Deciphering the Gamma-Ray

Total Page:16

File Type:pdf, Size:1020Kb

Deciphering the Gamma-Ray Deciphering the g-ray Sky Study of the g-Cygni SNR using a novel likelihood analysis technique for the MAGIC telescopes Marcel C. Strzys München 2019 Deciphering the g-ray Sky Study of the g-Cygni SNR using a novel likelihood analysis technique for the MAGIC telescopes Marcel C. Strzys Dissertation an der Fakultät für Physik der Ludwig–Maximilians–Universität München vorgelegt von Marcel C. Strzys aus Iserlohn München, den 16. Dezember 2019 Dissertation an der Fakulät für Physik der Ludwig-Maximilians-Universität München vorgelegt von Marcel Constantin Strzys am 16. Dezember 2019. Erstgutachter: PD Dr. Georg G. Raffelt Zweitgutachter: Prof. Dr. Masahiro Teshima Vorsitzende der Prüfungskommission: Prof. Dr. Katia Parodi Weiterer Prüfer: Prof. Dr. Til Birnstiel Tag der mündlichen Prüfung: 30. Januar 2020 Zusammenfassung Diese Dissertation befasst sich mit der Entwicklung einer Likelihood basierten Anal- yse für Daten von abbildenden Luft Cherenkov Teleskopen (IACTs) und deren An- wendung auf Beobachtungen des g-Cygni Supernova Überrestes mit den MAGIC Teleskopen, einem System von zwei IACTs. Nach heutigem Wissensstand wird der galaktische Anteil der kosmischen Strahlung (CR), relativistischer Teilchen, welche hochenergetische Gammastrahlung erzeugen, hauptsächlich in den Schockwellen der Überreste von Supernovae (SNR) beschleunigt. Diese Objekte sind ausgedehnt genug, sodass sie sich auch mit Gammastrahlen Teleskopen auflösen lassen. Dies ermöglicht einerseits eine genauere Untersuchung der verschiedenen Beschleunigungsregionen innerhalb des Objekts, stellt anderer- seits jedoch eine Herausforderung für die aktuellen Analysemethoden von IACTs dar. IACTs detektieren das Cherenkov Licht von Luftschauern, Teilchenkaskaden, die aus der Wechselwirkung von Gammastrahlung mit Luftmolekülen resultieren. Aktuell wird die Intensität einer Quelle aus den Daten von IACTs mittels der Apertur- Photometrie ermittelt. Dazu wird die Anzahl der detektierten Gammastrahlen-Er- eignisse aus einem Gebiet um die Quelle mit der Anzahl an Ereignissen aus einem gleichgroßen Kontrollbereich ohne Quelle ermittelt. Überlagern sich jedoch Emission- sregionen, so lässt sich nicht bestimmen, zu welcher Region ein Ereignis zählt. Sehr ausgedehnte Quellen oder Objekte mit komplexer Morphologie stellen zudem ein Problem hinsichtlich der Wahl der Quellregion dar. Durch eine räumliche Likelihood Analyse auf der Basis von Himmelskarten von IACTs lassen sich die Schwierigkeiten vermeiden. Dabei wird eine benutzerdefinierte Morphologie mit der Instrumentenantwort (IRF) gefaltet und dieses "realistische" Quellmodel mittels eines Poisson-Likelihood Fits an die Messdaten angepasst. Bei satellitengestützten Gamma-Teleskopen wie dem Fermi Large Area Telescope (LAT), wird diese Methode bereits angewandt. Die Schwierigkeit für IACTs ist die Bestim- mung der IRF. Da die Atmosphäre ein Bestandteil des IACTs ist, kann die IRF nicht vorab im Labor ermittelt werden, sondern muss mit Hilfe von Monte-Carlo Simula- tionen für jede Beobachtung individuell bestimmt werden. Diese Arbeit präsentiert das Software Paket SkyPrism, das eine solche Analyse inklusive der Bestimmung der IRFs, für die MAGIC Teleskope durchführt. Mit Hilfe von SkyPrism konnten MAGIC Beobachtungsdaten von dem ca. 7 103 Jah- × ren alten g-Cygni SNR analysiert werden. Während des Beschleunigungsvorgangs in v SNR Schockwellen streut die CR an magnetischen Turbulenzen vor und hinter dem Schock, wodurch der Grad der Turbulenzen ein wichtiger Bestandteil des Beschleuni- gungsvorgangs wird. Aus den schnellen Schockwellen von jüngeren SNR ( 3 103 Jah- . × ren) entkommt nur ein kleiner Anteil der CR, während bei älteren SNR ( 1 104 Jahren) & × bereits nahezu die gesamte