Searching for Planets in “Holey Debris Disks”

Total Page:16

File Type:pdf, Size:1020Kb

Searching for Planets in “Holey Debris Disks” Searching for Planets in ! “Holey Debris Disks”" Tiffany Meshkat, M. Kenworthy, V. Bailey, " K. Y. L. Su, P. Hinz, E. Mamajek " In Prep " Direct Imaging" • Goals:" – differentiate between formation mechanisms" – learn about the composition" • Very few directly imaged planets" HR 8799 bcde, Marois et al. 2008, 2010" Fomalhaut b, Kalas et al. 2008" exoplanets.org | 7/28/2014 10 1 0.1 Transits Radial Velocity Microlensing Direct Imaging Planet Mass [Jupiter Mass] Planet Mass [Jupiter 0.01 10-3 0.01 0.1 1 10 100 Separation [Astronomical Units (AU)] Completed direct imaging surveys" • NICI survey: Biller et al. 2013, Wahhaj et al. 2013, Nielsen et al. 2013" • NACO Large Program: Desidera et al. 2014, Chauvin et al. 2014" • IDPS: Vigan et al. 2012" • SEEDS: Brandt et al. 2014, Janson et al. 2013" • M star based surveys: Bowler et al. 2013, Delorme et al. 2013" Common direct imaging targets" • Massive stars" • Nearby, young" • Debris disk systems" • Etc…" Anything which makes the planet brighter Signposts for planets" HR 8799" cold outer belt" b" c" warm inner belt! e" d" Su et al. 2013" “Holey Debris Disks” Project" 1. Disk structure implies presence of companions" 2. If planets are found, use disk to constrain properties " Su et al. in prep" Facilities" • VLT NACO/APP coronagraph • LBTI LMIRCAM" • MagAO CLIO" • Gemini NICI" Su et al. in prep" Su et al. in prep" Two planets detected!" HD 95086 b" Rameau et al. 2013! H-band NICI/Gemini Data" • Very deep dataset (~3 hours)" " • March 2012" Dec (“) • Processed with # optimized PCA (Meshkat et al. 2014)" • Non-detection" # RA (“)" Which models are detectable?" T dwarf=11.6 mag" Cloud free=12 mag" Some clouds=12.5 mag" PCA Contrast Curve" " ] T dwarf" mag Cloud-free planet " Partly-cloudy planet " contrast H [ $ 5 H-L’ lower limit of 3.1±0.5 mag at 5σ Radius [arcsec]" Color-magnitude diagram" H-L’ < 3.1 mag at 5σ Meshkat et al. 2013" Color-magnitude diagram" H-L’ = 3.6 mag at 5σ Galicher et al. 2014" HD 95086 disk structure" Cold outer belt" Warm inner belt" 64 AU" 8 AU" ? b Su et al. in prep (see poster)" HD 95086 L’ Mass Limit Meshkat et al. in prep HD 106906 b J K L Clio S, Clio !Clio N 1" E Bailey et al. 2014! 4 5 3 0 2 1 −5 0 606W H L! ACS 2, NICI Clio 0 2 4 6 −10 −5 0 5 10 0.25 7.5 0.2 2013−04−04 2011−03−21 (if bkgd) (bkgd sources) 8 0.15 8.5 0.1 2004−12−01 0.05 (reference 9 2011−03−21 position) (if bkgd) contrast [mag] 0 σ 9.5 5 ! 2013−04−04 L Relative Dec [arcsec] −0.05 δ (HD 106906 b) 10 2011−03−21 −0.1 (HD 106906 b) 10.5 0 1 2 3 0.4 0.3 0.2 0.1 0 −0.1 separation [arcsec] δ Relative RA [arcsec] HD 106906 disk structure 115 AU ? 17 AU Bailey et al. 2014 HD 106906 L’ Mass Limit Bailey et al. 2014 Unanswered questions Cold outer belt Warm inner belt 64 AU 115 AU 8 AU ? ? 17 AU b HD 95086 HD 106906 Why the success? • L’-band • Apodized Phase Plate coronagraph • Well selected targets • Optimized Principal Component Analysis • Luck! Conclusions (so far) • Holey debris disks are good targets to search for planets (2 out of 15 targets) • Well characterized disks provide wealth of information once companions are found • Need GPI and SPHERE to reach better sensitivity limits around the remaining targets .
