Insight Into the Cargo Recognition Mechanism of Kinesin Light Chain 1

Total Page:16

File Type:pdf, Size:1020Kb

Insight Into the Cargo Recognition Mechanism of Kinesin Light Chain 1 Insight into the Cargo Recognition Mechanism of Kinesin Light Chain 1 by Han Youl Lee A thesis submitted in conformity with the requirements for the degree of Master of Science Graduate Department of Pharmacology and Toxicology University of Toronto © Copyright by Han Youl Lee 2011 Insight into the Cargo Recognition Mechanism of Kinesin Light Chain 1 Han Youl Lee Master of Science Graduate Department of Pharmacology and Toxicology University of Toronto 2011 Abstract Kinesin-1 transports various cargos along the axon, while the light chain subunits play a role in selecting the types of cargos to transport. However, the mechanisms of cargo recognition and interaction have yet to be characterized. Both c-Jun kinase-interacting protein-1 (JIP1) and alcadein-1 (ALC1) are kinesin-1 cargos and compete with each other for the axonal transport machinery. I identified two polar patches of KLC1 that play a role in the interactions with JIP1 and ALC1, respectively. The main components of these two polar patches are asparagine “clamps” surrounded by positively charged lysines. Consistent with this finding, negatively charged residues of JIP1 and ALC1 are required to interact with KLC1. By structural modeling, I narrowed down the possible key residues of KLC1 that are required for interaction with c-Jun kinase interacting protein-3 (JIP3). Together, these findings reveal the versatility of KLC in the mode of interaction with many different cargos. ii Acknowledgments First and foremost, I would like to thank my supervisor, Dr. Hee-Won Park for his dedication and understanding. I first came into the lab with very limited research experience and understanding of science. Within two years, not only did you expand my knowledge in field of science and research, but you helped me develop the tools to succeed in life. Thank you for welcoming me to the lab and giving me such a great opportunity along with your endless support for my work. I would also like to thank everyone in our lab. I’ve been lucky to have worked with such a talented group; you guys have shown me the “art of science”. I will never have been able to accomplish anything that I have done without your help. Thank you for always greeting all the good and bad times with a smile. I would like to thank Dr. McPherson and Dr. Mitchell who without any hesitation were willing to be my advisor and co-supervisor. Thank you for being a part of my graduate experience. Also, I am grateful to Dr. Pai, Dr. Salahpour, and Dr. Wells for your dedication in evaluating and greatly improving this thesis. I owe the greatest appreciation to my family and friends, who have stuck by me to this day. Thank you for your love, patience and understanding for all my life. I am honoured to call you guys my family and friends. Thank You! iii Table of Contents Acknowledgments ..................................................................................................................... iii Table of Contents ...................................................................................................................... iv List of Tables ........................................................................................................................... vii List of Figures ......................................................................................................................... viii List of Abbreviations ................................................................................................................. ix 1 Introduction ........................................................................................................................... 1 1.1 Intracellular Transport .................................................................................................... 1 1.2 Motor Proteins ................................................................................................................ 1 1.3 Kinesin ........................................................................................................................... 2 1.3.1 Kinesin Superfamily ............................................................................................ 2 1.3.2 Kinesin-1 ............................................................................................................ 3 1.3.3 Kinesin Heavy Chains ......................................................................................... 4 1.3.4 Kinesin Light Chains ........................................................................................... 6 1.4 TPR domains .................................................................................................................. 7 1.5 Introduction to Kinesin-1’s Cargo and Biological Relevance .........................................13 1.5.1 Alzheimer’s disease (AD) ..................................................................................13 1.5.2 Huntington’s Disease (HD) ................................................................................14 1.5.3 Mood Disorder ...................................................................................................15 1.5.4 Diabetes .............................................................................................................15 1.5.5 Axon Outgrowth ................................................................................................16 1.6 Clinical Relevance .........................................................................................................17 1.6.1 Kinesin Light Chain