CR der Schockwelle entkommen ist und keine Beschleuni- gung mehr stattfindet. Die Beobachtungen mit den MAGIC Teleskopen (85 Stunden Beobachtungszeit) und dem Fermi-LAT (9 Jahre Daten) über einen Energiebereich von 5 GeV bis 5 TeV ermöglichten zum ersten Mal eine Untersuchung, wie die CR der Schockwelle eines SNR ins interstellare Medium entkommt. Mittels eines theo- retischen Models für die Schockbeschleunigung konnte ermittelt werden, dass die maximale Energie, zu der die CR beschleunigt und im Schockbereich gehalten wer- den kann, schneller mit der Lebensdauer des SNR abnimmt als erwartet und der Grad an Turbulenzen über die Lebensdauer des SNR nicht konstant sein kann. vi Abstract This thesis presents a novel spatial likelihood analysis for Imaging Atmospheric Cherenkov Telescopes (IACTs) and its use to analyse observations of the g-Cygni supernova remnant (SNR) with the MAGIC telescopes, a system of two IACTs. SNRs are the prime candidate source for the origin of the galactic component of cosmic rays (CRs). These objects are sufficiently extended to be resolved with g-ray telescopes. This allows the determination of different acceleration regions of a source, but poses issues for the current analysis approach for IACT data. IACTs detect the Cherenkov light generated in air showers, which are cascades of energetic particle that result from the interaction of g-rays with the molecules in the atmosphere. Currently, the emission from a source is determined using the aperture photometry approach, in which the number of g-ray events from the source region is compared against a source-free background control region. In the case of superimposed emission regions, an event count cannot be attributed to one emission region. Furthermore, extended objects or objects of complex morphology make the definition of the source region a difficult task. These issues can be overcome by a spatial likelihood analysis of the skymaps of IACTs. In this approach, a user-defined source template is convolved with the instru- ment response functions (IRFs) and the "realistic" model fitted to the event count maps via a Poissonian likelihood fit. The data analyses of space-based g-ray telescopes, such as the Fermi Large Area Telescope (LAT), are based on this technique. For IACTs the determination of the IRFs, however, is a challenging task: because the atmosphere is part of the detector, the IRFs cannot be measured in the laboratory but need to be com- puted from Monte-Carlo events for each observation individually. This thesis presents SkyPrism, a software package performing such an analysis on MAGIC data including the accurate determination of the IRFs. Using SkyPrism it was possible to analyse observations of the 7 103 yr old g- ∼ × Cygni SNR taken with MAGIC between 2015 and 2017. CRs are accelerated and con- fined in the shock region by magnetic turbulences ahead and behind the shock, mak- ing the level of turbulence an important ingredient of the acceleration process. Only a small high energetic fraction of CRs may escape the fast shocks of young SNRs ( 3 103 yr), whereas in the case of old SNRs ( 1 104 yr) almost all CRs have al- . × & × ready escaped. I studied the escape of CRs from the shock into the interstellar medium vii using 85 h of MAGIC data and 9 yr Fermi-LAT data covering the energy range from 5 GeV to 5 TeV. Using the theoretical model of the diffusive shock acceleration, I de- termined that the maximum energy of the CRs confined in the shock region decreases faster with the lifetime of the SNR than expected and that the level of turbulence is not constant over the lifetime of the SNR. viii Megara:“Non est ad astra mollis e terris via." — Seneca Contents 1. Introduction1 2. Supernova remnants, cosmic ray and gamma rays7 2.1. The supernova remnant paradigm . .8 2.2. Supernova remnants . 