Indeterminism in Physics and Intuitionistic Mathematics

Total Page:16

File Type:pdf, Size:1020Kb

Indeterminism in Physics and Intuitionistic Mathematics Indeterminism in Physics and Intuitionistic Mathematics Nicolas Gisin Group of Applied Physics, University of Geneva, 1211 Geneva 4, Switzerland (Dated: November 9, 2020) Most physics theories are deterministic, with the notable exception of quantum mechanics which, however, comes plagued by the so-called measurement problem. This state of affairs might well be due to the inability of standard mathematics to \speak" of indeterminism, its inability to present us a worldview in which new information is created as time passes. In such a case, scientific determinism would only be an illusion due to the timeless mathematical language scientists use. To investigate this possibility it is necessary to develop an alternative mathematical language that is both powerful enough to allow scientists to compute predictions and compatible with indeterminism and the passage of time. We argue that intuitionistic mathematics provides such a language and we illustrate it in simple terms. I. INTRODUCTION I have always been amazed by the huge difficulties that my fellow physicists seem to encounter when con- templating indeterminism and the highly sophisticated Physicists are not used to thinking of the world as in- circumlocutions they are ready to swallow to avoid the determinate and its evolution as indeterministic. New- straightforward conclusion that physics does not neces- ton's equations, like Maxwell's and Schr¨odinger'sequa- sarily present us a deterministic worldview. But even tions, are (partial) differential equations describing the more surprising to me is the attitude of most philoso- continuous evolution of the initial condition as a func- phers, especially philosophers of science. Indeed, most tion of a parameter identified with time. Some view this philosophers who care about quantum physics adopt ei- state of affairs as the paradigmatic signature of scientific ther Bohmian mechanics [2{4] (become a Bohmian, as rigor. Accordingly, indeterminism could only be a weak- one says) or the many-worlds interpretation [10]. Appar- ness due, for instance, to an incomplete description of ently, to most of them adding inaccessible particle posi- the situation. tions or inaccessible parallel worlds to their ontology is a There are essentially two kinds of common objections reasonable price to pay in order to avoid indeterminism. to the above determinsitic worldview. First, not all evo- The central claim of Bohmians is that they circumvent lution equations one encounters in physics have a unique the quantum measurement problem. The latter has two solution for all initial conditions. Even the classical sides. First, quantum theory is silent about when poten- Hamiltonian equations may fail to satisfy the Lipschitz tialities become actual. Second, quantum randomness conditions and thus allow for several solutions, possibly seems to emerge from nowhere (from outside space-time, even a continuous infinity of solutions, as is the case as I sometimes wrote) and does thus not satisfy Leibniz's of Norton's dome [1]. These cases are fairly contrived principle of sufficient reason. Admittedly, the first point and exceptional, but still worth remembering when col- is serious. However, the second one is unfair: in all fun- leagues claim that determinism is obvious. Second, there damentally indeterministic theories there must be events is quantum physics, which is generally presented as in- that happen - and thus information that gets created trinsically indeterministic. Actually, one can even prove - although their happenings were not necessary. Spon- the existence of quantum randomness from two highly taneous quantum collapse models are good examples of 2 plausible assumptions: physical distances exist (noth- such consistent indeterministic theories [11{14]. Con- ing jumps arbitrarily fast from here to there1), and no sequently, since indeterminism is precisely the view that super-determinism (no combination of determinism and time passes and creates new information, one can't ar- conspiracy, i.e. there are de facto independent processes) gue against indeterminism by merely asserting that the [5{8]. But this quantum indeterminism is immediately creation of new information is a priori impossible. associated with difficulties. These come either under the A very different reaction to these difficulties is illus- name of the measurement problem [9], or claims of the in- trated by Yuval Dolev's claim that tense and passage are completeness of quantum theory that should be comple- not, never were, and probably cannot be part of physics mented by additional variables, as in Bohmian mechanics and its language [15]. [2{4], or by the radical many-worlds view [10]. I address But is indeterminism truly that difficult to conceptual- quantum indeterminacy in appendix A. But allow me to ize and contemplate [16]? Isn't indeterminism pervasive straightforwardly continue with my main motivation. in our lives, and shouldn't physics not only lead to fasci- 1 In other words, no influence \propagates" at infinite speed; this 2 Moreover, several of such collapse models also answer the first excludes, among others, Bohmian mechanics [2{4]. side of the measurement problem. 