Technological Issues Related to the Proliferation of Nuclear Weapons

Total Page:16

File Type:pdf, Size:1020Kb

Technological Issues Related to the Proliferation of Nuclear Weapons Technological Issues Related to the Proliferation of Nuclear Weapons by Thomas B. Cochran, Ph.D. Presented at the Strategic Weapons Proliferation Teaching Seminar Sponsored by The Institute on Global Conflict and Cooperation & The Nonproliferation Policy Education Center August 23, 1998 Revised UC San Diego, CA Natural Resources Defense Council, Inc. 1200 New York Avenue, NW, Suite 400 Washington, D.C. 20005 Voice (Main): 202-289-6868 Voice (Cochran): 202-289-2372 FAX: 202-289-1060 Email: [email protected] i TABLE OF CONTENTS I. Introduction………………………………………………………………………… 1 II. Basic Terminology………………………………………………………………… 1 A. Atoms and Nuclei…………………………………………………………. 1 B. Energy and Power…………………………………………………………. 1 C. Nuclear Weapons………………………………………………………….. 3 III. Nuclear Fission…………………………………………………………………… 3 A. Energy Released by Nuclear Fission……………………………………… 3 B. Chain Reaction ……………………………………………………………. 5 C. Fissionable Materials……………………………………………………… 6 D. Critical Mass………………………………………………………………. 8 E. The Amount of Plutonium and/or Highly-Enriched Uranium Needed for a Pure Fission Nuclear Weapons……………………………………….. 12 F. The Amount of Plutonium Used in Boosted Fission Primaries…………….. 16 G. The Effect of Using “Civil Plutonium” of Widely Varying Isotopic Composition on the Efficiency of a Nuclear Explosive ⎯the Issue of Preinitiation…………………………………………………… 16 IV. Nuclear Fusion…………………………………………………………………… 19 A. Thermonuclear Reactions and Fuels……………………………………… 19 B. Energy Released in Nuclear Fusion Processes…………………………… 21 V. Nuclear Weapon Types…………………………………………………………… 21 A. Gun-assembly Pure Fission Designs……………………………………….. 22 B. “Solid-pack” Implosion Type Pure Fission Designs……………………….. 23 C. Levitated Pit and Hollow Core Designs……………………………………. 24 D. Boosted Fission and Other Single-stage Thermonuclear Designs………….. 24 E. Staged Thermonuclear Designs…………………………………………….. 25 VI. Nuclear Reactor Fuel Cycle……………………………………………………….. 27 A. Fuel Cycle Overview………………………………………………………. 27 B. Isotope Separation or Enrichment………………………………………….. 28 Material Balance………………………………………………………. 30 Separative Work……………………………………………………….. 30 C. Classification of Reactors………………………………………………….. 33 D. Reactor Characteristics Important from a Proliferation Prospective……….. 33 E. Fresh Reactor Fuel Composition…………………………………………… 34 F. Plutonium Production in Reactors…………………………………………… 36 Plutonium Production Reactors………………………………………… 38 Light Water Power Reactors…………………………………………… 39 Light Water Reactors Fueled with MOX………………………………. 40 Fast Breeder Reactors………………………………………………….. 42 ii LIST OF TABLES Table 1. Conversion factors for energy unit…………………………………………… 2 Table 2. Prefixes and symbols used to identify powers of ten………………………… 3 Table 3. Emitted and recoverable energies per uranium-235 nucleus fissioned………. 4 Table 4. Delayed neutron fractions……………………………………………………. 6 Table 5. Categories of plutonium according to the percentage of plutonium-240 contained therein…………………………………………………………. 8 Table 6. Critical mass of a bare sphere of plutonium…………………………………. 10 Table 7. Approximate fissile material requirements for pure fission nuclear weapons…. 15 Table 8. Thermonuclear reactions important to nuclear weapons and controlled nuclear fusion……………………………………………………………... 20 Table 9. Explosive energy available per unit mass of fissile and fusion materials……. 21 Table 10. Enrichment Services (Feed and Separative Work Requirements)………….. 32 Table 11. Various ways in which nuclear reactors are classified……………………….. 35 Table 12. Plutonium production and the percent concentration of plutonium as a function of fuel exposure for the Hanford B reactor……….………….. 