Single Nucleotide Polymorphisms .....................................17 1.6.2 Kinesin-1 as a Drug Target .................................................................................17 iv 1.7 Macromolecular Crystallography ...................................................................................18 1.8 Hypothesis & Approach .................................................................................................19 1.8.1 X-ray Crystallography ........................................................................................20 1.8.2 Biochemical & Biophysical Assays ....................................................................20 1.8.3 Analysis of Structural Model ..............................................................................21 2 Materials and Methods ..........................................................................................................23 2.1 Cloning ..........................................................................................................................23 2.2 Site-directed Mutagenesis ..............................................................................................23 2.3 Solubility Test ...............................................................................................................24 2.4 Expression .....................................................................................................................26 2.5 Purification ....................................................................................................................26 2.5.1 Cell Lysis ...........................................................................................................26 2.5.2 Metal Ion Affinity Chromatography ...................................................................27 2.5.3 Size Exclusion Chromatography .........................................................................27 2.5.4 Ion Exchange Chromatography ..........................................................................27 2.6 Binding assay using size exclusion chromatography ......................................................28 2.7 Crystallization................................................................................................................28 2.8 Isothermal Titration Calorimetry (ITC) ..........................................................................29 2.9 Structural Analysis.........................................................................................................29 3 Results ..................................................................................................................................30 3.1 Crystallography .............................................................................................................30 3.1.1 Solubility & Expression of Constructs ................................................................30 3.1.2 Purification ........................................................................................................30 3.1.3 Detection of Protein-Protein Interaction by Size Exclusion Chromatography (SEC) .................................................................................................................32 3.1.4 Crystallization ....................................................................................................33 v 3.2 Mutagenesis Binding Studies .........................................................................................34 3.2.1 Mutagenesis of KLC1-TPR ................................................................................34 3.2.2 Mutagenesis of pJIP1 and pALC1 ......................................................................39 3.3 Structural Analysis.........................................................................................................42 3.3.1 Mapping of the JIP3 and JIP4 binding site ..........................................................42 4 Discussion ............................................................................................................................43
Recommended publications
  • Hares, K. M., Miners, S., Scolding, N
    Hares, K. M. , Miners, S., Scolding, N., Love, S., & Wilkins, A. (2019). KIF5A and KLC1 expression in Alzheimer’s disease: relationship and genetic influences. AMRC Open Research, 1, [1]. https://doi.org/10.12688/amrcopenres.12861.1 Publisher's PDF, also known as Version of record License (if available): CC BY Link to published version (if available): 10.12688/amrcopenres.12861.1 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via F1000 Research at https://amrcopenresearch.org/articles/1-1/v1 . Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ AMRC Open Research AMRC Open Research 2019, 1:1 Last updated: 11 APR 2019 RESEARCH ARTICLE KIF5A and KLC1 expression in Alzheimer’s disease: relationship and genetic influences [version 1; peer review: 1 approved, 1 approved with reservations, 1 not approved] Kelly Hares 1, Scott Miners2, Neil Scolding1, Seth Love2, Alastair Wilkins1 1Bristol Medical School: Translational Health Sciences, MS and Stem Cell Group, University of Bristol, Bristol, BS10 5NB, UK 2Bristol Medical School: Translational Health Sciences, Dementia Research Group, University of Bristol, Bristol, BS10 5NB, UK First published: 19 Feb 2019, 1:1 (https://doi.org/10.12688/amrcopenres.12861.1 Open Peer Review v1 ) Latest published: 19 Feb 2019, 1:1 ( https://doi.org/10.12688/amrcopenres.12861.1) Referee Status: Abstract Invited Referees Background: Early disturbances in axonal transport, before the onset of gross 1 2 3 neuropathology, occur in a spectrum of neurodegenerative diseases including Alzheimer’s disease.