Recommended publications
  • Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
    Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born.
    [Show full text]
  • Curriculum Vitae - 24 March 2020
    Dr. Eric E. Mamajek Curriculum Vitae - 24 March 2020 Jet Propulsion Laboratory Phone: (818) 354-2153 4800 Oak Grove Drive FAX: (818) 393-4950 MS 321-162 [email protected] Pasadena, CA 91109-8099 https://science.jpl.nasa.gov/people/Mamajek/ Positions 2020- Discipline Program Manager - Exoplanets, Astro. & Physics Directorate, JPL/Caltech 2016- Deputy Program Chief Scientist, NASA Exoplanet Exploration Program, JPL/Caltech 2017- Professor of Physics & Astronomy (Research), University of Rochester 2016-2017 Visiting Professor, Physics & Astronomy, University of Rochester 2016 Professor, Physics & Astronomy, University of Rochester 2013-2016 Associate Professor, Physics & Astronomy, University of Rochester 2011-2012 Associate Astronomer, NOAO, Cerro Tololo Inter-American Observatory 2008-2013 Assistant Professor, Physics & Astronomy, University of Rochester (on leave 2011-2012) 2004-2008 Clay Postdoctoral Fellow, Harvard-Smithsonian Center for Astrophysics 2000-2004 Graduate Research Assistant, University of Arizona, Astronomy 1999-2000 Graduate Teaching Assistant, University of Arizona, Astronomy 1998-1999 J. William Fulbright Fellow, Australia, ADFA/UNSW School of Physics Languages English (native), Spanish (advanced) Education 2004 Ph.D. The University of Arizona, Astronomy 2001 M.S. The University of Arizona, Astronomy 2000 M.Sc. The University of New South Wales, ADFA, Physics 1998 B.S. The Pennsylvania State University, Astronomy & Astrophysics, Physics 1993 H.S. Bethel Park High School Research Interests Formation and Evolution
    [Show full text]
  • Debris Dust Around Main Sequence Stars
    Debris Dust Around Main Sequence Stars et al. (2013) Kalas Chris5ne H. Chen STScI, September 2016 1 Exoplanetary Systems Exoplanet Observaons Debris Disk Observaons 2 Outline • The HR 4796 System • Training Students Using the KecK LWS • Spitzer GTO Programs – A Search for Terrestrial Planetary Debris Systems and Other Planetary Debris DisKs – Spectroscopy of Protostellar, Protoplanetary and Debris DisKs – Dust Around Main Sequence A-type Stars – The Fabulous Four Debris DisKs 3 Early Debris DisK WorK Timeline • 1983 IRAS launches • 1984 Smith & Terrile spaally resolve the β Pic disK in scaered light using a coronagraph • 1986 Gille] accurately measures “infrared excess” toward Vega, Fomalhaut and β Pic from pointed IRAS observaons • 1991 Jura discovers HR 4796 IRAS infrared excess • 1991 Telesco and KnacKe discover spectroscopic evidence for silicates around β Pic • 1993 BacKman review ar5cle “Main Sequence Stars with Circumstellar Solid Material: The Vega Phenomenon” is published in Protostars and Planets III • 1998 Koerner and Jayawardhana resolve the HR 4796A disK in thermal emission using KecK/MIRLIN and Blanco/OSCIR • 2003 Spitzer launches • 2014 Gemini Planet Imager commissioning HR 4796A Infrared Excess Discovery HR 4796B Secondary Star Discovery • First es5mate for the grain temperature based on simple blacK body modeling, Tgr = 110 K with a predic5on for the distance of the grains from the star, ~40 AU • First grain size constrain (> 10 μm) based on the upper limit for the size of the system (<5” at 20 μm) • First calculaon of the Poyn5ng-Robertson drag life5me for this disK demonstrang that it must be a debris disK HR 4796A Planetary Companion Constraints • Central clearing may be created by a planetary mass object • SpecKle observaons constrain the mass to be < 0.125 M¤ The HR 4796A DisK Resolved! (Leo) HST NICMOS F1600W and F1100W coronagraphic images showing discovery of the light scaered from the dust (Schneider et al.