37 Table 13. Plutonium production in India’s Cirus reactor……………………………….. 38 Table 14. Characteristics of spent fuel from a VVER-1000 fueled with 4.4%-enriched uranium……………………………………………………. 39 Table 15. Characteristics of VVER-1000 fresh MOX fuel made with plutonium recovered from VVER-1000 spent fuel…………………………………… 41 Table 16. Characteristics of VVER-1000 spent MOX fuel…………………………….. 41 iii LIST OF FIGURES Figure 1. Critical mass versus U235 enrichment of uranium metal……………………. 11 Figure 2. Nuclear weapon yield versus plutonium mass for pure fission weapons…….. 13 Figure 3. Nuclear weapon yield versus HEU mass for pure fission weapons………….. 14 iv PREFACE This report provides an introduction to selected technical issues related to nuclear weapons proliferation and the physical protection and material control, accounting and safeguards of nuclear materials. Prepared for faculty and students, it should be read in conjunction with the companion report, “Proliferation of Nuclear Weapons and Nuclear Safeguards.” This and the companion report are derived from selected works by the author and his colleagues, Christopher E. Paine and Matthew G. McKinzie, at NRDC. Technological Issues Related to the Page 1 Proliferation of Nuclear Weapons NRDC Nuclear Program I. Introduction We begin in the next section with a discussion of some basic terminology associated with nuclear weapons and nuclear reactor operations. This is followed in Sections III, IV and V with a review of the basic physics underlying nuclear weapons and reactors. Section VI differentiates several well known types of nuclear weapons, and Sections VII discusses some of the elements needed to understand plutonium production in several common types of nuclear reactors. II. Basic Terminology A. Atoms and Nuclei Chemical compounds are made up of elements, e.g., hydrogen, helium, oxygen, lead, zinc, uranium, plutonium. A hydrogen atom consists of a nucleus containing a single proton and an electron orbiting around it. The nucleus of a helium atom has two protons in the nucleus and two orbiting electrons. Heavier elements have an even greater number of protons. Elements are distinguished by their atomic number, that is, the number of protons in the nucleus of the atom. Uranium has 92 protons in the nucleus and plutonium has 94. Some elements with atomic numbers greater than uranium have been found in trace amounts in nature, for example, in uranium ores; otherwise these heavier elements must be created synthetically either in reactors, nuclear explosive devices, or by accelerators. Elements 110-112 were recently discovered, and scientists are trying to create and identify even heavier elements. With one exception the nuclei of atoms also contain neutrons, which are similar to protons but without an electrical charge. Atoms of the same element must have the same number of protons, but can have a different number of neutrons. We distinguish them by calling them “isotopes” of the element. Thus, an element can have several isotopes. We call the collection of isotopes of the various elements “nuclides.” We distinguish and identify the nuclides by the name of the element and a number that identifies the total number of protons and neutrons in the nucleus. For example, deuterium (symbol, D) is an isotope of hydrogen with one proton and one neutron in the nucleus, tritium (symbol, T) is an isotope of hydrogen with one proton and two neutrons in the nucleus, uranium-235 (abbreviated “U-235” or “U235”) has 92 protons and 143 neutrons (92+143=235) in the nucleus, and plutonium-239 (abbreviated Pu-239” or “Pu239”) has 94 protons and 145 neutrons (94+145=239). For our purpose we can use the terms “nuclides” and “isotopes” interchangeably. B. Energy and Power Energy. Just as one can measure length in centimeters, inches, feet, yards, meters, rods, furlongs, kilometers, miles, light