    [Show full text]
  • A Comparative Analysis of Transcribed Genes in the Mouse Hypothalamus and Neocortex Reveals Chromosomal Clustering
    A comparative analysis of transcribed genes in the mouse hypothalamus and neocortex reveals chromosomal clustering Wee-Ming Boon*, Tim Beissbarth†, Lavinia Hyde†, Gordon Smyth†, Jenny Gunnersen*, Derek A. Denton*‡, Hamish Scott†, and Seong-Seng Tan* *Howard Florey Institute, University of Melbourne, Parkville 3052, Australia; and †Genetics and Bioinfomatics Division, Walter and Eliza Hall Institute of Medical Research, Royal Parade, Parkville 3050, Australia Contributed by Derek A. Denton, August 26, 2004 The hypothalamus and neocortex are subdivisions of the mamma- representing all of the genes that are expressed (qualitative and lian forebrain, and yet, they have vastly different evolutionary quantitative) in the hypothalamus and neocortex under standard histories, cytoarchitecture, and biological functions. In an attempt conditions. to define these attributes in terms of their genetic activity, we have In the current study, we describe the use of the Serial Analysis compared their genetic repertoires by using the Serial Analysis of of Gene Expression (SAGE) database, which allows simulta- Gene Expression database. From a comparison of 78,784 hypothal- neous detection of the expression levels of the entire genome amus tags with 125,296 neocortical tags, we demonstrate that each without a priori knowledge of gene sequences (13). SAGE takes structure possesses a different transcriptional profile in terms of advantage of the fact that a small sequence tag taken from a gene ontological characteristics and expression levels. Despite its defined position within the transcript is sufficient to identify the more recent evolutionary history, the neocortex has a more com- gene (from known cDNA or EST sequences), and up to 40 tags plex pattern of gene activity.
    [Show full text]
  • Drp1 Overexpression Induces Desmin Disassembling and Drives Kinesin-1 Activation Promoting Mitochondrial Trafficking in Skeletal Muscle
    Cell Death & Differentiation (2020) 27:2383–2401 https://doi.org/10.1038/s41418-020-0510-7 ARTICLE Drp1 overexpression induces desmin disassembling and drives kinesin-1 activation promoting mitochondrial trafficking in skeletal muscle 1 1 2 2 2 3 Matteo Giovarelli ● Silvia Zecchini ● Emanuele Martini ● Massimiliano Garrè ● Sara Barozzi ● Michela Ripolone ● 3 1 4 1 5 Laura Napoli ● Marco Coazzoli ● Chiara Vantaggiato ● Paulina Roux-Biejat ● Davide Cervia ● 1 1 2 1,4 6 Claudia Moscheni ● Cristiana Perrotta ● Dario Parazzoli ● Emilio Clementi ● Clara De Palma Received: 1 August 2019 / Revised: 13 December 2019 / Accepted: 23 January 2020 / Published online: 10 February 2020 © The Author(s) 2020. This article is published with open access Abstract Mitochondria change distribution across cells following a variety of pathophysiological stimuli. The mechanisms presiding over this redistribution are yet undefined. In a murine model overexpressing Drp1 specifically in skeletal muscle, we find marked mitochondria repositioning in muscle fibres and we demonstrate that Drp1 is involved in this process. Drp1 binds KLC1 and enhances microtubule-dependent transport of mitochondria. Drp1-KLC1 coupling triggers the displacement of KIF5B from 1234567890();,: 1234567890();,: kinesin-1 complex increasing its binding to microtubule tracks and mitochondrial transport. High levels of Drp1 exacerbate this mechanism leading to the repositioning of mitochondria closer to nuclei. The reduction of Drp1 levels decreases kinesin-1 activation and induces the partial recovery of mitochondrial distribution. Drp1 overexpression is also associated with higher cyclin-dependent kinase-1 (Cdk-1) activation that promotes the persistent phosphorylation of desmin at Ser-31 and its disassembling. Fission inhibition has a positive effect on desmin Ser-31 phosphorylation, regardless of Cdk-1 activation, suggesting that induction of both fission and Cdk-1 are required for desmin collapse.