10 2.2.1. Evolution of SNR . 11 2.3. Cosmic-ray acceleration . 13 2.3.1. Diffusive shock acceleration . 13 2.3.2. Particle spectrum from diffusive shock acceleration . 15 2.3.3. Acceleration time and maximum energy . 16 2.3.4. Extensions of the diffusive shock acceleration . 18 2.4. Generation of photons by cosmic rays . 20 2.4.1. Interaction of particles with magnetic fields . 20 2.4.2. Interaction of particles with photon fields . 21 2.4.3. Interaction of particles with matter . 22 2.4.4. Cooling of relativistic particles . 23 2.4.5. Model spectra . 24 2.5. Gamma-ray emission from SNRs . 26 3. Gamma-ray astronomy 33 3.1. Opaqueness of the atmosphere . 33 3.2. Electromagnetic cascades . 34 3.3. Space-based g-ray astronomy and the Fermi-LAT . 35 3.3.1. The Fermi-LAT performance . 37 3.3.2. Systematic uncertainties . 39 3.4. Imaging Air Cherenkov telescopes . 40 3.4.1. Air showers . 41 3.4.2. Cherenkov light in air showers . 42 3.4.3. The Imaging Air Cherenkov Telescope technique . 46 3.5. The MAGIC telescopes . 48 3.5.1. Structure and reflector system . 48 3.5.2. Camera . 50 3.5.3. Trigger and read-out electronics . 51 3.5.4. Additional subsystems of the telescopes . 53 xi Contents 3.5.5. The MAGIC data analysis chain . 54 3.5.6. Performance of MAGIC . 61 3.5.7. Systematics uncertainties . 65 4. A novel spatial likelihood analysis technique for MAGIC 71 4.1. Data analysis in gamma-ray astronomy . 71 4.1.1. The method of maximum likelihood . 71 4.2. The classical analysis approach for IACT data . 73 4.2.1. Wobble mode . 74 4.2.2. Source detection . 74 4.2.3. Flux estimation . 75 4.2.4. Spectrum deconvolution . 76 4.2.5. Limitations of the current approach . 77 4.3. The Fermi-LAT data analysis . 79 4.4. SkyPrism - the novel spatial likelihood analysis for MAGIC . 80 4.4.1. Generation of the skymaps and instrument response functions 81 4.4.2. The likelihood fitting procedure . 91 4.4.3. Validation on MAGIC data . 94 4.5. Summary and outlook . 106 5. New gamma-ray light shed on the gamma-Cygni supernova remnant 111 5.1. The gamma-Cygni SNR . 111 5.2. The current multi-wavelength image . 112 5.2.1. The radio shell . 112 5.2.2. CO properties . 114 5.2.3. Optical properties . 114 5.2.4. X-ray properties . 115 5.2.5. Previous gamma-ray observations . 116 5.2.6. PSR J2021+4026 . 118 5.2.7. Summary of the MWL properties .
Recommended publications
  • BRAS Newsletter August 2013
    www.brastro.org August 2013 Next meeting Aug 12th 7:00PM at the HRPO Dark Site Observing Dates: Primary on Aug. 3rd, Secondary on Aug. 10th Photo credit: Saturn taken on 20” OGS + Orion Starshoot - Ben Toman 1 What's in this issue: PRESIDENT'S MESSAGE....................................................................................................................3 NOTES FROM THE VICE PRESIDENT ............................................................................................4 MESSAGE FROM THE HRPO …....................................................................................................5 MONTHLY OBSERVING NOTES ....................................................................................................6 OUTREACH CHAIRPERSON’S NOTES .........................................................................................13 MEMBERSHIP APPLICATION .......................................................................................................14 2 PRESIDENT'S MESSAGE Hi Everyone, I hope you’ve been having a great Summer so far and had luck beating the heat as much as possible. The weather sure hasn’t been cooperative for observing, though! First I have a pretty cool announcement. Thanks to the efforts of club member Walt Cooney, there are 5 newly named asteroids in the sky. (53256) Sinitiere - Named for former BRAS Treasurer Bob Sinitiere (74439) Brenden - Named for founding member Craig Brenden (85878) Guzik - Named for LSU professor T. Greg Guzik (101722) Pursell - Named for founding member Wally Pursell