years or parsecs, physicists measure energy using a wide variety of different units. Some of the more common energy units associated with nuclear weapons and nuclear power, ranked by the size of the unit, are the electron volt (ev), erg, joule (J), calorie (cal), kilowatt-hour (kWh), megawatt-day (MWd), and kiloton of TNT equivalent (Kt). Some conversion factors that can be used to convert from one set of units to another are Technological Issues Related to the Page 2 Proliferation of Nuclear Weapons NRDC Nuclear Program provided in Table 1. Electron volts are often used to measure the energy involved in individual chemical reactions; million electron volts (MeV) for nuclear reaction, and kilotons of TNT equivalent for nuclear weapon explosions. To Convert from To Multiply by electronvolt (ev) joule (J) 1.60219x10-19 million electronvolt (MeV) joule (J) 1.60219x10-13 erg Joule (J) 10-7 watt-second (Ws) joule (J) 1 (1 watt ≡ joule/sec) calorie (cal) joule (J) 4.1868 kilowatt-hour (kWh) joule (J) 3.6x106 megawatt-day (MWd) joule (J) 8.64x1010 kiloton of TNT equivalent (Kt) calories (cal) 1012 Table 1. Conversion factors for energy units. The amount of explosive energy released by a given mass of TNT depends on its constituents and density. In order to avoid confusion, since the 1940s the convention has been to assumed that the explosive energy released by detonating one kiloton of TNT is equivalent to 1012 calories. Power is energy per unit of time. The power of a nuclear reactor can be measured in watts, but since this is such a small unit, the reactor power is typically measured in units of kilowatts (kW), megawatts (MW), or gigawatts (GW). To distinguish whether the unit of power refers to the rate of production of electrical energy or thermal (heat) energy, “W, ”the symbol for watt, is often accompanied by a subscript “e” or “t,” e.g., “MWt” for “megawatt (thermal)” or MWe for “megawatt (electric).” The prefixes kilo-, mega-, and giga- in the above units are three of a series of prefixes used to indicate a decimal multiple or
Recommended publications
  • KINETIC ANALYSIS of SUB-PROMPT-CRITICAL REACTOR ASSEMBLIES Hy S Das Theoretical Physics Division
    BARC/1992/E/011 O 1 "o KINETIC ANALYSIS OF SUB-PROMPT-CRITICAL REACTOR ASSEMBLIES hy S Das Theoretical Physics Division 1992 BARC/1992/E/011 o UJ GOVERNMENT OF INDIA - AATOMIT C ENERGY COMMISSION U KINETIC ANALYSIS OF SUB-PROMPT-CRITICAL REACTOR ASSEMBLIES by S. Das Theoretical Physics Division BHABHA ATOMIC RESEARCH CENTRE BOMBAY, INDIA 1992 BARC/1992/E/011 BIBLIOBRAPHIC DESCRIPTION SHEET FOR TECHNICAL REPORT (as par IS i 94BNB - 1980) 01 Security classification i Unclassified 02 Distribution t External 03 Report status i New 04 Series i BARC External 05 Report type i Technical Report 06 Report No. i BARC/1992/E/011 07 Part No. or Volume No. i 08 Contract No. i 10 Title and subtitle i Kinetic analysis of sub-prompt- critical reactor assemblies 11 Collation i 14 p.f 4 figs., 1 tab. IS Project No. i 20 Personal author<s> i S. Das 21 Affiliation of author(s) i Theoretical Physics Division, Bhabha Atomic Research Centre, Bombay 22 Corporate author(s) i Bhabha Atomic Research Centre, Bombay - 400 085 23 Originating unit i Theoretical Physics Division, BARC, Bombay 24 Sponsor(s) Name i Department of Atomic Energy Type i Government 30 Date of submission i May 1992 31 Publication/Issue date i June 1992 Contd... (ii) 1 40 Publ i»h»r/Distributor t Head, Library and Information Division, Bhabha Atomic Rasaarch Contra, Bombay 42 Form of distribution t Hard Copy 50 Languaga of taxt i English 51 Languaga o-f summary i English 92 No. of references i % rafs. 53 Givas data on i 60 Abstract x Nautronic analysis of safaty-ralatad kinetics problams in experimental neutron multiplying assemblies has bean carried out using a sub-prompt-critical reactor model.