    [Show full text]
  • Understanding the Role of the Chromosome 15Q25.1 in COPD Through Epigenetics and Transcriptomics
    European Journal of Human Genetics (2018) 26:709–722 https://doi.org/10.1038/s41431-017-0089-8 ARTICLE Understanding the role of the chromosome 15q25.1 in COPD through epigenetics and transcriptomics 1 1,2 1,3,4 5,6 5,6 Ivana Nedeljkovic ● Elena Carnero-Montoro ● Lies Lahousse ● Diana A. van der Plaat ● Kim de Jong ● 5,6 5,7 6 8 9 10 Judith M. Vonk ● Cleo C. van Diemen ● Alen Faiz ● Maarten van den Berge ● Ma’en Obeidat ● Yohan Bossé ● 11 1,12 12 1 David C. Nickle ● BIOS Consortium ● Andre G. Uitterlinden ● Joyce J. B. van Meurs ● Bruno C. H. Stricker ● 1,4,13 6,8 5,6 1 1 Guy G. Brusselle ● Dirkje S. Postma ● H. Marike Boezen ● Cornelia M. van Duijn ● Najaf Amin Received: 14 March 2017 / Revised: 6 November 2017 / Accepted: 19 December 2017 / Published online: 8 February 2018 © The Author(s) 2018. This article is published with open access Abstract Chronic obstructive pulmonary disease (COPD) is a major health burden in adults and cigarette smoking is considered the most important environmental risk factor of COPD. Chromosome 15q25.1 locus is associated with both COPD and smoking. Our study aims at understanding the mechanism underlying the association of chromosome 15q25.1 with COPD through epigenetic and transcriptional variation in a population-based setting. To assess if COPD-associated variants in 1234567890();,: 15q25.1 are methylation quantitative trait loci, epigenome-wide association analysis of four genetic variants, previously associated with COPD (P < 5 × 10−8) in the 15q25.1 locus (rs12914385:C>T-CHRNA3, rs8034191:T>C-HYKK, rs13180: C>T-IREB2 and rs8042238:C>T-IREB2), was performed in the Rotterdam study (n = 1489).
    [Show full text]
  • Proteomic Analysis Uncovers Measles Virus Protein C Interaction with P65
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.08.084418; this version posted May 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Proteomic Analysis Uncovers Measles Virus Protein C Interaction with p65/iASPP/p53 Protein Complex Alice Meignié1,2*, Chantal Combredet1*, Marc Santolini 3,4, István A. Kovács4,5,6, Thibaut Douché7, Quentin Giai Gianetto 7,8, Hyeju Eun9, Mariette Matondo7, Yves Jacob10, Regis Grailhe9, Frédéric Tangy1**, and Anastassia V. Komarova1, 10** 1 Viral Genomics and Vaccination Unit, Department of Virology, Institut Pasteur, CNRS UMR-3569, 75015 Paris, France 2 Université Paris Diderot, Sorbonne Paris Cité, Paris, France 3 Center for Research and Interdisciplinarity (CRI), Université de Paris, INSERM U1284 4 Network Science Institute and Department of Physics, Northeastern University, Boston, MA 02115, USA 5 Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208-3109, USA 6 Department of Network and Data Science, Central European University, Budapest, H-1051, Hungary 7 Proteomics platform, Mass Spectrometry for Biology Unit (MSBio), Institut Pasteur, CNRS USR 2000, Paris, France. 8 Bioinformatics and Biostatistics Hub, Computational Biology Department, Institut Pasteur, CNRS USR3756, Paris, France 9 Technology Development Platform, Institut Pasteur Korea, Seongnam-si, Republic of Korea 10 Laboratory of Molecular Genetics of RNA Viruses, Institut Pasteur, CNRS UMR-3569,
    [Show full text]
  • 1 Supporting Information for a Microrna Network Regulates
