence: [email protected]; Tel.: +54-351-4334264 (ext. 3431) Received: 6 May 2018; Accepted: 13 June 2018; Published: 15 June 2018 Abstract: Metabolic syndrome (MetS) is a highly prevalent disorder which can be used to identify individuals with a higher risk for cardiovascular disease and type 2 diabetes. This metabolic syndrome is characterized by a combination of physiological, metabolic, and molecular alterations such as insulin resistance, dyslipidemia, and central obesity. The low-density lipoprotein receptor-related protein 1 (LRP1—A member of the LDL receptor family) is an endocytic and signaling receptor that is expressed in several tissues. It is involved in the clearance of chylomicron remnants from circulation, and has been demonstrated to play a key role in the lipid metabolism at the hepatic level. Recent studies have shown that LRP1 is involved in insulin receptor (IR) trafficking and intracellular signaling activity, which have an impact on the regulation of glucose homeostasis in adipocytes, muscle cells, and brain. In addition, LRP1 has the potential to inhibit or sustain inflammation in macrophages, depending on its cellular expression, as well as the presence of particular types of ligands in the extracellular microenvironment.
    [Show full text]
  • ABCA1) in Human Disease
    International Journal of Molecular Sciences Review The Role of the ATP-Binding Cassette A1 (ABCA1) in Human Disease Leonor Jacobo-Albavera 1,† , Mayra Domínguez-Pérez 1,† , Diana Jhoseline Medina-Leyte 1,2 , Antonia González-Garrido 1 and Teresa Villarreal-Molina 1,* 1 Laboratorio de Genómica de Enfermedades Cardiovasculares, Dirección de Investigación, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City CP14610, Mexico; [email protected] (L.J.-A.); [email protected] (M.D.-P.); [email protected] (D.J.M.-L.); [email protected] (A.G.-G.) 2 Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Coyoacán, Mexico City CP04510, Mexico * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: Cholesterol homeostasis is essential in normal physiology of all cells. One of several proteins involved in cholesterol homeostasis is the ATP-binding cassette transporter A1 (ABCA1), a transmembrane protein widely expressed in many tissues. One of its main functions is the efflux of intracellular free cholesterol and phospholipids across the plasma membrane to combine with apolipoproteins, mainly apolipoprotein A-I (Apo A-I), forming nascent high-density lipoprotein- cholesterol (HDL-C) particles, the first step of reverse cholesterol transport (RCT). In addition, ABCA1 regulates cholesterol and phospholipid content in the plasma membrane affecting lipid rafts, microparticle (MP) formation and cell signaling. Thus, it is not surprising that impaired ABCA1 function and altered cholesterol homeostasis may affect many different organs and is involved in the Citation: Jacobo-Albavera, L.; pathophysiology of a broad array of diseases. This review describes evidence obtained from animal Domínguez-Pérez, M.; Medina-Leyte, models, human studies and genetic variation explaining how ABCA1 is involved in dyslipidemia, D.J.; González-Garrido, A.; Villarreal- coronary heart disease (CHD), type 2 diabetes (T2D), thrombosis, neurological disorders, age-related Molina, T.
    [Show full text]
  • Use of Lipoprotein(A) in Clinical Practice: a Biomarker Whose Time Has Come
    Journal of Clinical Lipidology (2019) -, -–- Original Research Use of lipoprotein(a) in clinical practice: A biomarker whose time has come. A scientific statement from the National Lipid Association. Don P. Wilson, MD, on behalf of the Writing group Don P. Wilson, MD*, Terry A. Jacobson, MD, Peter H. Jones, MD, Marlys L. Koschinsky, PhD, Catherine J. McNeal, MD, PhD, Børge G. Nordestgaard, MD, DMSc, Carl E. Orringer, MD Department of Pediatric Endocrinology and Diabetes, Cook Children’s Medical Center, Fort Worth, TX, USA (Dr Wilson); Department of Medicine, Lipid Clinic and Cardiovascular Risk Reduction Program, Emory University, Atlanta, GA, USA (Dr Jacobson); Department of Medicine, Baylor College of Medicine, Houston, TX, USA (Dr Jones); Robarts Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada (Dr Koschinsky); Division of Cardiology, Department of Internal Medicine, Baylor Scott & White Health, Temple, TX, USA (Dr McNeal); Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark (Dr Nordestgaard); and Division of Cardiology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA (Dr Orringer) KEYWORDS: Abstract: Lipoprotein(a) [Lp(a)] is a well-recognized, independent risk factor for atherosclerotic car- Lipoprotein (a); diovascular disease, with elevated levels estimated to be prevalent in 20% of the population. Observa- Lp(a); tional and genetic evidence strongly support a causal relationship between high plasma concentrations Biomarker; of Lp(a) and increased risk of atherosclerotic cardiovascular disease–related events, such as myocardial Atherosclerotic infarction and stroke, and valvular aortic stenosis. In this scientific statement, we review an array of cardiovascular disease; evidence-based considerations for testing of Lp(a) in clinical practice and the utilization of Lp(a) levels Cutpoints; to inform treatment strategies in primary and secondary prevention.