    [Show full text]
  • Uncertainties in the North Korean Nuclear Threat
    THE ARTS This PDF document was made available from www.rand.org as a public CHILD POLICY service of the RAND Corporation. CIVIL JUSTICE EDUCATION ENERGY AND ENVIRONMENT Jump down to document6 HEALTH AND HEALTH CARE INTERNATIONAL AFFAIRS NATIONAL SECURITY The RAND Corporation is a nonprofit institution that POPULATION AND AGING helps improve policy and decisionmaking through PUBLIC SAFETY research and analysis. SCIENCE AND TECHNOLOGY SUBSTANCE ABUSE TERRORISM AND HOMELAND SECURITY TRANSPORTATION AND INFRASTRUCTURE WORKFORCE AND WORKPLACE Support RAND Purchase this document Browse Books & Publications Make a charitable contribution For More Information Visit RAND at www.rand.org Explore the RAND National Defense Research Institute View document details Limited Electronic Distribution Rights This document and trademark(s) contained herein are protected by law as indicated in a notice appearing later in this work. This electronic representation of RAND intellectual property is provided for non-commercial use only. Unauthorized posting of RAND PDFs to a non-RAND Web site is prohibited. RAND PDFs are protected under copyright law. Permission is required from RAND to reproduce, or reuse in another form, any of our research documents for commercial use. For information on reprint and linking permissions, please see RAND Permissions. This product is part of the RAND Corporation documented briefing series. RAND documented briefings are based on research briefed to a client, sponsor, or targeted au- dience and provide additional information on a specific topic. Although documented briefings have been peer reviewed, they are not expected to be comprehensive and may present preliminary findings. Uncertainties in the North Korean Nuclear Threat Bruce W.
    [Show full text]
  • SECRET SECRET 2 APPENDIX: SUMMARY of FINDINGS (U) (Deleted Version)
    SECRET DOE/SO-70-0012 (Deleted Version) Twelfth Report on Inadvertent Releases of Restricted Data and Formerly Restricted Data under Executive Order 12958 (U) Report to: The Committee on Armed Services of the Senate The Committee on Armed Services of the House of Representatives The Assistant to the President for National Security Affairs Deleted Version U.S. Department of Energy Office of Classified and Controlled Information Review Office of Security Germantown, Maryland 20874 August 2003 Classified By: John D. Lazor Director Office of Classified and Controlled Information Review Office of Security Derived From: CG-SS-4, 9/12/00 Declassify on: x4 SECRET UNCLASSIFIED 1 The National Defense Authorization Act for Fiscal Year 1999 (Public Law (P.L.) 105-261) requires that the Secretary of Energy notify the Committee on Armed Services of the Senate, the Committee on Armed Services of the House of Representatives, and the Assistant to the President for National Security Affairs of inadvertent releases of Restricted Data (RD) and Formerly Restricted Data (FRD) associated with records declassified under section 3.4 of Executive Order 12958. As a result of the Department of Energy’s (DOE’s) examination of approximately 1.28 million additional pages of publicly available records accessioned by the National Archives and Records Administration (NARA), the Department discovered an additional 489 documents containing 574 pages of RD and FRD which were inadvertently released: Additional Pages Number of Documents Number of Pages Number of Number of Pages Examined Since with RD/FRD in the Documents Pages RD FRD Last Report 1,281,000 489 4886 96 478 The identified documents are in collections belonging to the Department of State and the Department of Defense (Army, Navy, Air Force and Office of the Secretary of Defense).