    Supporting Information for A microRNA Network Regulates Expression and Biosynthesis of CFTR and CFTR-ΔF508 Shyam Ramachandrana,b, Philip H. Karpc, Peng Jiangc, Lynda S. Ostedgaardc, Amy E. Walza, John T. Fishere, Shaf Keshavjeeh, Kim A. Lennoxi, Ashley M. Jacobii, Scott D. Rosei, Mark A. Behlkei, Michael J. Welshb,c,d,g, Yi Xingb,c,f, Paul B. McCray Jr.a,b,c Author Affiliations: Department of Pediatricsa, Interdisciplinary Program in Geneticsb, Departments of Internal Medicinec, Molecular Physiology and Biophysicsd, Anatomy and Cell Biologye, Biomedical Engineeringf, Howard Hughes Medical Instituteg, Carver College of Medicine, University of Iowa, Iowa City, IA-52242 Division of Thoracic Surgeryh, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada-M5G 2C4 Integrated DNA Technologiesi, Coralville, IA-52241 To whom correspondence should be addressed: Email: [email protected] (M.J.W.); yi- [email protected] (Y.X.); Email: [email protected] (P.B.M.) This PDF file includes: Materials and Methods References Fig. S1. miR-138 regulates SIN3A in a dose-dependent and site-specific manner. Fig. S2. miR-138 regulates endogenous SIN3A protein expression. Fig. S3. miR-138 regulates endogenous CFTR protein expression in Calu-3 cells. Fig. S4. miR-138 regulates endogenous CFTR protein expression in primary human airway epithelia. Fig. S5. miR-138 regulates CFTR expression in HeLa cells. Fig. S6. miR-138 regulates CFTR expression in HEK293T cells. Fig. S7. HeLa cells exhibit CFTR channel activity. Fig. S8. miR-138 improves CFTR processing. Fig. S9. miR-138 improves CFTR-ΔF508 processing. Fig. S10. SIN3A inhibition yields partial rescue of Cl- transport in CF epithelia.
    [Show full text]
  • Viewed and Published Immediately Upon Acceptance Cited in Pubmed and Archived on Pubmed Central Yours — You Keep the Copyright
    BMC Genomics BioMed Central Research article Open Access Differential gene expression in ADAM10 and mutant ADAM10 transgenic mice Claudia Prinzen1, Dietrich Trümbach2, Wolfgang Wurst2, Kristina Endres1, Rolf Postina1 and Falk Fahrenholz*1 Address: 1Johannes Gutenberg-University, Institute of Biochemistry, Mainz, Johann-Joachim-Becherweg 30, 55128 Mainz, Germany and 2Helmholtz Zentrum München – German Research Center for Environmental Health, Institute for Developmental Genetics, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany Email: Claudia Prinzen - [email protected]; Dietrich Trümbach - [email protected]; Wolfgang Wurst - [email protected]; Kristina Endres - [email protected]; Rolf Postina - [email protected]; Falk Fahrenholz* - [email protected] * Corresponding author Published: 5 February 2009 Received: 19 June 2008 Accepted: 5 February 2009 BMC Genomics 2009, 10:66 doi:10.1186/1471-2164-10-66 This article is available from: http://www.biomedcentral.com/1471-2164/10/66 © 2009 Prinzen et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: In a transgenic mouse model of Alzheimer disease (AD), cleavage of the amyloid precursor protein (APP) by the α-secretase ADAM10 prevented amyloid plaque formation, and alleviated cognitive deficits. Furthermore, ADAM10 overexpression increased the cortical synaptogenesis. These results suggest that upregulation of ADAM10 in the brain has beneficial effects on AD pathology. Results: To assess the influence of ADAM10 on the gene expression profile in the brain, we performed a microarray analysis using RNA isolated from brains of five months old mice overexpressing either the α-secretase ADAM10, or a dominant-negative mutant (dn) of this enzyme.