2 nating technologies and sophisticated theories, but also numbers, i.e. numbers x for which there is an algorithm 5 tell stories of how nature does it in a language that al- that generates a series of approximations xn such that −n lows humans to gain intuitive understanding? If not, how jx−xnj ≤ 2 for all positive integers n. Although essen- could our intuition develop? And, is there deep under- tially all numbers one encounters are exceptional (they standing without intuition? Shouldn't one reply to Dolev have names and there are only countably many names), by adapting the mathematical language used by physics the vast majority of real numbers are not computable; to make it compatible with indeterminism? Shouldn't their bits (and digits) are truly random, as random as one paraphrase Rabelais and state that \Science without the outcomes of quantum measurements, and are of max- time is but the ruin of intelligibility" [17]? imal Kolmogorov complexity. This randomness is crucial It is worth trying to accept indeterminism at face value for Bohmian mechanics to reproduce quantum statistics 6 and see where this leads us. Accordingly, let's assume and for classical dynamical systems to produce chaos . that nature has the power to continually and sponta- The latter is often termed \deterministic chaos", though neously produce randomness in the form of entirely new is it based on real numbers whose decimals are random information (though information without meaning). For [26, 27]. simplicity, and because we need to start somewhere, let's In [24] I argued that one should avoid infinite infor- assume this power expresses itself by a natural random mation densities, i.e. that a finite volume of space can process that continually produces random bits at discrete contain at most a finite amount of information (see also instants of time. Continuous random processes and larger [28{30]). Then I concluded that the mathematical real alphabets would also work, but let's start simple, i.e. with numbers should be replaced by finite-information num- binary information in the form of bits produced at dis- bers and that the usual real numbers would be better crete time steps, which I name \time-instants". Is it named \random numbers". In this way, whenever the truly impossible to think of such a fundamental Natural equations have an analytic solution and the initial con- Random Process (NRP)? Not a human-made one, but - ditions and the time t are given by finite-information again - as a power of nature. Isn't that very natural if one numbers, then the state at time t is also given by finite- wants to contemplate the possibility that our world is in- information numbers. And if the solution is numerical, trinsically indeterministic? Can one start anywhere else then obviously it is given by finite-information numbers. than by assuming that our world (nature) has the power If, on the other side, the dynamical system is chaotic, to produce random bits? Let me emphasize that I am then the finite-information number encoding the initial not claiming that physics is indeterministic; more mod- condition must be complemented by fresh random bits estly, I am interested in showing that our best physics is as time passes, which is equivalent in practice to the ran- 3 compatible with indeterminism . domness hidden in the real/random numbers that usually Let us contrast the above assumption of the existence describes the initial conditions. of a natural random process with the common assump- Consequently, intrinsic randomness is already hidden tion that real numbers faithfully describe our world, in in our archetype of a deterministic physics theory, i.e. in particular that the positions of elementary particles (or classical mechanics, and also in Bohmian mechanics. But their centers of mass) in classical and in Bohmian me- then, why not make the assumption of fundamental ran- chanics are faithfully described by mathematical real domness, as a power of nature, an explicit assumption? numbers [24]. Typical real numbers contain infinite Admittedly, for practical reasons it might be useful to (Shannon) information. Hence, the \real number as- keep standard mathematics for our computations. For, sumption" is far from cheap. It assumes that ungras- in any case, both classical mathematics and the mathe- pable infinite quantities are at the basis of our physics. matics adapted to finite information always agree on the This is certainly not an obvious and clean assumption4. outcomes of computations. But fundamentally, we have The infinite information necessary to describe a typ- to choose a perspective. Either all digits of the initial ical real number is clearly seen in its binary (or deci- conditions are assumed to be determined from the first mal) expansion: the series of bits (digits) never ends and moment, leading to timeless physics, or these digits are - typically - has no structure whatsoever.