    [Show full text]
  • Regulatory Guide 3.35, Revision 1
    Revision 1 U.S. NUCLEAR REGULATORY COMMISSION July 1979 :*REGULATORY GUIDE OFFICE OF STANDARDS DEVELOPMENT REGULATORY GUIDE 335 ASSUMPTIONS USED FOR EVALUATING THE POTENTIAL RADIOLOGICAL CONSEQUENCES OF ACCIDENTAL NUCLEAR CRITICALITY IN A PLUTONIUM PROCESSING AND FUEL FABRICATION PLANT A. INTRODUCTION will review the proposal and approve its use, if found acceptable. Section 70.22, "Contents of Applications," of 10 CFR Part 70, "Domestic Licensing of Special B. DISCUSSION Nuclear Materials," requires, that each appli- cation for a license to possess and use special In the process of reviewing applications for nuclear material in a plutonium processing and permits and licenses authorizing the construc- fuel fabrication plant contain a description and tion or operation of plutonium processing and safety assessment of the design bases of the fuel fabrication plants, the NRC staff has principal structures, systems, and components developed a number of appropriately conser- of the plant. Section 70.23(a)(3) states that vative assumptions that are used by the staff applications will be approved if the Commission to evaluate an estimate of the radiological determines that, among other factors, the consequences of various postulated accidents. applicant's proposed equipment and facilities These assumptions are based on previous are adequate to protect health and minimize accident experience, engineering judgment, danger to life and property, and Sec- and on the analysis of applicable experimental tion 70.23(b) states that the Commission will results from safety research programs. This approve construction of the principal struc- guide lists assumptions used by the staff to tures, systems, and components of the plant evaluate the magnitude and radiological conse- when the Commission has determined that the quences of a criticality accident in a plutonium design bases of the principal structures, sys- processing and fuel fabrication plant.
    [Show full text]
  • Fundamentals of Power Reactors Module One Science & Engineering Fundamentals
    Training Centre / Centre de formation Fundamentals of Power Reactors Module One Science & Engineering Fundamentals Copyright Notice ©HER MAJESTY THE QUEEN IN RIGHT OF CANADA (1993) as represented by the Atomic Energy Control Board All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical photocopying, recording or otherwise, without permission from the Atomic Energy Control Board of Canada. Training Centre / Centre de formation Training Centre / Centre de formation Basis of Nuclear Structure and Fission Training Objectives The participant will be able to describe or understand: 1 the atomic and nuclear structure, 2 the basic vocabulary of nuclear energy: typical length scales, mass and energy units, etc., 3 the atomic and nuclear phenomena, 4 the fission and energy release processes, 5 the types of radiation, 6 the concept of neutron spectrum, 7 the conecpt of cross section 8 the concept of irradiation Nuc Struc & Fission Training Centre / Centre de formation Nuc Struc & Fission Training Centre / Centre de formation Basis of Nuclear Structure and Fission Table of Contents 1 Introduction ...............................................................................................3 2 Basics of Nuclear Physics ........................................................................4 2.1 Structure of the atom and nucleus ................................................4 2.1.1 Nuclear structure ..........................................................................4
    [Show full text]
  • Introductory Nuclear Physics Problem Set 05
    UNIVERSITY OF CAPE TOWN EEE4106Z: Introductory Nuclear Physics Problem Set 05 Due 1400 Tuesday 2 June 2015 This problem set should prove valuable in preparation for the final examination. The questions allow you to possibly gain a fuller understanding of important concepts that were not familiar to you at the time of preparing your answers to the preceding problem set. At Koeberg hand in to Z Isaacs. At UCT place in Aschman mailslot in mailboxes opposite room 508, top floor RW James Building UCT. Late answers will incur a penalty. Students may work together on the problems, and discuss the results together, but a handed-in script must be each student's own work. Copied work gets zero. Discuss the problems before tackling them! 1) Explain how the fuel temperature coefficient of reactivity is largely determined by the resonances in the cross-section for the 238U(n; γ) capture of neutrons. Provide a clear explanation of the Doppler broadening of the resonance peaks. SOLUTION: At higher temperatures there is greater thermal motion of the fuel nuclei, in particular U-238 nuclei. This increases the spread in the velocities, and hence the energies, with with the neutrons approach the U-238 nuclei. This causes Doppler broadening of the neutron capture resonances in the 238U(n; γ) cross-section in the epi-thermal energy region, so there is a greater chance of the a neutron being captured in the fuel as the neutron energy gets stepped down, from fast to thermal, by the moderator. This reduces the resonance escape factor p, and hence k.