    [Show full text]
  • Structural Basis for Isoform-Specific Kinesin-1 Recognition of Y-Acidic
    bioRxiv preprint doi: https://doi.org/10.1101/322057; this version posted May 14, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Structural basis for isoform-specific kinesin-1 recognition of Y-acidic cargo adaptors Stefano Pernigo1, Magda Chegkazi1, Yan Y. Yip1, Conor Treacy1, Giulia Glorani1, Kjetil Hansen2, Argyris Politis2, Mark P. Dodding1,3,*, Roberto A. Steiner1,* 1Randall Centre of Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King’s College London, London SE1 1UL, UK 2Department of Chemistry, King’s College London Britannia House 7 Trinity Street, London, SE1 1DB (UK) 3current address School of Biochemistry, Faculty of Biomedical Sciences, University of Bristol, University Walk, Bristol BS8 1TD *Correspondence email: [email protected] or [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/322057; this version posted May 14, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The light chains (KLCs) of the heterotetrameric microtubule motor kinesin-1, that bind to cargo adaptor proteins and regulate its activity, have a capacity to recognize short peptides via their tetratricopeptide repeat domains (KLCTPR). Here, using X-ray crystallography, we show how kinesin-1 recognizes a novel class of adaptor motifs that we call ‘Y-acidic’ (tyrosine flanked by acidic residues), in a KLC-isoform specific manner. Binding specificities of Y-acidic motifs (present in JIP1 and in TorsinA) to KLC1TPR are distinct from those utilized for the recognition of W-acidic motifs found in adaptors that are KLC- isoform non-selective.
    [Show full text]
  • Elucidating Biological Roles of Novel Murine Genes in Hearing Impairment in Africa
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2019 doi:10.20944/preprints201909.0222.v1 Review Elucidating Biological Roles of Novel Murine Genes in Hearing Impairment in Africa Oluwafemi Gabriel Oluwole,1* Abdoulaye Yal 1,2, Edmond Wonkam1, Noluthando Manyisa1, Jack Morrice1, Gaston K. Mazanda1 and Ambroise Wonkam1* 1Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, South Africa. 2Department of Neurology, Point G Teaching Hospital, University of Sciences, Techniques and Technology, Bamako, Mali. *Correspondence to: [email protected]; [email protected] Abstract: The prevalence of congenital hearing impairment (HI) is highest in Africa. Estimates evaluated genetic causes to account for 31% of HI cases in Africa, but the identification of associated causative genes mutations have been challenging. In this study, we reviewed the potential roles, in humans, of 38 novel genes identified in a murine study. We gathered information from various genomic annotation databases and performed functional enrichment analysis using online resources i.e. genemania and g.proflier. Results revealed that 27/38 genes are express mostly in the brain, suggesting additional cognitive roles. Indeed, HERC1- R3250X had been associated with intellectual disability in a Moroccan family. A homozygous 216-bp deletion in KLC2 was found in two siblings of Egyptian descent with spastic paraplegia. Up to 27/38 murine genes have link to at least a disease, and the commonest mode of inheritance is autosomal recessive (n=8). Network analysis indicates that 20 other genes have intermediate and biological links to the novel genes, suggesting their possible roles in HI.
    [Show full text]
  • KLC1 (NM 182923) Human Tagged ORF Clone – RC220210L4 | Origene
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC220210L4 KLC1 (NM_182923) Human Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: KLC1 (NM_182923) Human Tagged ORF Clone Tag: mGFP Symbol: KLC1 Synonyms: KLC; KNS2; KNS2A Vector: pLenti-C-mGFP-P2A-Puro (PS100093) E. coli Selection: Chloramphenicol (34 ug/mL) Cell Selection: Puromycin ORF Nucleotide The ORF insert of this clone is exactly the same as(RC220210). Sequence: Restriction Sites: SgfI-MluI Cloning Scheme: ACCN: NM_182923 ORF Size: 1814 bp This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 KLC1 (NM_182923) Human Tagged ORF Clone – RC220210L4 OTI Disclaimer: The molecular sequence of this clone aligns with the gene accession number as a point of reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing variants is recommended prior to use. More info OTI Annotation: This clone was engineered to express the complete ORF with an expression tag. Expression varies depending on the nature of the gene. RefSeq: NM_182923.2, NP_891553.2 RefSeq Size: 2548 bp RefSeq ORF: 1722 bp Locus ID: 3831 UniProt ID: Q07866 Protein Families: Druggable Genome MW: 65.1 kDa Gene Summary: Conventional kinesin is a tetrameric molecule composed of two heavy chains and two light chains, and transports various cargos along microtubules toward their plus ends.