Recommended publications
  • Relational Quantum Mechanics
    Relational Quantum Mechanics Matteo Smerlak† September 17, 2006 †Ecole normale sup´erieure de Lyon, F-69364 Lyon, EU E-mail: [email protected] Abstract In this internship report, we present Carlo Rovelli’s relational interpretation of quantum mechanics, focusing on its historical and conceptual roots. A critical analysis of the Einstein-Podolsky-Rosen argument is then put forward, which suggests that the phenomenon of ‘quantum non-locality’ is an artifact of the orthodox interpretation, and not a physical effect. A speculative discussion of the potential import of the relational view for quantum-logic is finally proposed. Figure 0.1: Composition X, W. Kandinski (1939) 1 Acknowledgements Beyond its strictly scientific value, this Master 1 internship has been rich of encounters. Let me express hereupon my gratitude to the great people I have met. First, and foremost, I want to thank Carlo Rovelli1 for his warm welcome in Marseille, and for the unexpected trust he showed me during these six months. Thanks to his rare openness, I have had the opportunity to humbly but truly take part in active research and, what is more, to glimpse the vivid landscape of scientific creativity. One more thing: I have an immense respect for Carlo’s plainness, unaltered in spite of his renown achievements in physics. I am very grateful to Antony Valentini2, who invited me, together with Frank Hellmann, to the Perimeter Institute for Theoretical Physics, in Canada. We spent there an incredible week, meeting world-class physicists such as Lee Smolin, Jeffrey Bub or John Baez, and enthusiastic postdocs such as Etera Livine or Simone Speziale.
    [Show full text]
  • An Energy and Determinist Approach of Quantum Mechanics Patrick Vaudon
    An energy and determinist approach of quantum mechanics Patrick Vaudon To cite this version: Patrick Vaudon. An energy and determinist approach of quantum mechanics. 2018. hal-01714971v2 HAL Id: hal-01714971 https://hal.archives-ouvertes.fr/hal-01714971v2 Preprint submitted on 15 Mar 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. An energy and determinist approach of quantum mechanics Patrick VAUDON Xlim lab – University of Limoges - France 0 Table of contents First part Classical approach of DIRAC equation and its solutions Introduction ............................................................................................................................................. 4 DIRAC equation ...................................................................................................................................... 9 DIRAC bi-spinors ................................................................................................................................. 16 Spin ½ of the electron ..........................................................................................................................
    [Show full text]
  • The World As Will and Quantum Mechanics
    (https://thephilosophicalsalon.com) ! HOME (HTTPS://THEPHILOSOPHICALSALON.COM/) ABOUT (HTTPS://THEPHILOSOPHICALSALON.COM/ABOUT/) CONTACT US (HTTPS://THEPHILOSOPHICALSALON.COM/CONTACT/) DEBATES THE WORLD AS WILL AND JUL QUANTUM 22 2019 MECHANICS BY BENJAMIN WINTERHALTER (HTTPS://THEPHILOSOPHICALSALON.COM/AUTHOR/BENJAMININTERHALTER/) 4" SHARE 0# COMMENT 10♥ LOVE here is, unfortunately, no such thing as fate. If we accept that quantum mechanics— for all the strangeness associated with it—gives an accurate description of the T universe’s basic ontology, we should also accept that the will is real. The evidence for quantum mechanics is extremely strong, and physicists, including Alan Guth, David Kaiser, and Andrew Friedman (https://www.quantamagazine.org/physicists-are-closing-the-bell-test- loophole-20170207/), have closed some of the few remaining loopholes around the reality of quantum entanglement, a phenomenon wherein the state of a particle cannot be described independently of the state of at least one other. (Albert Einstein called entanglement “spooky action at a distance.”) But the existentially terrifying prospect of free will contains a shimmering surprise: In the conception of free will that’s compatible with quantum mechanics, exercises of the will—intentions or desires that lead to bodily actions—are fundamentally limited, finite, and constrained. In a word, entangled. According to the American philosopher John Searle’s 2004 book Freedom and Neurobiology, the fact of quantum indeterminacy—the ineradicable uncertainty in our knowledge of physical systems, first formulated by the German physicist Werner Heisenberg—does not guarantee that free will exists. Indeterminacy is a necessary but not sufficient condition for the belief that there is no such thing as fate.