    [Show full text]
  • Marta L. Bryan
    Marta L. Bryan 501 Campbell Hall #3411 Email: [email protected] University of California at Berkeley Homepage: w.astro.berkeley.edu/∼martalbryan Berkeley, CA 94720-3411 Appointments NASA Hubble Fellowship Program Sagan Fellow, UC Berkeley Astronomy Fall 2021 - present Department 51 Pegasi b Postdoctoral Fellow, UC Berkeley Astronomy Department 2018 - Fall 2021 Education PhD in Astrophysics, California Institute of Technology May 2018 Advisor: Prof. Heather Knutson Thesis: Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation MS in Astrophysics, California Institute of Technology June 2014 BA cum laude with High Honors in Astrophysics, Harvard University June 2012 Undergraduate Thesis Advisor: Prof. David Latham Thesis: Characterizing Qatar-2b: A Hot Jupiter Orbiting a K Dwarf Research Interests Exploring the formation, evolution, and architectures of planetary systems Characterizing exoplanet rotation rates and atmospheres using high-resolution spectroscopy High-contrast AO imaging of exoplanets and brown dwarfs Constraining the frequencies of gas giants in systems hosting different populations of terrestrial and ice giant planets Bridging the gap between radial velocity and direct imaging survey sensitivities to planets using radial velocity trends Awards and Honors NASA Hubble Fellowship Program Sagan Fellowship 2021 51 Pegasi b Postdoctoral Fellowship 2018 NASA Hubble Fellowship Program Sagan Fellowship (declined) 2018 David and Barbara Groce Grant to attend the Exoplanets I meeting in Davos 2016 Switzerland, California Institute of Technology AAS 2015 International Travel Grant 2015 National Science Foundation Graduate Research Fellowship Honorable Mention 2014, 2013 Chambliss Astronomy Achievement Student Award Honorable Mention, AAS 2014 Moffet Fellowship, California Institute of Technology 2012-2013 Origins of Life Research Grant, Harvard University 2011-2012 Leo Goldberg Prize for outstanding undergraduate thesis work, Harvard University 2011 U.S.
    [Show full text]
  • Exoplanet.Eu Catalog Page 1 # Name Mass Star Name
    exoplanet.eu_catalog # name mass star_name star_distance star_mass OGLE-2016-BLG-1469L b 13.6 OGLE-2016-BLG-1469L 4500.0 0.048 11 Com b 19.4 11 Com 110.6 2.7 11 Oph b 21 11 Oph 145.0 0.0162 11 UMi b 10.5 11 UMi 119.5 1.8 14 And b 5.33 14 And 76.4 2.2 14 Her b 4.64 14 Her 18.1 0.9 16 Cyg B b 1.68 16 Cyg B 21.4 1.01 18 Del b 10.3 18 Del 73.1 2.3 1RXS 1609 b 14 1RXS1609 145.0 0.73 1SWASP J1407 b 20 1SWASP J1407 133.0 0.9 24 Sex b 1.99 24 Sex 74.8 1.54 24 Sex c 0.86 24 Sex 74.8 1.54 2M 0103-55 (AB) b 13 2M 0103-55 (AB) 47.2 0.4 2M 0122-24 b 20 2M 0122-24 36.0 0.4 2M 0219-39 b 13.9 2M 0219-39 39.4 0.11 2M 0441+23 b 7.5 2M 0441+23 140.0 0.02 2M 0746+20 b 30 2M 0746+20 12.2 0.12 2M 1207-39 24 2M 