    [Show full text]
  • The Importance of Lipoprotein Lipase Regulationin Atherosclerosis
    biomedicines Review The Importance of Lipoprotein Lipase Regulation in Atherosclerosis Anni Kumari 1,2 , Kristian K. Kristensen 1,2 , Michael Ploug 1,2 and Anne-Marie Lund Winther 1,2,* 1 Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen N, Denmark; Anni.Kumari@finsenlab.dk (A.K.); kristian.kristensen@finsenlab.dk (K.K.K.); m-ploug@finsenlab.dk (M.P.) 2 Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2200 Copenhagen N, Denmark * Correspondence: Anne.Marie@finsenlab.dk Abstract: Lipoprotein lipase (LPL) plays a major role in the lipid homeostasis mainly by mediating the intravascular lipolysis of triglyceride rich lipoproteins. Impaired LPL activity leads to the accumulation of chylomicrons and very low-density lipoproteins (VLDL) in plasma, resulting in hypertriglyceridemia. While low-density lipoprotein cholesterol (LDL-C) is recognized as a primary risk factor for atherosclerosis, hypertriglyceridemia has been shown to be an independent risk factor for cardiovascular disease (CVD) and a residual risk factor in atherosclerosis development. In this review, we focus on the lipolysis machinery and discuss the potential role of triglycerides, remnant particles, and lipolysis mediators in the onset and progression of atherosclerotic cardiovascular disease (ASCVD). This review details a number of important factors involved in the maturation and transportation of LPL to the capillaries, where the triglycerides are hydrolyzed, generating remnant lipoproteins. Moreover, LPL and other factors involved in intravascular lipolysis are also reported to impact the clearance of remnant lipoproteins from plasma and promote lipoprotein retention in Citation: Kumari, A.; Kristensen, capillaries. Apolipoproteins (Apo) and angiopoietin-like proteins (ANGPTLs) play a crucial role in K.K.; Ploug, M.; Winther, A.-M.L.
    [Show full text]
  • Clinical Feature: the Evolution of Lipid, Lipoprotein, and Apolipoprotein Markers of CVD Risk and Therapeutic Targets—Is It Ti
    Official Publication of the National Lipid Association LipidSpin Clinical Feature: The Evolution of Lipid, Lipoprotein, and Apolipoprotein Markers of CVD Risk and Therapeutic Targets—Is it Time to Abandon the Cholesterol Content of Atherogenic Lipoproteins? Also in this issue: “HDL-P vs. ApoA1 vs. HDL-C” in Context of the HDL-Hypothesis Controversy The Role of Remnant Lipoproteins in Atherogenesis This issue sponsored by the Pacific Lipid Association Volume 11 Issue 2 Spring 2013 visit www.lipid.org In This Issue: Spring 2013 (Volume 11, Issue 2) Editors 2 From the NLA President JAMES A. UNDERBERG, MD, MS, FACPM, FACP, FNLA* Our Pursuit Continues Preventive CV Medicine, Lipidology and Hypertension —Peter P. Toth, MD, PhD, FNLA* Clinical Assistant Professor of Medicine NYU Medical School and Center for CV Prevention New York, NY 3 From the PLA President Look for the NLA Community logo to discuss articles online at www.lipid.org ROBERT A. WILD, MD, PhD, MPH, FNLA* Apolipoproteins in Clinical Practice Clinical Epidemiology and Biostatistics and —J. Antonio G. López, MD, FNLA Clinical Lipidology Professor Oklahoma University Health Sciences Center Letter from the Lipid Spin Editors Oklahoma City, OK 4 27 Practical Pearls The Times They Are A-changin’ Cardiac Auscultation for the Managing Editor —Robert A. Wild, MD, PhD, FNLA* MEGAN L. SEERY Lipidologist: A Systolic Murmur You National Lipid Association Do Not Want to Miss! 5 Clinical Feature —J. Antonio G. López, MD, FNLA* Executive Director CHRISTOPHER R. SEYMOUR, MBA Is it Time to Abandon the —John R. Nelson, MD, FNLA* National Lipid Association Cholesterol Content of Atherogenic Contributing Editor Lipoproteins? 30 Case Study KEVIN C.
    [Show full text]