Device Fingerprinting with Peripheral Timestamps

Total Page:16

File Type:pdf, Size:1020Kb

Device Fingerprinting with Peripheral Timestamps Device Fingerprinting with Peripheral Timestamps John V. Monaco Naval Postgraduate School, Monterey, CA Abstract—Sensing and processing peripheral input is a ubiq- clock (presumably controlled by the attacker) to compare uitous capability of personal computers. Text entry on physical measurements against. Recent work however has explored and virtual keyboards, mouse pointer motion, and touchscreen the use of function execution time within a web browser to gestures are the primary ways in which users interact with websites viewed on desktop and mobile devices. Peripheral input obtain a device fingerprint [9]. This method relies instead on events must pass through a pipeline of hardware and software differences in machine performance without the need for a processes before they reach the web browser. This pipeline reference clock. is device-dependent and often contains low-frequency polling We introduce a new method to fingerprint devices based on components, such as USB polling and process scheduling, that the timing of peripheral input events, leveraging differences in influence event timing within the web page. We show that a relatively unique device fingerprint is formed the way various hardware and software components process by the timing of peripheral input events. No special permissions keyboard, mouse, and touchscreen input. User input must are required to register callbacks to keyboard, mouse, and pass through a chain of processes that sense and deliver the touch events from within a web browser, and the technique events to an application, such as a web browser [10]. This works on both desktop and mobile devices. We propose a dual chain typically includes a microcontroller on the peripheral clock model in which both a fast reference clock and slow subject clock are compared through a single time source. With device, communication protocol between the peripheral and this model, the instantaneous phase of the subject clock is host, operating system (OS) scheduler, and browser event loop. measured and used to construct a phase image. The phase image Many of these include low-frequency polling that is driven by is then embedded in a low dimensional feature space using an independent clock from system time. FPNET, a convolutional neural network designed to extract a Device fingerprinting is possible due to unique charac- device fingerprint from the instantaneous phase. Performance is evaluated using a dataset containing 300M keyboard events teristics in the periodic behavior of hardware and software collected from over 228k devices observed in the wild. After about components responsible for processing peripheral input. This two minutes of typing, a device fingerprint is formed that enables includes, for example, the timing of USB polls which originate 87.35% verification accuracy among a population of 100k devices. from the USB host controller operating off of an independent Combined with features that measure user behavior in addition clock from the host. The USB host controller regularly queries to device behavior, verification accuracy increases to 97.36%. The methods described have potential as a second authentication USB devices for new events. Low-speed polling occurs at factor, but could also be used to track Internet users. around 125Hz, although depending on the device it could Index Terms—clock skew; triplet network; Internet privacy; be slightly faster or slower. In addition, frequency drift and variations in the period between polls, i.e., timing jitter, are I. INTRODUCTION observed. Besides USB polling, we find a number of other Browser fingerprinting is the practice of measuring device- low-frequency processes that exhibit similar characteristics. specific attributes from within a web browser to perform We propose a dual clock model that captures this scenario in stateless tracking of Internet users [1]. A browser fingerprint which two clocks are compared through a single time source. may include many different entropy sources ranging from In the dual clock model, a reference clock measures the times software properties, such as User-Agent, installed plugins, at which a relatively slower subject clock ticks. Robust device and timezone, to hardware side effects, such as pixel-level fingerprints are formed from the instantaneous phase of the differences in the way images are rendered [2]. Fingerprint- subject clock, which reflects the precise time at which the ticks ing techniques have been extended to mobile device sensors occur relative to the reference. The instantaneous phase seems which have repeatedly been shown to enable device identifi- to be both device and software dependent, largely capturing cation [3], [4], [5]. As of 2021, at least one quarter of the the complete hardware+software stack on a device. top-10k visited websites implement some form of browser Our approach consists of using estimates from the dual fingerprinting [6]. clock model to form a phase image from the peripheral Time-based device fingerprinting techniques