1207-39 52.4 0.025 2M 1207-39 b 4 2M 1207-39 52.4 0.025 2M 1938+46 b 1.9 2M 1938+46 0.6 2M 2140+16 b 20 2M 2140+16 25.0 0.08 2M 2206-20 b 30 2M 2206-20 26.7 0.13 2M 2236+4751 b 12.5 2M 2236+4751 63.0 0.6 2M J2126-81 b 13.3 TYC 9486-927-1 24.8 0.4 2MASS J11193254 AB 3.7 2MASS J11193254 AB 2MASS J1450-7841 A 40 2MASS J1450-7841 A 75.0 0.04 2MASS J1450-7841 B 40 2MASS J1450-7841 B 75.0 0.04 2MASS J2250+2325 b 30 2MASS J2250+2325 41.5 30 Ari B b 9.88 30 Ari B 39.4 1.22 38 Vir b 4.51 38 Vir 1.18 4 Uma b 7.1 4 Uma 78.5 1.234 42 Dra b 3.88 42 Dra 97.3 0.98 47 Uma b 2.53 47 Uma 14.0 1.03 47 Uma c 0.54 47 Uma 14.0 1.03 47 Uma d 1.64 47 Uma 14.0 1.03 51 Eri b 9.1 51 Eri 29.4 1.75 51 Peg b 0.47 51 Peg 14.7 1.11 55 Cnc b 0.84 55 Cnc 12.3 0.905 55 Cnc c 0.1784 55 Cnc 12.3 0.905 55 Cnc d 3.86 55 Cnc 12.3 0.905 55 Cnc e 0.02547 55 Cnc 12.3 0.905 55 Cnc f 0.1479 55
    [Show full text]
  • Exoplanet Meteorology: Characterizing the Atmospheres Of
    Exoplanet Meteorology: Characterizing the Atmospheres of Directly Imaged Sub-Stellar Objects by Abhijith Rajan A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Approved April 2017 by the Graduate Supervisory Committee: Jennifer Patience, Co-Chair Patrick Young, Co-Chair Paul Scowen Nathaniel Butler Evgenya Shkolnik ARIZONA STATE UNIVERSITY May 2017 ©2017 Abhijith Rajan All Rights Reserved ABSTRACT The field of exoplanet science has matured over the past two decades with over 3500 confirmed exoplanets. However, many fundamental questions regarding the composition, and formation mechanism remain unanswered. Atmospheres are a window into the properties of a planet, and spectroscopic studies can help resolve many of these questions. For the first part of my dissertation, I participated in two studies of the atmospheres of brown dwarfs to search for weather variations. To understand the evolution of weather on brown dwarfs we conducted a multi- epoch study monitoring four cool brown dwarfs to search for photometric variability. These cool brown dwarfs are predicted to have salt and sulfide clouds condensing in their upper atmosphere and we detected one high amplitude variable. Combining observations for all T5 and later brown dwarfs we note a possible correlation between variability and cloud opacity. For the second half of my thesis, I focused on characterizing the atmospheres of directly imaged exoplanets. In the first study Hubble Space Telescope data on HR8799, in wavelengths unobservable from the ground, provide constraints on the presence of clouds in the outer planets. Next, I present research done in collaboration with the Gemini Planet Imager Exoplanet Survey (GPIES) team including an exploration of the instrument contrast against environmental parameters, and an examination of the environment of the planet in the HD 106906 system.