    [Show full text]
  • Nuclear Weapons 19671A
    _NA_ru_R_Ev_o_L._319_9_JA_Nu_A_RY_1_9s6____ CQRRESPQNDENCE----------- 93 within the accuracy of the Babylonian observations. Sakharov's scientific legacy C. Leroy Ellenberger, no longer a con­ S1R-Erast B. Gliner is right to say that When asked about Sakharov's fate, vinced Velikovskian, has pointed out to Sakharov's contribution to science' should some Soviet officials (including Anatoly me that I might nevertheless have even be emphasized in the campaign to end his Alexandrov, president of the Academy of better cited the uniformity of Greenland exile and to save his life. However, Glin­ Sciences of the USSR) normally answer ice core Dye 3 as a way in which science er's statement that Sakharov "is not consi­ that Sakharov is restricted to Gorky be­ could actually demonstrate that Velikovs­ dered as a head of some scientific school cause he is in the possession of important ky's scenario did not happen. This 2,000- inside of the Soviet Union or abroad" is military secrets and that this exile is made metre sample is continuous and datable not entirely correct. Sakharov's pioneer­ in strict observance of Soviet laws. Neith­ for the past 10,000 years and shows no ing work on the problem of a controlled er reason is correct. Sakharov was exiled dust or acid layers that would signal the thermonuclear reaction, which began the to Gorky on the basis of an "individual" sort of universal catastrophe predicted by well known tokamak project, was the decree signed by the late President Leonid Velikovsky. main reason for his election as a full mem­ Brezhnev in 1980 as a reprisal for Sakhar­ OwEN GINGERICH ber of the Academy of Sciences of the ov's protest over the Soviet invasion of Harvard-Smithsonian Center for USSR in 1953, together with his co-author Afghanistan.
    [Show full text]
  • Reactor Physics
    REACTOR PHYSICS COURSE INTRODUCTION This Training Manual assumes prior knowledge of Nuclear Theory. It extends this information into a discussion of Reactor Physics, particularly as it relates to CANDU reactors. The course begins with the general principles of reactor configuration required to maintain a self- sustaining chain reaction. It continues with reactor dynamics (in both the critical and subcritical core), reactivity feedback effects (temperature effects, fission product poisoning, and fuel burnup), and ends with operational considerations (at low and high power). The material covers four main areas, subdivided into eight major sections as follows: • The Critical Reactor at Steady Power Output (Section 1) • The Dynamic Reactor (Sections 2 and 3) • Reactivity Feedback Effects (Sections 4, 5, and 6) • Reactor Operations (Sections 7 and 8) CNSC i Science and Reactor Fundamentals – Reactor Physics Technical Training Group TABLE OF CONTENTS Objectives 1 The Critical Reactor at Steady Power Output 9 1.0 INTRODUCTION 9 1.1 Fission 9 1.2 Harnessing Fission 15 1.3 Movement of Neutrons Through the CANDU lattice Lattice 18 1.4 The Finite Reactor 26 Response of The Critical Reactor to a Reactivity Change 31 2.0 INTRODUCTION 31 2.1 Exponential Power Rise 31 2.2 Corrections to Exponential Reactor Response 33 2.3 The Effect of Delayed Neutrons 36 2.4 Prompt Criticality 40 2.5 Power Rundown: The Prompt Drop 42 Responsiveness of The Subcritical Reactor 45 3.0 INTRODUCTION 45 3.1 Neutron Flux in a “Shut Down” Reactor 45 3.2 Dynamics in the Subcritical
    [Show full text]
  • Nuclear Targeting in a Non-Nuclear Army