have evolved timestamps. We show that the phase image simultaneously alongside browser fingerprinting [7]. Timekeeping differences captures clock frequency, skew, drift, phase, and jitter (i.e., among devices may result from manufacturing inconsisten- changes in instantaneous phase), all of which contribute to cies as well as environmental conditions. Crystal oscillator the device fingerprint. Like face images, phase images are not circuits are prone to changes in frequency based on ambient directly comparable. A convolutional neural network, FPNET, temperature, which, if under an attacker’s control, could enable embeds the images in a low dimensional feature space that targeted alias resolution [8]. This approach of device finger- enables device identification and verification as well as system printing based on clock skew generally requires a reference profiling, for example predicting device model and OS family. Unlike prior work ([7], [8], and [11]), fine grained clock Keyboard circuit Subject behavior is captured by our model. The dual clock model clock tick closes opens t˙ t˙ allows clock properties (e.g., skew, drift, phase, jitter) to 1 2 be measured from a single time source as a result of the USB polling various processes that handle peripheral input being driven S S t t by independent timers. Instantaneous phase, rather than skew 1 2 in prior work, reveals idiosyncratic device behaviors in the Date.now() t R t R presence of low-frequency polling. This approach has wide Reference 1 2 applicability: it requires only the ability to measure the time clock tick DOM keydown DOM keyup of peripheral input events. This can be performed from within a web browser using, e.g., the JavaScript Date API, as no Fig. 1. Time quantization of DOM keydown and keyup events measured in a web browser using the JavaScript Date API. Gray arrows indicate when special permissions are required to register callbacks to DOM the events are sensed by the keyboard; purple arrows indicate times at which events induced by keyboard, touchscreen, and mouse input. USB polls return event data; green arrows indicate the times reported by Our method of fingerprinting scales up to many thousands Date.now() inside callbacks registered to the events. of devices. We validate the approach using a corpus with over 300M DOM events captured from over 228k Internet users in II. BACKGROUND AND RELATED WORK the wild. Relatively unique device fingerprints are formed from 300 keystrokes (600 events), which take about two minutes to A. Input event processing capture. With 10k devices, rank-1 identification accuracy is Document object model (DOM) events form the basis 56.2%, and as population size scales up to 100k it drops to of interactive and dynamic web pages. User input events just 29.7%. Combined with features that capture user behavior (keydown, keyup, mousemove, etc.) typically originate from the same timestamps, rank-1 identification rates increase in a peripheral device attached to the host. In this section, to 84.6% and 63.1% for 10k and 100k devices, respectively. we review the main components responsible for processing A near perfect 1000-fold reduction in population size (98.2% peripheral input on personal computers, including desktop, rank-100 accuracy with 100k devices) is achieved. laptop, and mobile devices. These include: the peripheral The main contributions of this paper include: itself (e.g., keyboard) that polls a sensor for physical changes; the communication protocol between the peripheral and the • The dual clock model, which enables comparison of two host; the OS scheduler; and the browser event loop. Each different clocks through a single time source. The model component introduces a delay to the event and in many cases assumes a high resolution reference clock that reports the exhibits periodic behavior driven by some independent clock times at which some lower frequency subject clock ticks. running at a lower frequency than the browser timestamps. We show that frequency, skew, drift, phase, and jitter can This effectively quantizes the event timestamps as measured all be measured within this model. in the web browser. This model is shown in Figure 1. • The concept of a phase image that captures fine-grained 1) Sensor polling: A keydown event begins with the clock behaviors and enables device fingerprinting. The user physically closing a circuit on the keyboard. Circuits phase image is formed by modular residues of the ob- are arranged in a crossbar switch called a matrix, and the served timestamps. A method to calculate the modular keyboard microcontroller periodically scans the matrix by residue with minimal precision loss is introduced. pulsing each column. Matrix scanning occurs at 100-200Hz • FPNET, a convolutional neural network that embeds on most keyboards [12]. When a closed circuit is detected, the phase images in a low dimensional feature space key debouncing is applied which consists of a short timeout to extract device fingerprints. The model architecture (~5ms) to avoid spurious keystrokes as the switch contacts is inspired by face recognition systems but designed bounce open and closed [13].