    [Show full text]
  • Mathematical Languages Shape Our Understanding of Time in Physics Physics Is Formulated in Terms of Timeless, Axiomatic Mathematics
    comment Corrected: Publisher Correction Mathematical languages shape our understanding of time in physics Physics is formulated in terms of timeless, axiomatic mathematics. A formulation on the basis of intuitionist mathematics, built on time-evolving processes, would ofer a perspective that is closer to our experience of physical reality. Nicolas Gisin n 1922 Albert Einstein, the physicist, met in Paris Henri Bergson, the philosopher. IThe two giants debated publicly about time and Einstein concluded with his famous statement: “There is no such thing as the time of the philosopher”. Around the same time, and equally dramatically, mathematicians were debating how to describe the continuum (Fig. 1). The famous German mathematician David Hilbert was promoting formalized mathematics, in which every real number with its infinite series of digits is a completed individual object. On the other side the Dutch mathematician, Luitzen Egbertus Jan Brouwer, was defending the view that each point on the line should be represented as a never-ending process that develops in time, a view known as intuitionistic mathematics (Box 1). Although Brouwer was backed-up by a few well-known figures, like Hermann Weyl 1 and Kurt Gödel2, Hilbert and his supporters clearly won that second debate. Hence, time was expulsed from mathematics and mathematical objects Fig. 1 | Debating mathematicians. David Hilbert (left), supporter of axiomatic mathematics. L. E. J. came to be seen as existing in some Brouwer (right), proposer of intuitionist mathematics. Credit: Left: INTERFOTO / Alamy Stock Photo; idealized Platonistic world. right: reprinted with permission from ref. 18, Springer These two debates had a huge impact on physics.
    [Show full text]
  • HYPOTHESIS: How Defining Nature of Time Might Explain Some of Actual Physics Enigmas P Letizia
    HYPOTHESIS: How Defining Nature of Time Might Explain Some of Actual Physics Enigmas P Letizia To cite this version: P Letizia. HYPOTHESIS: How Defining Nature of Time Might Explain Some of Actual Physics Enigmas: A possible explanation of Dark Energy. 2017. hal-01424099 HAL Id: hal-01424099 https://hal.archives-ouvertes.fr/hal-01424099 Preprint submitted on 3 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike| 4.0 International License SUBMITTED FOR STUDY January 1st, 2017 HYPOTHESIS: How Defining Nature of Time Might Explain Some of Actual Physics Enigmas P. Letizia Abstract Nowadays it seems that understanding the Nature of Time is not more a priority. It seems commonly admitted that Time can not be clearly nor objectively defined. I do not agree with this vision. I am among those who think that Time has an objective reality in Physics. If it has a reality, then it must be understood. My first ambition with this paper was to submit for study a proposition concerning the Nature of Time. However, once defined I understood that this proposition embeds an underlying logic.
    [Show full text]
  • An Argument for 4D Blockworld from a Geometric Interpretation of Non-Relativistic Quantum Mechanics Michael Silberstein1,3, Michael Cifone3 and W.M
    An Argument for 4D Blockworld from a Geometric Interpretation of Non-relativistic Quantum Mechanics Michael Silberstein1,3, Michael Cifone3 and W.M. Stuckey2 Abstract We use a new distinctly “geometrical” interpretation of non-relativistic quantum mechanics (NRQM) to argue for the fundamentality of the 4D blockworld ontology. Our interpretation rests on two formal results: Kaiser, Bohr & Ulfbeck and Anandan showed independently that the Heisenberg commutation relations of NRQM follow from the relativity of simultaneity (RoS) per the Poincaré Lie algebra, and Bohr, Ulfbeck & Mottelson showed that the density matrix for a particular NRQM experimental outcome may be obtained from the spacetime symmetry group of the experimental configuration. Together these formal results imply that contrary to accepted wisdom, NRQM, the measurement problem and so-called quantum non-locality do not provide reasons to abandon the 4D blockworld implication of RoS. After discussing the full philosophical implications of these formal results, we motivate and derive the Born rule in the context of our ontology of spacetime relations via Anandan. Finally, we apply our explanatory and descriptive methodology to a particular experimental set-up (the so-called “quantum liar experiment”) and thereby show how the blockworld view is not only consistent with NRQM, not only an implication of our geometrical interpretation of NRQM, but it is necessary in a non-trivial way for explaining quantum interference and “non-locality” from the spacetime perspective. 1 Department of Philosophy, Elizabethtown College, Elizabethtown, PA 17022, [email protected] 2 Department of Physics, Elizabethtown College, Elizabethtown, PA 17022, [email protected] 3 Department of Philosophy, University of Maryland, College Park, MD 20742, [email protected] 2 1.