    [Show full text]
  • SEPTEMBER 2014 OT H E D Ebn V E R S E R V ESEPTEMBERR 2014
    THE DENVER OBSERVER SEPTEMBER 2014 OT h e D eBn v e r S E R V ESEPTEMBERR 2014 FROM THE INSIDE LOOKING OUT Calendar Taken on July 25th in San Luis State Park near the Great Sand Dunes in Colorado, Jeff made this image of the Milky Way during an overnight camping stop on the way to Santa Fe, NM. It was taken with a Canon 2............................. First quarter moon 60D camera, an EFS 15-85 lens, using an iOptron SkyTracker. It is a single frame, with no stacking or dark/ 8.......................................... Full moon bias frames, at ISO 1600 for two minutes. Visible in this south-facing photograph is Sagittarius, and the 14............ Aldebaran 1.4˚ south of moon Dark Horse Nebula inside of the Milky Way. He processed the image in Adobe Lightroom. Image © Jeff Tropeano 15............................ Last quarter moon 22........................... Autumnal Equinox 24........................................ New moon Inside the Observer SEPTEMBER SKIES by Dennis Cochran ygnus the Swan dives onto center stage this other famous deep-sky object is the Veil Nebula, President’s Message....................... 2 C month, almost overhead. Leading the descent also known as the Cygnus Loop, a supernova rem- is the nose of the swan, the star known as nant so large that its separate arcs were known Society Directory.......................... 2 Albireo, a beautiful multi-colored double. One and named before it was found to be one wide Schedule of Events......................... 2 wonders if Albireo has any planets from which to wisp that came out of a single star. The Veil is see the pair up-close.
    [Show full text]
  • Second AGILE Catalogue of Gamma-Ray Sources?
    A&A 627, A13 (2019) Astronomy https://doi.org/10.1051/0004-6361/201834143 & c ESO 2019 Astrophysics Second AGILE catalogue of gamma-ray sources? A. Bulgarelli1, V. Fioretti1, N. Parmiggiani1, F. Verrecchia2,3, C. Pittori2,3, F. Lucarelli2,3, M. Tavani4,5,6,7 , A. Aboudan7,12, M. Cardillo4, A. Giuliani8, P. W. Cattaneo9, A. W. Chen15, G. Piano4, A. Rappoldi9, L. Baroncelli7, A. Argan4, L. A. Antonelli3, I. Donnarumma4,16, F. Gianotti1, P. Giommi16, M. Giusti4,5, F. Longo13,14, A. Pellizzoni10, M. Pilia10, M. Trifoglio1, A. Trois10, S. Vercellone11, and A. Zoli1 1 INAF-OAS Bologna, Via Gobetti 93/3, 40129 Bologna, Italy e-mail: [email protected] 2 ASI Space Science Data Center (SSDC), Via del Politecnico snc, 00133 Roma, Italy 3 INAF-Osservatorio Astronomico di Roma, Via di Frascati 33, 00078 Monte Porzio Catone, Italy 4 INAF-IAPS Roma, Via del Fosso del Cavaliere 100, 00133 Roma, Italy 5 Dipartimento di Fisica, Università Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma, Italy 6 INFN Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma, Italy 7 Consorzio Interuniversitario Fisica Spaziale (CIFS), Villa Gualino - v.le Settimio Severo 63, 10133 Torino, Italy 8 INAF–IASF Milano, Via E. Bassini 15, 20133 Milano, Italy 9 INFN Pavia, Via Bassi 6, 27100 Pavia, Italy 10 INAF–Osservatorio Astronomico di Cagliari, Via della Scienza 5, 09047 Selargius, CA, Italy 11 INAF–Osservatorio Astronomico di Brera, Via E. Bianchi 46, 23807 Merate, LC, Italy 12 CISAS, University of Padova, Padova, Italy 13 Dipartimento di Fisica, University of Trieste, Via Valerio 2, 34127 Trieste, Italy 14 INFN, sezione di Trieste, Via Valerio 2, 34127 Trieste, Italy 15 School of Physics, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein stateJohannesburg 2050, South Africa 16 ASI, Via del Politecnico snc, 00133 Roma, Italy Received 27 August 2018 / Accepted 12 March 2019 ABSTRACT Aims.