Recommended publications
  • Vmlogin Virtual Multi-Login Browser Instruction Ver
    VMLogin virtual multi-login browser Instruction Ver 1.0 Skype: [email protected] Telegram1: Vmlogin Telegram2: vmlogin_us System Requirements Hardware requirements RAM: 4GB recommended; 1GB available disk space Effective GPU Supported operating systems Although VMLogin supports x86 (32-bit) systems, we recommend using VMLogin on x64 (64-bit) systems. OS supported by VMLogin Windows 10 Windows Server 2016 Windows 7 Windows 8 Software install Users can download the latest software installation package from the official website: vmlogin.us. The version used in this manual is 1.0.3.8. We can start the software installation package program, and the interface for selecting the installation language will be displayed: User can select the software language he likes, and can also change the language in the settings after installation. Currently supports Simplified Chinese and English. After the user select the language, enter the interface for selecting the installation directory: Here is generally installed by default, press the "Next" button, if the user customizes the installation directory, please pay attention to the directory permissions, the current user can edit. Generally, you need to create a desktop shortcut for convenient, we click the "Next" button to continue by default here. At this point we can click the "Install" button to install. We need to wait for the installation progress to complete. At this step, the software installation is complete. Software function 1. Start Software When we start the software, we will see the login interface. New users need to create a new account to log in. 2. Create Account To register as a new user, you need to use email as your account, set a password, and register.
    [Show full text]
  • Device Fingerprinting for Augmenting Web Authentication: Classification and Analysis of Methods
    Device Fingerprinting for Augmenting Web Authentication: Classification and Analysis of Methods Furkan Alaca P.C. van Oorschot School of Computer Science Carleton University, Ottawa, Canada ABSTRACT ing habits [21,2]. In addition, a number of commercial Device fingerprinting is commonly used for tracking users. fraud detection services [38, 57] employ browser-based de- We explore device fingerprinting but in the specific context vice fingerprinting to identify fraudulent transactions. Large of use for augmenting authentication, providing a state-of- web services can mitigate insecure passwords in part by the-art view and analysis. We summarize and classify 29 using server-side intelligence in the authentication process available methods and their properties; define attack models with \multidimensional" authentication [14], wherein con- relevant to augmenting passwords for user authentication; ventional passwords are augmented by multiple implicit sig- and qualitatively compare them based on stability, repeata- nals collected from the user's device without requiring user bility, resource use, client passiveness, difficulty of spoofing, intervention. We explore the applicability of various finger- and distinguishability offered. printing techniques to strengthening web authentication and evaluate them based on the security benefits they provide. CCS Concepts We aim to identify techniques that can improve security, while being ideally invisible to users and compatible with •Security and privacy ! Authentication; Web appli- existing web browsers, thereby imposing zero cost on us- cation security; ability and deployability. We identify and classify 29 available device fingerprint- Keywords ing mechanisms, primarily browser-based and known, but Device fingerprinting, multi-dimensional authentication, pass- including several network-based methods and others not in words, comparative analysis, comparative criteria the literature; identify and assess their properties suitable for application to augment user authentication; define a se- 1.
    [Show full text]
  • Threatmetrix Whitepaper
    Smart Device Identification for Cloud-Based Fraud Prevention Alisdair Faulkner Chief Products Officer White Paper: Smart Device Identification for Cloud-Based Fraud Prevention Contents Basic Device Identification is no longer enough ........ 3 Times have changed but your Device ID hasn’t .......................................................................... 3 Cookies are Obsolete .................................................................................................................. 5 Device Fingerprints Smudge and Fraudsters Wear Gloves ........................................................ 6 Compromised Devices are Commodities .................................................................................... 7 Smart Device Identification Requirements .................................................................................. 8 Smart versus Basic Device Identification Comparison ................................................................ 9 ThreatMetrix Smart Device Identification ................. 11 Identify Fraudsters and Authenticate Customers ...................................................................... 11 Cookieless Device Fingerprinting .............................................................................................. 12 IP, Browser and Packet Fingerprint Interrogation ..................................................................... 13 Real-time complex attribute matching and confidence scoring ................................................. 15 Man-In-The-Middle/Hidden Proxy
    [Show full text]
  • Web-Based Fingerprinting Techniques
    Web-based Fingerprinting Techniques V´ıtor Bernardo and Dulce Domingos LaSIGE, Faculdade de Ciencias,ˆ Universidade de Lisboa, Lisboa, Portugal Keywords: Browser Fingerprinting, Cross-browser Fingerprinting, Device Fingerprinting, Privacy, Fingerprint. Abstract: The concept of device fingerprinting is based in the assumption that each electronic device holds a unique set of physical and/or logical features that others can capture and use to differentiate it from the whole. Web-based fingerprinting, a particular case of device fingerprinting, allows website owners to differentiate devices based on the set of information that browsers transmit. Depending on the techniques being used, a website can track a device based on its browser features (browser fingerprinting) or based on system settings (cross-browser fingerprinting). The latter allows identification of the device even when more than one browser is used. Several different works have introduced new techniques over the last years proving that fingerprinting can be done in multiple ways, but there is not a consolidated work gathering all of them. The current work identifies known web-based fingerprinting techniques, categorizing them as which ones are browser and which are cross-browser and showing real examples of the data that can be captured with each technique. The study is synthesized in a taxonomy, which provides a clear separation between techniques, making it easier to identify the threats to security and privacy inherent to each one. 1 INTRODUCTION far more upsetting than simple cookies. In most cases, web-based fingerprinting is used to Device fingerprinting is based on the assumption that track users activity in sites and bind a device finger- no two devices are exactly alike and that profiles can print to a user profile (together with its preferences, be created by capturing the emanation patterns sent tastes and interests).