    [Show full text]
  • Activation of Conventional Kinesin Motors in Clusters by Shaw Voltage
    Research Article 2027 Activation of conventional kinesin motors in clusters by Shaw voltage-gated K+ channels Joshua Barry1, Mingxuan Xu2,*, Yuanzheng Gu2, Andrew W. Dangel3, Peter Jukkola4, Chandra Shrestha2,` and Chen Gu1,2,4,§ 1Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH 43210, USA 2Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA 3Plant-Microbe Genomics Facility, The Ohio State University, Columbus, OH 43210, USA 4Integrated Biomedical Graduate Program, The Ohio State University, Columbus, OH 43210, USA *Present address: Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA `Present address: Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech University, Blacksburg, VA 24061, USA §Author for correspondence ([email protected]) Accepted 19 February 2013 Journal of Cell Science 126, 2027–2041 ß 2013. Published by The Company of Biologists Ltd doi: 10.1242/jcs.122234 Summary The conventional kinesin motor transports many different cargos to specific locations in neurons. How cargos regulate motor function remains unclear. Here we focus on KIF5, the heavy chain of conventional kinesin, and report that the Kv3 (Shaw) voltage-gated K+ channel, the only known tetrameric KIF5-binding protein, clusters and activates KIF5 motors during axonal transport. Endogenous KIF5 often forms clusters along axons, suggesting a potential role of KIF5-binding proteins. Our biochemical assays reveal that the high- affinity multimeric binding between the Kv3.1 T1 domain and KIF5B requires three basic residues in the KIF5B tail. Kv3.1 T1 competes with the motor domain and microtubules, but not with kinesin light chain 1 (KLC1), for binding to the KIF5B tail.
    [Show full text]
  • A Small-Molecule Activator of Kinesin-1 Drives Remodeling of the Microtubule Network
    A small-molecule activator of kinesin-1 drives remodeling of the microtubule network Thomas S. Randalla, Yan Y. Yipa, Daynea J. Wallock-Richardsa, Karin Pfisterera, Anneri Sangera, Weronika Ficeka, Roberto A. Steinera, Andrew J. Beavila, Maddy Parsonsa, and Mark P. Doddinga,b,1 aRandall Centre for Cell and Molecular Biophysics, King’s College London, London SE1 1UL, United Kingdom; and bSchool of Biochemistry, University of Bristol, Bristol BS9 1TD, United Kingdom Edited by Eva Nogales, University of California, Berkeley, CA, and approved November 21, 2017 (received for review August 25, 2017) The microtubule motor kinesin-1 interacts via its cargo-binding inaccessible in the autoinhibited conformation, available to bind domain with both microtubules and organelles, and hence plays cargo (28). The predominantly basic series of amino acids an important role in controlling organelle transport and microtubule comprising this site can interact with closely related cargo- dynamics. In the absence of cargo, kinesin-1 is found in an auto- adaptor sequences to stabilize the kinesin-1–cargo interaction inhibited conformation. The molecular basis of how cargo engage- and, interestingly, is also known to interact with microtubules in an ment affects the balance between kinesin-1’s active and inactive ATP-independent manner (9, 14, 15, 19). Collectively, these data suggest a stepwise model for kinesin-1 activation, in which en- conformations and roles in microtubule dynamics and organelle TPR transport is not well understood. Here we describe the
    [Show full text]