    [Show full text]
  • Terminology of Geological Time: Establishment of a Community Standard
    Terminology of geological time: Establishment of a community standard Marie-Pierre Aubry1, John A. Van Couvering2, Nicholas Christie-Blick3, Ed Landing4, Brian R. Pratt5, Donald E. Owen6 and Ismael Ferrusquía-Villafranca7 1Department of Earth and Planetary Sciences, Rutgers University, Piscataway NJ 08854, USA; email: [email protected] 2Micropaleontology Press, New York, NY 10001, USA email: [email protected] 3Department of Earth and Environmental Sciences and Lamont-Doherty Earth Observatory of Columbia University, Palisades NY 10964, USA email: [email protected] 4New York State Museum, Madison Avenue, Albany NY 12230, USA email: [email protected] 5Department of Geological Sciences, University of Saskatchewan, Saskatoon SK7N 5E2, Canada; email: [email protected] 6Department of Earth and Space Sciences, Lamar University, Beaumont TX 77710 USA email: [email protected] 7Universidad Nacional Autónomo de México, Instituto de Geologia, México DF email: [email protected] ABSTRACT: It has been recommended that geological time be described in a single set of terms and according to metric or SI (“Système International d’Unités”) standards, to ensure “worldwide unification of measurement”. While any effort to improve communication in sci- entific research and writing is to be encouraged, we are also concerned that fundamental differences between date and duration, in the way that our profession expresses geological time, would be lost in such an oversimplified terminology. In addition, no precise value for ‘year’ in the SI base unit of second has been accepted by the international bodies. Under any circumstances, however, it remains the fact that geologi- cal dates – as points in time – are not relevant to the SI.
    [Show full text]
  • Yet Again, Quantum Indeterminacy Is Not Worldly Indecision
    Noname manuscript No. (will be inserted by the editor) Yet Again, Quantum Indeterminacy is not Worldly Indecision Alberto Corti January 18, 2021 Pre-print. Accepted in Synthese. The link to the published version will be added soon. Abstract It has been argued that non-relativistic quantum mechanics is the best hunting ground for genuine examples of metaphysical indeterminacy. Ap- proaches to metaphysical indeterminacy can be divided into two families: meta-level and object-level accounts. It has been shown (Darby, 2010; Skow, 2010) that the most popular version of the meta-level accounts, namely the metaphysical supervaluationism proposed by Barnes and Williams (2011), fails to deal with quantum indeterminacy. Such a fact has been taken by many as a challenge to adapt supervaluationism to quantum cases. In this paper, I will focus on the very last of these attempts, i.e. the situation semantics account proposed by Darby and Pickup (2019). After having shown where quantum indeterminacy arises and having surveyed the assumptions endorsed by the participants of the debate, I turn to Darby and Pickup's proposal. I argue that, despite the machinery introduced, their account still fails to account for quantum indeterminacy. After considering some possible counterarguments, I suggest in the conclusion that one can plausibly extend the argument to those meta-level approaches that treat quantum indeterminacy as worldly indeci- sion. Keywords Metaphysical Indeterminacy · Meta-Level Accounts · Quantum Mechanics · Metaphysics of Science · Situation Semantics Alberto Corti [email protected] Department of Philosophy, University of Geneva. Department of Pure and Applied Sciences, University of Urbino. 2 Alberto Corti 1 Introduction Metaphysical indeterminacy (henceforth `MI') is the idea that indeterminacy is a feature of the world itself, rather than a feature imputable to the words we use (Fine, 1975) or to our knowledge (Williamson, 1994).
    [Show full text]
  • Like Other Physical Theories, Quantum Mechanics Deals with Repeatable
    Chapter 16 Free Will 16.1 The Problem The nature and existence of free will are traditional philosophical topics. One can easily see why by noting that the notions of free will and moral responsibility are related. The nature of the connection is a matter of debate; however, one can minimally say that paradigmatic cases of moral responsibility occur only when the agent acted of his own free will. Many have viewed free will as threatened both by theology and science.1 Leaving theology aside, the main threat coming from science has been represented by determinism, which we must now briefly consider. Determinism is the view that if at a time two isolated systems are described by the same state equation, then they have always been and will always be described the same equations and that two systems in the very same state always display the same properties. In effect, determinism is equivalent to the combination of evolutionary and value determinism. Classical mechanics is often taken to embody determinism, but to what 1 The theological problem is this. The traditional orthodox God knows the future. If God knows today that tomorrow at 3:23 pm I shall mow the lawn, then it looks as if mowing the lawn is not really up to me, since if I were to abstain from it I would turn God’s knowledge into mere belief, something that both philosophy and piety seem to prevent. Note, by the way, that the problem, albeit in a slightly different version, remains even if we dispose of God.