    [Show full text]
  • The Elephant in the Background: a Quantitative Approach to Empower Users Against Web Browser Fingerprinting
    The Elephant in the Background: A Quantitative Approach to Empower Users Against Web Browser Fingerprinting Anonymous Abstract—Tracking users is a ubiquitous practice in the web Furthermore, other researchers have concentrated their ef- today. User activity is recorded on a large scale and analyzed forts on creating new fingerprinting techniques, e.g. by using by various actors to create personalized products, forecast future canvas [24] and audio objects [30] or via CSS [37]. Others behavior, and prevent online fraud. While so far HTTP cookies have significantly improved known techniques with machine have been the weapon of choice, new and more pervasive learning [42] or by extracting fingerprinting features more techniques such as browser fingerprinting are gaining traction. passively via extension activity tracking [36]. Hence, in this paper, we describe how users can be empowered against JavaScript fingerprinting by showing them when, how, The sheer diversity of fingerprinting techniques available and who is tracking them. To this end, we conduct a systematic analysis of various JavaScript fingerprinting tools. Based on this to us begs the question of which techniques are really being analysis, we design and develop FPMON: a light-weight and used and which ones are not? So far, large scale studies have comprehensive fingerprinting monitor that measures and rates only uncovered specific instances of fingerprinting and these JavaScript fingerprinting activity on any given website in real- are over 5-10 years old [1,2]. In particular, we currently lack time. Using FPMON, we evaluate the Alexa 10k most popular a comprehensive view of fingerprinting activity on the web websites to i) study the pervasiveness of JavaScript fingerprinting; today.
    [Show full text]
  • Browser Extension and Login-Leak Experiment
    BROWSER EXTENSION AND LOGIN-LEAK EXPERIMENT IPEN 2017, Vienna Joint work with Nataliia Bielova, Claude Castelluccia Gábor György Gulyás Privatics Team, INRIA http://gulyas.info // @GulyasGG USER TRACKING ON THE WEB 17-06-09 © Gábor György Gulyás 2 The „de-facto” busniess model of the web Advertiser ID=967 User Apples on sale! ID=967 cnn.com 17-06-09 © Gábor György Gulyás 3 Storing the identifier on the client side • Cookies • E-tags – Flash • Last-mod timestamps – HTML5 • HTTP authentication • Caching in files of • HTTP 301 redirect – JavaScript • HSTS caches – CSS – Images (pixel-level) … 17-06-09 © Gábor György Gulyás 4 Browser fingerprinting appears (2010-2012) [3] http://panopticlick.eff.org https://fingerprint.pet-portal.eu • Browser fingerprint • Cross-browser fingp. – Flash/Java required – Device fingerprint (for 95% uniqueness) – No plugins, just JS – Browser dependent – Concept appears later in the wild 17-06-09 © Gábor György Gulyás 5 Fingerprinting penetration (2013-2016) 2013: Alexa TOP 10k. • 20 pages deep • 0,4% adoption (40 sites) • Skype.com, porn and dating • 3 804 less popular sites are tracked Nickiforakis et al.: Cookieless monster: Exploring the ecosystem of web-based device fingerprinting (2013) 2016: Alexa TOP 1M. S. Englehardt, A. Narayanan: Online tracking: A 1-illion-site measurement and analysis (2016) 17-06-09 © Gábor György Gulyás 6 Behavioral fingerprinting You are what you install to you computer? Fonts are good indicators of what is installed. Boda et al.: User Tracking on the Web via Cross-Browser Fingerprinting (2011) Google.com Youtube.com Facebook.com Baidu.com The list of the sites you have Yahoo.com Wikipedia.org visited also describe you well.