    [Show full text]
  • Direct Imaging of Exoplanets in the Habitable Zone with Adaptive Optics
    Direct imaging of exoplanets in the habitable zone with adaptive optics Jared R. Malesa,*, Laird M. Closea, Olivier Guyona, Katie Morzinskia,*, Alfio Puglisib, Philip Hinza, Katherine B. Follettea, John D. Monnierc, Volker Tollsd, Timothy J. Rodigase, Alycia Weinbergere, Alan Bosse, Derek Koponf, Ya-lin Wua, Simone Espositob, Armando Riccardib, Marco Xomperob, Runa Brigugliob, Enrico Pinnab aSteward Observatory, University of Arizona, Tucson, AZ, USA; bInstituto Nazionale di Astrofisica, Osservatorio Astrofisico di Arcetri, Firenze, Italy; cAstronomy Department, University of Michigan; dHarvard-Smithsonian, CfA, Boston, MA, USA; eCarnegie Institution DTM, Washington, DC, USA; fMPiA Heidelberg, Germany; *NASA Sagan Fellow ABSTRACT One of the primary goals of exoplanet science is to find and characterize habitable planets, and direct imaging will play a key role in this effort. Though imaging a true Earth analog is likely out of reach from the ground, the coming generation of giant telescopes will find and characterize many planets in and near the habitable zones (HZs) of nearby stars. Radial velocity and transit searches indicate that such planets are common, but imaging them will require achieving extreme contrasts at very small angular separations, posing many challenges for adaptive optics (AO) system design. Giant planets in the HZ may even be within reach with the latest generation of high-contrast imagers for a handful of very nearby stars. Here we will review the definition of the HZ, and the characteristics of detectable planets there. We then review some of the ways that direct imaging in the HZ will be different from the typical exoplanet imaging survey today. Finally, we present preliminary results from our observations of the HZ of α Centauri A with the Magellan AO system’s VisAO and Clio2 cameras.
    [Show full text]
  • High-Precision HST/WFC3/IR Time-Resolved Observations of Directly Imaged Exoplanet HD 106906B
    The Astronomical Journal, 159:140 (13pp), 2020 April https://doi.org/10.3847/1538-3881/ab6f65 © 2020. The American Astronomical Society. All rights reserved. Cloud Atlas: High-precision HST/WFC3/IR Time-resolved Observations of Directly Imaged Exoplanet HD 106906b Yifan Zhou1,2,15 , Dániel Apai1,3,4 , Luigi R. Bedin5, Ben W. P. Lew3 , Glenn Schneider1 , Adam J. Burgasser6 , Elena Manjavacas7 , Theodora Karalidi8 , Stanimir Metchev9,10 , Paulo A. Miles-Páez11,16 , Nicolas B. Cowan12 , Patrick J. Lowrance13 , and Jacqueline Radigan14 1 Department of Astronomy/Steward Observatory, The University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721, USA; [email protected] 2 Department of Astronomy/McDonald Observatory, The University of Texas, 2515 Speedway, Austin, TX 78712, USA 3 Department of Planetary Science/Lunar and Planetary Laboratory, The University of Arizona, 1640 E. University Boulevard, Tucson, AZ 85718, USA 4 Earths in Other Solar Systems Team, NASA Nexus for Exoplanet System Science, USA 5 INAF—Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122 Padova, Italy 6 Center for Astrophysics and Space Science, University of California San Diego, La Jolla, CA 92093, USA 7 W.M. Keck Observatory, 65-1120 Mamalahoa Hwy. Kamuela, HI 96743, USA 8 Department of Physics, University of Central Florida, 4111 Libra Drive, Orlando, FL 32816, USA 9 Department of Physics & Astronomy and Centre for Planetary Science and Exploration, The University of Western Ontario, London, Ontario N6A 3K7, Canada 10 Department of Astrophysics,
    [Show full text]
  • Exoplanet.Eu Catalog Page 1 Star Distance Star Name Star Mass