    [Show full text]
  • A Measure of Change Brittany A
    University of South Carolina Scholar Commons Theses and Dissertations Spring 2019 Time: A Measure of Change Brittany A. Gentry Follow this and additional works at: https://scholarcommons.sc.edu/etd Part of the Philosophy Commons Recommended Citation Gentry, B. A.(2019). Time: A Measure of Change. (Doctoral dissertation). Retrieved from https://scholarcommons.sc.edu/etd/5247 This Open Access Dissertation is brought to you by Scholar Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Time: A Measure of Change By Brittany A. Gentry Bachelor of Arts Houghton College, 2009 ________________________________________________ Submitted in Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy in Philosophy College of Arts and Sciences University of South Carolina 2019 Accepted by Michael Dickson, Major Professor Leah McClimans, Committee Member Thomas Burke, Committee Member Alexander Pruss, Committee Member Cheryl L. Addy, Vice Provost and Dean of the Graduate School ©Copyright by Brittany A. Gentry, 2019 All Rights Reserved ii Acknowledgements I would like to thank Michael Dickson, my dissertation advisor, for extensive comments on numerous drafts over the last several years and for his patience and encouragement throughout this process. I would also like to thank my other committee members, Leah McClimans, Thomas Burke, and Alexander Pruss, for their comments and recommendations along the way. Finally, I am grateful to fellow students and professors at the University of South Carolina, the audience at the International Society for the Philosophy of Time conference at Wake Forest University, NC, and anonymous reviewers for helpful comments on various drafts of portions of this dissertation.
    [Show full text]
  • Quantum Relational Indeterminacy
    Article Quantum relational indeterminacy CALOSI, Claudio, MARIANI, Cristian Reference CALOSI, Claudio, MARIANI, Cristian. Quantum relational indeterminacy. Studies in History and Philosophy of Science. B, Studies in History and Philosophy of Modern Physics, 2020, p. 28 DOI : 10.1016/j.shpsb.2020.06.002 Available at: http://archive-ouverte.unige.ch/unige:140824 Disclaimer: layout of this document may differ from the published version. 1 / 1 Quantum Relational Indeterminacy Claudio Calosi & Cristian Mariani [in Studies in Hist. and Phil. of Modern Physics] Sometime we see a cloud that's dragonish, a vapour sometime like a bear or lion, a towered citadel, a pendent rock, a forked mountain, or blue promontory with trees upon't that nod unto the world and mock our eyes with air. Thou hast seen these signs; They are black vesper's pageants. W. Shakespeare, Antony and Cleopatra IV. 14: 3-10. Abstract The paper presents the first thorough investigation of quantum metaphys- ical indeterminacy (MI) in the context of the Relational Interpretation of Quantum Mechanics (RQM). We contend that the interaction between MI and RQM is mutually beneficial. On the one hand, MI provides a metaphysical framework for RQM that has been neglected in the liter- ature, and that promises to undermine some objections that are often raised against RQM. On the other hand, RQM might serve as an example of fundamental quantum MI. Introduction In his recent paper The Sky is Blue and Birds Flies Through it (2018), the leading physicist Carlo Rovelli distinguishes three equally important kinds of development that can move us forward in understanding the quantum world.
    [Show full text]
  • Quantum Mechanics and Free Will: Counter−Arguments
    Quantum mechanics and free will: counter−arguments Martín López−Corredoira Astronomisches Institut der Universitaet Basel, Venusstrasse 7, CH−4102−Binningen, Switzerland E−mail: [email protected] Abstract Since quantum mechanics (QM) was formulated, many voices have claimed this to be the basis of free will in the human beings. Basically, they argue that free will is possible because there is an ontological indeterminism in the natural laws, and that the mind is responsible for the wave function collapse of matter, which leads to a choice among the different possibilities for the body. However, I defend the opposite thesis, that free will cannot be defended in terms of QM. First, because indeterminism does not imply free will, it is merely a necessary condition but not enough to defend it. Second, because all considerations about an autonomous mind sending orders to the body is against our scientific knowledge about human beings; in particular, neither neurological nor evolutionary theory can admit dualism. The quantum theory of measurement can be interpreted without the intervention of human minds, but other fields of science cannot contemplate the mentalist scenario, so it is concluded that QM has nothing to say about the mind or free will, and its scientific explanation is more related to biology than to physics. A fatalistic or materialist view, which denies the possibility of a free will, makes much more sense in scientific terms. 1. Definition of free will First of all, we must clarify the meaning of the term to which we refer: Free will: a source totally detached from matter (detached from nature) which is the origin (cause) of options, thoughts, feelings,..
    [Show full text]