    [Show full text]
  • The Elephant in the Background: a Quantitative Approach to Empower Users Against Web Browser Fingerprinting
    EasyChair Preprint № 4473 The Elephant in the Background: A Quantitative Approach to Empower Users Against Web Browser Fingerprinting Julian Fietkau, Kashjap Thimmaraju, Felix Kybranz, Sebastian Neef and Jean-Pierre Seifert EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair. October 26, 2020 The Elephant in the Background: A Quantitative Approach to Empower Users Against Web Browser Fingerprinting Julian Fietkau, Kashyap Thimmaraju∗, Felix Kybranz, Sebastian Neef, Jean-Pierre Seifert Technische Universitat¨ Berlin, Humboldt-Universitat¨ Berlin∗ ffietkau, f.kybranz, [email protected], fkash, [email protected] Abstract—Tracking users is a ubiquitous practice in the web Furthermore, other researchers have concentrated their ef- today. User activity is recorded on a large scale and analyzed forts on creating new fingerprinting techniques, e.g. by using by various actors to create personalized products, forecast future canvas [24] and audio objects [30] or via CSS [37]. Others behavior, and prevent online fraud. While so far HTTP cookies have significantly improved known techniques with machine have been the weapon of choice, new and more pervasive learning [42] or by extracting fingerprinting features more techniques such as browser fingerprinting are gaining traction. passively via extension activity tracking [36]. Hence, in this paper, we describe how users can be empowered against JavaScript fingerprinting by showing them when, how, The sheer diversity of fingerprinting
    [Show full text]
  • Future of Device Fingerprinting
    WHITE PAPER Future of Device Fingerprinting Contents Introduction 1 Limitations of Traditional Device Fingerprinting 2 Device Fingerprinting Evolution 3 How Simility’s Device Recon Works 4 Individual Use Cases 7 Today’s device fingerprinting technology has been made significantly more effective at fighting online fraud with advanced techniques such as fuzzy matching, clustering and predictive modeling. Introduction to Device Fingerprinting For over a decade, a crucial part of fraud detection in the virtual world has been assigning an identity to every laptop, tablet and mobile device that accesses a website or app. Such a fingerprint, often referred as a device fingerprint or device ID, is a representation of hundreds of different device-specific values taken from an end user’s device. Like in the real world, a device fingerprint aids in identification and tracking of bad actors. As a first step to any fraud attempt, fraudsters try to hide their identity or pretend to be many different people when they are, in fact, just one person. For example, a person who owns a local barber shop may want to publish a lot of fake positive reviews about his business and negative reviews about the competitors’ businesses on a review app. Obviously, the person will use a fake name because his customers and competitors know about his business. Also, the business review site probably requires a different email address for each account, so he might enter fake email addresses when setting up multiple fake accounts. Perhaps the review app even requires each account to be from a different IP address and to register a new phone number.
    [Show full text]
  • Browser Fingerprint Coding Methods Increasing the Effectiveness of User Identification in the Web Traffic
    JAISCR, 2020, Vol. 10, No. 4, pp. 243 – 253 10.2478/jaiscr-2020-0016 BROWSER FINGERPRINT CODING METHODS INCREASING THE EFFECTIVENESS OF USER IDENTIFICATION IN THE WEB TRAFFIC 1, 2 3 Marcin Gabryel ∗, Konrad Grzanek , Yoichi Hayashi 1Department of Computer Engineering, Czestochowa University of Technology, al. Armii Krajowej 36, 42-200 Cze¸stochowa, Poland 2Information Technology Institute, University of Social Sciences, 90 - 113 Lodz Clark University, Worcester, MA 01610, USA 3Department of Computer Science, Meiji University, Japan ∗E-mail: [email protected] Submitted: 14th October 2019; Accepted: 29th April 2020 Abstract Web-based browser fingerprint (or device fingerprint) is a tool used to identify and track user activity in web traffic. It is also used to identify computers that are abusing online advertising and also to prevent credit card fraud. A device fingerprint is created by extract- ing multiple parameter values from a browser API (e.g. operating system type or browser version). The acquired parameter values are then used to create a hash using the hash func- tion. The disadvantage of using this method is too high susceptibility to small, normally occurring changes (e.g. when changing the browser version number or screen resolution). Minor changes in the input values generate a completely different fingerprint hash, mak- ing it impossible to find similar ones in the database. On the other hand, omitting these unstable values when creating a hash, significantly limits the ability of the fingerprint to distinguish between devices. This weak point is commonly exploited by fraudsters who knowingly evade this form of protection by deliberately changing the value of device pa- rameters.