    NON-STRATEGIC NUCLEAR TARGETING IN A NON-NUCLEAR ARMY A thesis presented to the Faculty of the U.S. Army Command and General Staff College in partial fulfillment of the requirements for the degree MASTER OF MILITARY ART AND SCIENCE MICHAEL E. DONOVAN, MAJ, USA B.S., United States Military Academy, West Point, New York, 1981 M.S., Massachusetts Institute of Technology, Cambridge, Massachusetts, 1990 Fort Leavenworth, Kansas 1994 Approved for public release; distribution is unlimited. MASTER OF MILITARY ARTS AND SCIENCE THESIS APPROVAL PAGE Name of Candidate: MAJ Michael E. Donovan Thesis Title: Non-Strategic Nuclear Targeting in a Non-Nuclear Army Approved by: , Thesis Committee Chairman r A . -LA , Member David E. Turek, B.A. P/?JL.I ,&Lw , Member, Consulting Faculty err.MIWarner, P~.D. Accepted this 3rd day of June 1994 by: , Director, Graduate Degree philip J[ Brookes, Ph.D. Programs The opinions and conclusions expressed herein are those of the student author and do not necessarily represent the views of the U.S. Army Command and General Staff College or any other governmental agency. (References to this study should include the foregoing statement.) ABSTRACT NON-STRATEGIC NUCLEAR TARGETING IN A NON-NUCLEAR ARMY by MAJ Michael E. Donovan, USA, 127 pages. This study investigates the ability of a U.S. Army corps staff to nominate appropriate non-strategic nuclear targets. The staff is investigated as to its manning, training, and equipment to nominate targets for Air Force and Navy delivered nuclear weapons that the corps could exploit to accomplish operational objectives. All levels of joint and service specific doctrine are examined along with limited non-governmental resources to determine corps staff requirements and desirable corps staff qualities.
    [Show full text]
  • Accelerator-Driven Systems: Safety and Kinetics
    Accelerator-driven Systems: Safety and Kinetics Marcus Eriksson Doctoral Thesis Department of Nuclear and Reactor Physics Royal Institute of Technology Stockholm 2005 Akademisk avhandling som med tillstånd av Kungliga Tekniska Högskolan framlägges till offentlig granskning för avläggande av teknologie doktorsexamen fredagen den 18 mars 2004 kl. 10.00 i sal FA32, Albanova universitetscentrum, Roslagstullsbacken 21, Stockholm. ISBN 91-7283-988-0 TRITA-FYS 2005:13 ISSN 0280-316X ISRN KTH/FYS/--05:13—SE Copyright Marcus Eriksson Tryckeri: Universitetsservice US-AB, Stockholm 2005 2 Abstract The accelerator-driven system (ADS) is recognized as a promising system for the purpose of nuclear waste transmutation and minimization of spent fuel radiotoxicity. The primary cause for this derives from its accelerator-driven, sub-critical operating state, which introduces beneficial safety-related features allowing for application of cores employing fuel systems containing pure transuranics or minor actinides, thereby offering increased incineration rate of waste products and minimal deployment of advanced (and expensive) partitioning and transmutation technologies. The main theme of the thesis is safety and kinetics performance of accelerator-driven nuclear reactors. The studies are confined to the examination of ADS design proposals employing fast neutron spectrum, uranium-free lattice fuels, and liquid- metal cooling, with emphasis on lead-bismuth coolant. The thesis consists of computational studies under normal operation and hypothetical accidents, and of evaluation and identification of safety design features. By itself, subcritical operation provides a distinct safety advantage over critical reactor operation, distinguished by high operational stability and additional margins for positive reactivity insertion. For a uranium-free minor actinide based fuel important safety parameters deteriorate.