    [Show full text]
  • Modeling the Non-Thermal Emission of the Gamma Cygni Supernova Remnant up to the Highest Energies
    Modeling the non-thermal emission of the gamma Cygni Supernova Remnant up to the highest energies Henrike Fleischhack∗ Michigan Technological University E-mail: [email protected] for the HAWC collaboration y The gamma Cygni supernova remnant (SNR) is a middle-aged, Sedov-phase SNR in the Cygnus region. It is a known source of non-thermal emission at radio, X-ray, and gamma-ray energies. Very-high energy (VHE, >100 GeV) gamma-ray emission from gamma Cygni was first detected by the VERITAS observatory and it has since been observed by other experiments. Observations so far indicate that there must be a population of non-thermal particles present in the remnant which produces the observed emission. However, it is not clear what kind of particles (protons/ions or electrons) are accelerated in the remnant, how efficient the acceleration is, and up to which energy particles can be accelerated. Accurate measurements of the VHE gamma-ray spectrum are crucial to investigate particle acceleration above TeV energies. This presentation will focus on multi-wavelength observations of the gamma Cygni SNR and their interpretation. We will present improved measurements of the VHE gamma-ray emission spec- trum of gamma Cygni by the High-Altitude Water Cherenkov (HAWC) gamma-ray observatory, and use these results as well as measurements from other instruments to model the underlying particle populations producing this emission. HAWC’s excellent sensitivity at TeV energies and above enables us to extend spectral measurements to higher energies and better constrain the maximum acceleration energy. arXiv:1907.08572v1 [astro-ph.HE] 19 Jul 2019 36th International Cosmic Ray Conference -ICRC2019- July 24th - August 1st, 2019 Madison, WI, U.S.A.
    [Show full text]
  • The 13Th HEAD Program Book
    13th Meeting of the High Energy Astrophysics Division Program Book Monterey CA 7-11 April 2013 13th Meeting of the American Astronomical Society’s High Energy Astrophysics Division (HEAD) 7-11 April 2013 Monterey, California Scientific sessions will be held at the: Portola Hotel and Spa 2 Portola Plaza ATTENDEE Monterey, CA 93940 SERVICES.......... 4 HEAD Paper Sorters SCHEDULE......... 6 Keith Arnaud Joshua Bloom MONDAY............ 12 Joel Bregman Paolo Coppi Rosanne Di Stefano POSTERS........... 17 Daryl Haggard Chryssa Kouveliotou TUESDAY........... 43 Henric Krawczynski Stephen Reynolds WEDNESDAY...... 48 Randall Smith Jan Vrtilek THURSDAY......... 52 Nicholas White AUTHOR INDEX.. 56 Session Numbering Key 100’s Monday and posters NASA PCOS X-RAY SAG 200’s Tuesday 300’s Wednesday HEAD DISSERTATIONS 400’s Thursday Please Note: All posters are displayed Monday-Thursday. Current HEAD Officers Current HEAD Committee Joel Bregman Chair Daryl Haggard 2013-2016 Nicholas White Vice-Chair Henric Krawczynski 2013-2016 Randall Smith Secretary Rosanne DiStefano 2011-2014 Keith Arnaud Treasurer Stephen Reynolds 2011-2014 Megan Watzke Press Officer Jan Vrtilek 2011-2014 Chryssa Kouveliotou Past Chair Joshua Bloom 2012-2015 Paolo Coppi 2012-2015 1 2 Peter B’s Entrance Cottonwood Plaza Jacks Restaurant Brew Pub s p o h S Cottonwood Bonsai III e Lower Atrium Bonsai II ung Restrooms o e nc cks L Ironwood Redwood Bonsai I a a J Entr Elevators Elevators a l o rt o P Restrooms s De Anza De Anza p Ballroom II-III Ballroom I o De Anza Sh Foyer Upper Atrium Entrance OOMS R Entrance BONZAI Entrance De ANZA BALLROOM FA ELEVATORS TO BONZAI ROOMS Y B OB L TEL O General eANZA D A H O Z T Session ANCE R OLA PLA T ENT R PO FA FA STORAGE A UP F ENTRANCE TO 3 De ANZA FOYER ATTENDEE SERVICES Registration De Anza Foyer Sunday: 1:00pm-7:00pm Monday-Wednesday: 7:30am-6:00pm Thursday: 8:00am-5:00pm Poster Viewing Monday-Wednesday: 7:30am-6:45pm Thursday: 7:30am-5:00pm Please do not leave personal items unattended.