    [Show full text]
  • A Systematic Framework for Categorising Iot Device Fingerprinting Mechanisms
    This is a repository copy of Position paper : A systematic framework for categorising IoT device fingerprinting mechanisms. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/169799/ Version: Published Version Proceedings Paper: Yadav, Poonam, Feraudo, Angelo, Arief, Budi et al. (2 more authors) (2020) Position paper : A systematic framework for categorising IoT device fingerprinting mechanisms. In: AIChallengeIoT '20: Proceedings of the 2nd International Workshop on Challenges in Artificial Intelligence and Machine Learning for Internet of Things. Workshop on Challenges in Artificial Intelligence and Machine Learning for Internet of Things, 16 Nov 2020 ACM AIChallengeIoT (Sensys 2020) . Association for Computing Machinery (ACM) , 62–68. https://doi.org/10.1145/3417313.3429384 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Position paper: A systematic framework for categorising IoT device fingerprinting mechanisms Poonam Yadav Angelo Feraudo Budi Arief University of York, UK University of York, UK University of Kent, UK Siamak F.
    [Show full text]
  • Mobile Device Fingerprinting and Unique User Identification Media and Entertainment (M&E)
    White Paper Mobile Device Fingerprinting and Unique User Identification Media and Entertainment (M&E) Table of Contents Executive Summary 01 Introduction 02 Solution Overview 02 Scenario 1: User identification and tracking for mobile web (cookie-less approach) 03 Scenario 2: User identification and tracking with SDK 05 Conclusion 07 Executive Summary The principles of user or device tracking in the online world and the mobile world are basically similar. Identifying and tracking user profiles without Personally Identifiable Information (PII) is something being undertaken by a number of the entities in the delivery of targeted mobile ad campaigns. A device fingerprint is a set of information collected about a device or user profile for the purpose of audience-based content or ad targeting. Although the cookies are turned off, it is still feasible to use fingerprints for complete or partial identification of individual users or devices. Device fingerprinting, sometimes known as digital fingerprinting, claims that it can assist businesses to enhance online or mobile advertising and diminish fraud risk. 01 Introduction The purpose of this whitepaper is to outline various scenarios and implementation approaches for mobile device fingerprinting, unique user identification, and user tracking to: • Get insights into mobile campaign performance events such as clicks and installs • Track which app was installed and which user installed the app • Track users’ behavior and browsing patterns to enhance your content or ad recommendation engine Solution Overview The challenge The key challenge is to uniquely identify a mobile user. Mobile users access content through both native applications and mobile web. On mobile devices, websites and applications are regarded as disparate domains.
    [Show full text]
  • Iot Device Fingerprint Using Deep Learning
    Accepted for publication in 2018 IEEE International Conference on Internet of Things and Intelligence System (IOTAIS) Please refer DOI: 10.1109/IOTAIS.2018.8600824 for final manuscript IoT Device Fingerprint using Deep Learning Sandhya Aneja Nagender Aneja Md Shohidul Islam Faculty of Integrated Technologies Institute of Applied Data Analytics Faculty of Integrated Technologies Universiti Brunei Darussalam Universiti Brunei Darussalam Universiti Brunei Darussalam Brunei Darussalam Brunei Darussalam Brunei Darussalam [email protected] [email protected] [email protected] Abstract—Device Fingerprinting (DFP) is the identification extract IAT that is the time interval between consecutively of a device without using its network or other assigned received packets. In this paper, we worked on the DFP identities including IP address, Medium Access Control using IAT to create IAT fingerprint using deep learning. (MAC) address, or International Mobile Equipment Identity (IMEI) number. DFP identifies a device using information IAT is unique for each device due to the different hardware from the packets which the device uses to communicate over and software used for the device and thus is more useful in the network. Packets are received at a router and processed the wireless networks and Internet of Things (IoT) devices to extract the information. In this paper, we worked on the where communication is highly vulnerable due to identity DFP using Inter Arrival Time (IAT). IAT is the time interval issues. between the two consecutive packets received. This has been observed that the IAT is unique for a device because of This work presents a novel idea of DFP by plotting the different hardware and the software used for the device.
    [Show full text]