    exoplanet.eu_catalog star_distance star_name star_mass Planet name mass 1.3 Proxima Centauri 0.120 Proxima Cen b 0.004 1.3 alpha Cen B 0.934 alf Cen B b 0.004 2.3 WISE 0855-0714 WISE 0855-0714 6.000 2.6 Lalande 21185 0.460 Lalande 21185 b 0.012 3.2 eps Eridani 0.830 eps Eridani b 3.090 3.4 Ross 128 0.168 Ross 128 b 0.004 3.6 GJ 15 A 0.375 GJ 15 A b 0.017 3.6 YZ Cet 0.130 YZ Cet d 0.004 3.6 YZ Cet 0.130 YZ Cet c 0.003 3.6 YZ Cet 0.130 YZ Cet b 0.002 3.6 eps Ind A 0.762 eps Ind A b 2.710 3.7 tau Cet 0.783 tau Cet e 0.012 3.7 tau Cet 0.783 tau Cet f 0.012 3.7 tau Cet 0.783 tau Cet h 0.006 3.7 tau Cet 0.783 tau Cet g 0.006 3.8 GJ 273 0.290 GJ 273 b 0.009 3.8 GJ 273 0.290 GJ 273 c 0.004 3.9 Kapteyn's 0.281 Kapteyn's c 0.022 3.9 Kapteyn's 0.281 Kapteyn's b 0.015 4.3 Wolf 1061 0.250 Wolf 1061 d 0.024 4.3 Wolf 1061 0.250 Wolf 1061 c 0.011 4.3 Wolf 1061 0.250 Wolf 1061 b 0.006 4.5 GJ 687 0.413 GJ 687 b 0.058 4.5 GJ 674 0.350 GJ 674 b 0.040 4.7 GJ 876 0.334 GJ 876 b 1.938 4.7 GJ 876 0.334 GJ 876 c 0.856 4.7 GJ 876 0.334 GJ 876 e 0.045 4.7 GJ 876 0.334 GJ 876 d 0.022 4.9 GJ 832 0.450 GJ 832 b 0.689 4.9 GJ 832 0.450 GJ 832 c 0.016 5.9 GJ 570 ABC 0.802 GJ 570 D 42.500 6.0 SIMP0136+0933 SIMP0136+0933 12.700 6.1 HD 20794 0.813 HD 20794 e 0.015 6.1 HD 20794 0.813 HD 20794 d 0.011 6.1 HD 20794 0.813 HD 20794 b 0.009 6.2 GJ 581 0.310 GJ 581 b 0.050 6.2 GJ 581 0.310 GJ 581 c 0.017 6.2 GJ 581 0.310 GJ 581 e 0.006 6.5 GJ 625 0.300 GJ 625 b 0.010 6.6 HD 219134 HD 219134 h 0.280 6.6 HD 219134 HD 219134 e 0.200 6.6 HD 219134 HD 219134 d 0.067 6.6 HD 219134 HD
    [Show full text]
  • Abstracts of Extreme Solar Systems 4 (Reykjavik, Iceland)
    Abstracts of Extreme Solar Systems 4 (Reykjavik, Iceland) American Astronomical Society August, 2019 100 — New Discoveries scope (JWST), as well as other large ground-based and space-based telescopes coming online in the next 100.01 — Review of TESS’s First Year Survey and two decades. Future Plans The status of the TESS mission as it completes its first year of survey operations in July 2019 will bere- George Ricker1 viewed. The opportunities enabled by TESS’s unique 1 Kavli Institute, MIT (Cambridge, Massachusetts, United States) lunar-resonant orbit for an extended mission lasting more than a decade will also be presented. Successfully launched in April 2018, NASA’s Tran- siting Exoplanet Survey Satellite (TESS) is well on its way to discovering thousands of exoplanets in orbit 100.02 — The Gemini Planet Imager Exoplanet Sur- around the brightest stars in the sky. During its ini- vey: Giant Planet and Brown Dwarf Demographics tial two-year survey mission, TESS will monitor more from 10-100 AU than 200,000 bright stars in the solar neighborhood at Eric Nielsen1; Robert De Rosa1; Bruce Macintosh1; a two minute cadence for drops in brightness caused Jason Wang2; Jean-Baptiste Ruffio1; Eugene Chiang3; by planetary transits. This first-ever spaceborne all- Mark Marley4; Didier Saumon5; Dmitry Savransky6; sky transit survey is identifying planets ranging in Daniel Fabrycky7; Quinn Konopacky8; Jennifer size from Earth-sized to gas giants, orbiting a wide Patience9; Vanessa Bailey10 variety of host stars, from cool M dwarfs to hot O/B 1 KIPAC, Stanford University (Stanford, California, United States) giants. 2 Jet Propulsion Laboratory, California Institute of Technology TESS stars are typically 30–100 times brighter than (Pasadena, California, United States) those surveyed by the Kepler satellite; thus, TESS 3 Astronomy, California Institute of Technology (Pasadena, Califor- planets are proving far easier to characterize with nia, United States) follow-up observations than those from prior mis- 4 Astronomy, U.C.