    [Show full text]
  • Astronomy Magazine 2012 Index Subject Index
    Astronomy Magazine 2012 Index Subject Index A AAR (Adirondack Astronomy Retreat), 2:60 AAS (American Astronomical Society), 5:17 Abell 21 (Medusa Nebula; Sharpless 2-274; PK 205+14), 10:62 Abell 33 (planetary nebula), 10:23 Abell 61 (planetary nebula), 8:72 Abell 81 (IC 1454) (planetary nebula), 12:54 Abell 222 (galaxy cluster), 11:18 Abell 223 (galaxy cluster), 11:18 Abell 520 (galaxy cluster), 10:52 ACT-CL J0102-4915 (El Gordo) (galaxy cluster), 10:33 Adirondack Astronomy Retreat (AAR), 2:60 AF (Astronomy Foundation), 1:14 AKARI infrared observatory, 3:17 The Albuquerque Astronomical Society (TAAS), 6:21 Algol (Beta Persei) (variable star), 11:14 ALMA (Atacama Large Millimeter/submillimeter Array), 2:13, 5:22 Alpha Aquilae (Altair) (star), 8:58–59 Alpha Centauri (star system), possibility of manned travel to, 7:22–27 Alpha Cygni (Deneb) (star), 8:58–59 Alpha Lyrae (Vega) (star), 8:58–59 Alpha Virginis (Spica) (star), 12:71 Altair (Alpha Aquilae) (star), 8:58–59 amateur astronomy clubs, 1:14 websites to create observing charts, 3:61–63 American Astronomical Society (AAS), 5:17 Andromeda Galaxy (M31) aging Sun-like stars in, 5:22 black hole in, 6:17 close pass by Triangulum Galaxy, 10:15 collision with Milky Way, 5:47 dwarf galaxies orbiting, 3:20 Antennae (NGC 4038 and NGC 4039) (colliding galaxies), 10:46 antihydrogen, 7:18 antimatter, energy produced when matter collides with, 3:51 Apollo missions, images taken of landing sites, 1:19 Aristarchus Crater (feature on Moon), 10:60–61 Armstrong, Neil, 12:18 arsenic, found in old star, 9:15
    [Show full text]
  • Radio Observations of Tev and Gev Emitting Supernova Remnants
    Radio Observations of TeV and GeV emitting Supernova Remnants Denis Leahy University of Calgary, Calgary, Alberta, Canada (collaborator Wenwu Tian, National Astronomical Observatories of China) outline • Overview of supernova remnants • using HI absorption spectra to obtain distances • HI spectra and images (radio, X-ray) of specific gamma-ray emitting SNR • distance and derived properties • summary radius ~1- 20 pc (1 pc~ 3x10 16 m) Shock speeds 100km/s- 5000km/s Supernova Remnants (left to right, top to bottom): Cygnus Loop (~10000yr old) ROSAT X-ray, Tycho's SN (AD1572) Chandra X- ray, Crab nebula (AD1054) HST /Chandra, Cas A (AD1681+-19) Chandra X- ray, Kepler's SN (AD1604) Chandra X -ray Supernova remnants • 2 physical types of supernova (SN): • Core collapse of a massive star (gravitational energy) ~10 53 erg mostly in neutrinos, ~10 51 erg in kinetic energy • Thermonuclear explosion of a white dwarf: ~10 51 erg in total / kinetic energy • 2 observational types of SN: • Type I: no H lines in SN spectrum • Type II: with strong H lines in SN spectrum • Supernova remnants (SNR): remains of SN explosion • Number of known SNR in our Galaxy: approximately 280 • Large volume of the interstellar medium (~1 to 20pc in radius), filled with hot (10 6 K) plasma, heated by the shock wave of the explosion • The shock wave via Fermi acceleration, produces high energy protons and electrons, up to ~10 15 eV • SNR emit X-rays (from the hot plasma), radio (from the relativistic electrons), infrared (from heated dust) and optical radiation (from recombining dense gas). • Shock accelerated particles also emit X-rays and GeV & TeV gamma-rays.