    [Show full text]
  • Regulatory Guide 3.34, Revision 1, Assumptions Used for Evaluating
    Revision I U.S. NUCLEAR REGULATORY COMMISSION July 1979 'PA' S t REGULATORY GUIDE "** OFFICE OF STANDARDS DEVELOPMENT REGULATORY GUIDE 334 ASSUMPTIONS USED FOR EVALUATING THE POTENTIAL RADIOLOGICAL CONSEQUENCES OF ACCIDENTAL NUCLEAR CRITICALITY IN A URANIUM FUEL FABRICATION PLANT A. INTRODUCTION B. DISCUSSION Section 70.23, "Requirements for the ap In the process of reviewing applications for proval of applications," of 10 CFR Part 70, licenses to operate uranium fuel fabrication "Domestic Licensing of Special Nuclear Mate plants, the NRC staff has developed appro rials," requires, among other things, that the priately conservative assumptions that are used applicant's proposed equipment and facilities be by the staff to evaluate an estimate of the adequate to protect health and minimize danger radiological consequences of various postulated to life or property. In order to demonstrate the accidents. These assumptions are based on adequacy of the facility, the applicant must previous accident experience, engineering provide an analysis and evaluation of the judgment, and the analysis of applicable design and performance* of structures, sys,' experimental results from safety research tems, and components of the facility. The programs. This guide lists assumptions used to objective of this analysis and evaluation is to evaluate the magnitude and radiological con assess the risk to public health and safety: sequences of a criticality accident in a uranium resulting from operation of the facility, includ fuel fabrication plant. ing determination of the adequacy of struc tures, systems, and components provided for A criticality accident is an accident resulting the prevention of accidents and the mitigation in the uncontrolled release of energy from an of the consequences of accidents.
    [Show full text]
  • Predicted Radionuclide Release from Marine Reactors Dumped in the Kara Sea
    IAEA-TECDOC-938 Predicted radionuclide release from marine reactors dumped in the Kara Sea ReportSourcethe of Term Working Groupthe of International Arctic Seas Assessment Project (IASAP) INTERNATIONAL ATOMIC ENERGY AGENCY The IAEA does not normally maintain stocks of reports in this series. However, microfiche copies of these reports can be obtained from ClearinghousS I N I e International Atomic Energy Agency Wagramerstrasse 5 P.O. Box 100 A-1400 Vienna, Austria Orders shoul accompaniee db prepaymeny db f Austriao t n Schillings 100, in the form of a cheque or in the form of IAEA microfiche service coupons which may be ordered separately from the INIS Clearinghouse. The originating Section of this publication in the IAEA was: Waste Safety Section International Atomic Energy Agency Wagramer Strasse5 0 10 x P.OBo . A-1400 Vienna, Austria PREDICTED RADIONUCLIDE RELEASE FROM MARINE REACTORS DUMPE KARE A TH ASE DN I IAEA, VIENNA, 1997 IAEA-TECDOC-938 ISSN 1011-4289 © IAEA, 1997 Printed by the IAEA in Austria April 1997 FOREWORD In 1992 the news that the former Soviet Union had, for over three decades, dumped high level radioactive wasteshalloe th n i s w waterKare a causeth Se af o s d widespread concern, especialln yi countries with Arctic coastlines. The IAEA responded by launching an international study, the International Arctic Seas Assessment Project (IASAP) orden i , asseso t r e potentiath s l healtd han environmental implications of the dumping and to examine the feasibility of remedial actions related to the dumped wastes. 199y Russiae Ith 3nMa n Federation provided informatio IAEe th Ao nt w aboulo hige d th t han level radioactive waste dumped in the Arctic Seas ("White Book-93").
    [Show full text]