    [Show full text]
  • Exoplanetary Geophysics--An Emerging Discipline
    Invited Review for Treatise on Geophysics, 2nd Edition Exoplanetary Geophysics { An Emerging Discipline Gregory Laughlin UCO/Lick Observatory, University of California, Santa Cruz, Santa Cruz, CA 95064, USA Jack J. Lissauer NASA Ames Research Center, Planetary Systems Branch, Moffett Field, CA 94035, USA 1. Abstract Thousands of extrasolar planets have been discovered, and it is clear that the galactic planetary census draws on a diversity greatly exceeding that exhibited by the solar system's planets. We review significant landmarks in the chronology of extrasolar planet detection, and we give an overview of the varied observational techniques that are brought to bear. We then discuss the properties of the planetary distribution that is currently known, using the mass-period diagram as a guide to delineating hot Jupiters, eccentric giant planets, and a third, highly populous, category that we term \ungiants", planets having masses M < 30 M⊕ and orbital periods P < 100 d. We then move to a discussion of the bulk compositions of the extrasolar planets, with particular attention given to the distribution of planetary densities. We discuss the long-standing problem of radius anomalies among giant planets, as well as issues posed by the unexpectedly large range in sizes observed for planets with mass somewhat greater than Earth's. We discuss the use of transit observations to probe the atmospheres of extrasolar planets; various measurements taken during primary transit, secondary eclipse, and through the full orbital period, can give clues to the atmospheric compositions, structures and meteorologies. The extrasolar planet catalog, along with the details of our solar system and observations of star-forming regions and protoplanetary disks, arXiv:1501.05685v1 [astro-ph.EP] 22 Jan 2015 provide a backdrop for a discussion of planet formation in which we review the elements of the favored pictures for how the terrestrial and giant planets were assembled.
    [Show full text]
  • Download This Article in PDF Format
    A&A 593, A75 (2016) Astronomy DOI: 10.1051/0004-6361/201526326 & c ESO 2016 Astrophysics Direct Imaging discovery of a second planet candidate around the possibly transiting planet host CVSO 30? T. O. B. Schmidt1; 2, R. Neuhäuser2, C. Briceño3, N. Vogt4, St. Raetz5, A. Seifahrt6, C. Ginski7, M. Mugrauer2, S. Buder2; 8, C. Adam2, P. Hauschildt1, S. Witte1, Ch. Helling9, and J. H. M. M. Schmitt1 1 Hamburger Sternwarte, Gojenbergsweg 112, 21029 Hamburg, Germany e-mail: [email protected] 2 Astrophysikalisches Institut und Universitäts-Sternwarte, Universität Jena, Schillergäßchen 2-3, 07745 Jena, Germany 3 Cerro Tololo Inter-American Observatory CTIO/AURA/NOAO, Colina El Pino s/n. Casilla 603, 1700000 La Serena, Chile 4 Instituto de Física y Astronomía, Universidad de Valparaíso, Avenida Gran Bretaña 1111, 2340000 Valparaíso, Chile 5 European Space Agency ESA, ESTEC, SRE-S, Keplerlaan 1, 2201 AZ Noordwijk, The Netherlands 6 Department of Astronomy and Astrophysics, University of Chicago, 5640 S. Ellis Ave., Chicago, IL 60637, USA 7 Sterrewacht Leiden, PO Box 9513, Niels Bohrweg 2, 2300 RA Leiden, The Netherlands 8 Max-Planck-Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany 9 School of Physics and Astronomy SUPA, University of St. Andrews, North Haugh, St. Andrews, KY16 9SS, UK Received 16 April 2015 / Accepted 14 March 2016 ABSTRACT Context. Direct imaging has developed into a very successful technique for the detection of exoplanets in wide orbits, especially around young stars. Directly imaged planets can be both followed astrometrically on their orbits and observed spectroscopically and thus provide an essential tool for our understanding of the early solar system.
    [Show full text]