    [Show full text]
  • The COLOUR of CREATION Observing and Astrophotography Targets “At a Glance” Guide
    The COLOUR of CREATION observing and astrophotography targets “at a glance” guide. (Naked eye, binoculars, small and “monster” scopes) Dear fellow amateur astronomer. Please note - this is a work in progress – compiled from several sources - and undoubtedly WILL contain inaccuracies. It would therefor be HIGHLY appreciated if readers would be so kind as to forward ANY corrections and/ or additions (as the document is still obviously incomplete) to: [email protected]. The document will be updated/ revised/ expanded* on a regular basis, replacing the existing document on the ASSA Pretoria website, as well as on the website: coloursofcreation.co.za . This is by no means intended to be a complete nor an exhaustive listing, but rather an “at a glance guide” (2nd column), that will hopefully assist in choosing or eliminating certain objects in a specific constellation for further research, to determine suitability for observation or astrophotography. There is NO copy right - download at will. Warm regards. JohanM. *Edition 1: June 2016 (“Pre-Karoo Star Party version”). “To me, one of the wonders and lures of astronomy is observing a galaxy… realizing you are detecting ancient photons, emitted by billions of stars, reduced to a magnitude below naked eye detection…lying at a distance beyond comprehension...” ASSA 100. (Auke Slotegraaf). Messier objects. Apparent size: degrees, arc minutes, arc seconds. Interesting info. AKA’s. Emphasis, correction. Coordinates, location. Stars, star groups, etc. Variable stars. Double stars. (Only a small number included. “Colourful Ds. descriptions” taken from the book by Sissy Haas). Carbon star. C Asterisma. (Including many “Streicher” objects, taken from Asterism.
    [Show full text]
  • Find Your Way Through the Summer Sky 10 Topsummer Binocular Treats
    Observe the summer sky JOE AND GAIL METCALF/ADAM BLOCK/NOAO/AURA/NSF Find your way through the summer sky 10 top summer binocular treats Explore the Summer Triangle BEGINNING STARGAZING Fill your summer nights exploring easy-to-find constellations, bright stars, and the Milky Way. ⁄⁄⁄ BY MICHAEL E. BAKICH Find your way through Use the star map in the cen- the summer sky ter of the magazine with this story. Bold words are objects If you want to begin observing the sky, you’ll find on the map. start in the summer. Lots of bright stars populate the sky then, guiding you to the constellations that contain them. Notice the description of Polaris in The brightest part of the Milky Way arches from north to parentheses. You’ll see a Greek letter, its south. In that star-packed region, deep-sky treasures visible symbol, and the possessive form of the con- stellation name. Only a few hundred stars through binoculars abound. Plus, it’s warm Polaris (Alpha [α] Ursae Minoris). The two have proper names, but about a thousand outside, helping you to observe longer. stars at the end of the Dipper’s bowl — the have Greek letters associated with them. High in the northwest in the evening, Pointer Stars — point to Polaris. The Big This practice began with German map- seven stars form the Big Dipper. This well- Dipper, however, is not a constellation. It’s maker Johann Bayer (1572–1625) in his known group daily circles the North Star, part of Ursa Major the Great Bear. star atlas Uranometria, published in 1603.
    [Show full text]
  • Desert Skies Since 1954 Volume , Issue
    Tucson Amateur Astronomy Association Observing our Desert Skies since 1954 Volume , Issue Inside this issue: Area Surrounding Deneb President’s 2 Letters Members’ News 3-5 CAC Update 6 Outreach 7-8 Feature Articles 9 - 16 Observing 17- 18 Classifieds 9 Sponsors 11 TAAA member Christian Weis took this image of the area surrounding Deneb in Contacts 19 Cygnus using a modified Canon Digital Rebel XS (EOS 1000 D). This is a 75 second exposure with manual tracking, ISO 800, 50 mm focal length, f / 2.5, 31.7.2013, 21:44 BST. The lens was attached piggyback on his 4.5” Newtonian Take Note! telescope. He used Gimp (a freeware image manipulation program) to adjust the hue balance. No flats or darks were used in the processing. The camera Grand Canyon Star Party modification was the replacement of the IR blocking filter to allow more red Report and Thank You Letter transmission. © Christian Weis. Used by permission. Introduction to the Deneb, also known as Alpha Cygni, is the bright star near the center of the image. Fundamentals of Astronomy It marks the tail of Cygnus, the swan. It’s one vertex of the Summer Triangle Class this Fall (Altair and Vega are the other two vertices). Deneb is located about 2,600 light years away, although there’s a lot of uncertainty in this distance. While not Kitt Peak Star-B-Que in particularly bright in our sky, it’s intrinsic brightness is around 200,000 times that October of the Sun, making it one of the brightest stars in this region of the Milky Way.
    [Show full text]
  • The Second Fermi Large Area Telescope Catalog of Gamma-Ray Pulsars
    The Astrophysical Journal Supplement Series, 208:17 (59pp), 2013 October doi:10.1088/0067-0049/208/2/17 C 2013. The American Astronomical Society. All rights reserved. Printed in the U.S.A. THE SECOND FERMI LARGE AREA TELESCOPE CATALOG OF GAMMA-RAY PULSARS A. A. Abdo1,88, M. Ajello2, A. Allafort3, L. Baldini4, J. Ballet5, G. Barbiellini6,7,M.G.Baring8, D. Bastieri9,10, A. Belfiore11,12,13, R. Bellazzini14, B. Bhattacharyya15, E. Bissaldi16, E. D. Bloom3, E. Bonamente17,18, E. Bottacini3, T. J. Brandt19, J. Bregeon14, M. Brigida20,21,P.Bruel22, R. Buehler23, M. Burgay24,T.H.Burnett25, G. Busetto9,10, S. Buson9,10, G. A. Caliandro26, R. A. Cameron3,F.Camilo27,28, P. A. Caraveo13, J. M. Casandjian5, C. Cecchi17,18, O.¨ Celik ¸ 19,29,30, E. Charles3, S. Chaty5, R. C. G. Chaves5, A. Chekhtman1,88,A.W.Chen13, J. Chiang3,G.Chiaro10, S. Ciprini31,32, R. Claus3, I. Cognard33, J. Cohen-Tanugi34,L.R.Cominsky35, J. Conrad36,37,38,89, S. Cutini31,32, F. D’Ammando39, A. de Angelis40, M. E. DeCesar19,41, A. De Luca42, P. R. den Hartog3, F. de Palma20,21, C. D. Dermer43, G. Desvignes33,44,S.W.Digel3, L. Di Venere3, P. S. Drell3, A. Drlica-Wagner3, R. Dubois3, D. Dumora45, C. M. Espinoza46, L. Falletti34, C. Favuzzi20,21, E. C. Ferrara19, W. B. Focke3, A. Franckowiak3, P. C. C. Freire44, S. Funk3,P.Fusco20,21, F. Gargano21, D. Gasparrini31,32, S. Germani17,18, N. Giglietto20,21,P.Giommi31, F. Giordano20,21, M. Giroletti39, T. Glanzman3, G. Godfrey3, E. V.
    [Show full text]
  • Astrophysics in 1998
    UC Irvine UC Irvine Previously Published Works Title Astrophysics in 1998 Permalink https://escholarship.org/uc/item/3bp5s0f2 Journal Publications of the Astronomical Society of the Pacific, 111(758) ISSN 0004-6280 Authors Trimble, V Aschwanden, M Publication Date 1999 DOI 10.1086/316342 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 111:385È437, 1999 April ( 1999. The Astronomical Society of the PaciÐc. All rights reserved. Printed in U.S.A. Invited Review Astrophysics in 1998 VIRGINIA TRIMBLE1 AND MARKUS ASCHWANDEN2 Received 1998 December 10; accepted 1998 December 11 ABSTRACT. From Alpha (Orionis and the parameter in mixing-length theory) to Omega (Centauri and the density of the universe), the Greeks had a letter for it. In between, we look at the Sun and planets, some very distant galaxies and nearby stars, neutrinos, gamma rays, and some of the anomalies that arise in a very large universe being studied by roughly one astronomer per 107 Galactic stars. 1. INTRODUCTION trated in a few highly regarded journals, and, of course, for power to be concentrated in fewer and fewer editorial Astrophysics in 1998 welcomes a new co-author, Markus hands. Aschwanden, formerly of the University of Maryland astronomy department, and as a direct result, gives some attention to solar physics, which has been relatively neglected in recent years. Lucy-Ann McFadden, meanwhile, 1.1. Up, Up, and Away is up to her very capable shoulders in the Near Earth Aster- oid Rendezvous (NEAR) project, a Maryland honors A great many things got started during the year.
    [Show full text]