Core 300 Is an Interdisciplinary Study of Modes of Knowing (Epistemology) Characteristic of Western Civilization

Total Page:16

File Type:pdf, Size:1020Kb

Core 300 Is an Interdisciplinary Study of Modes of Knowing (Epistemology) Characteristic of Western Civilization OVERVIEW OF CORE 300: WESTERN CIVILIZATION Core 300 is an interdisciplinary study of modes of knowing (epistemology) characteristic of Western civilization. This class emphasizes the important and continuing impact that human reason (a means of inquiry) and rationalism (a philosophical position) have had in shaping Western intellectual traditions and our contemporary world. The foundations of these traditions were laid by brilliant thinkers and artists of ancient Greece; they were modified, or at least interpreted for the rising Western world, by the Romans; some of them were absorbed, some were rejected, in the growing ascendancy of the Christian Church; and a renewed knowledge of them was achieved by thinkers like Thomas Aquinas during the Middle Ages. Rationalism was fully revived in Western Europe during the Renaissance, when classical Greek knowledge was rediscovered by the Christian West, which sought at first to balance the claims of rationalism with those of faith. During this period other intellectual movements developed that revived the great artistic accomplishments of the ancient Greeks and Romans as normative. Humanism drew its meaning from the study of classical writing and art, and from these sources developed renewed appreciation for human accomplishments and capabilities. Empiricism emphasized experience, observable data, and experimentation, the foundations for the later burgeoning of modern science. The scientific method was successful in understanding the physical world, while the Industrial Revolution gave impetus to many new technologies for manipulating it. By the Eighteenth Century, often called the Age of Reason, rationalism and scientific inquiry had been elevated to a position of dominance. During the latter part of the Nineteenth Century and the early years of the Twentieth Century, rationalism and empiricism became prevalent in the Western world. This Enlightenment worldview characteristically affirmed that people are reasoning beings who live in an orderly universe, which they can understand and manipulate. Other disciplines, impressed with the success of the sciences, became convinced that reason, reinforced by scientific method, could solve all human problems. This optimistic view of humanity and the world has been radically challenged during the Twentieth and Twenty-first Centuries. A new appreciation for the role of the knower has raised challenges to traditional views of truth and objective knowing as having an existence independent of the knower. Encouraged by such thinkers as Kierkegaard, Nietzsche, and Freud, and devastated by experiences of war, new criticisms of the assumptions and affirmations of rationalism and empiricism emerged. These voices and interpretations find expression in many currents of contemporary life, including post-modernism, multiculturalism, and feminism. The “rationalist tradition,” with its confidence in a knowable universe, a reason-based humanity capable of free moral and intellectual choices, and a faith that the physical world can be cultivated to human benefit, has played a significant role in the development of Western civilization. In light of the crisis currently confronting rationalism, this study of human reason—including its limitations and redefinitions—is designed to enable Whitworth students and faculty to live responsibly and thoughtfully in the present age. THE RATIONALIST CREDO – 1. The universe is orderly. 2. The universe is knowable. 3. The universe can be known best by human reason. 4. The universe can be manipulated for human benefit by means of reason and its tools. COURSE OBJECTIVES: 1. An understanding of rationalism—and the various criticisms of that tradition—as represented by major thinkers and concepts. 2. An understanding of the relationship of the rationalist tradition to the problems and prospects of the present age. 3. An increased ability to think critically. 4. An improvement of the student’s written communication skills. 5. An enhanced ability to read and understand primary source texts of great thinkers throughout the history of Western thought. 6. An examination of one’s own worldview by comparing and contrasting it with major thinkers from the past. 7. An acquaintance with the vocabulary and methods used by philosophers, scientists and thinkers of several eras of Western history. .
Recommended publications
  • The Ten Lenses of Philosophical Inquiry Philosophical Inquiry Research Project1
    The Ten Lenses of Philosophical Inquiry Philosophical Inquiry Research Project1 The real voyage of discovery consists not in seeking new landscapes, but in having new eyes. – Marcel Proust A huge part of Philosophical Inquiry is learning how to see the world with new eyes. To accomplish this goal, you will be introduced to the “ten lenses of philosophical inquiry.” The ten lenses of philosophical inquiry are tools to help us critically engage with, and analyze ourselves, and the world around us. Like a pair of glasses, the ten lenses help to change our perception and give us the power to re-examine our reality. In this philosophical inquiry research project you will get introduced to each of the ten lenses so that you become comfortable using the lenses both inside and out of our class. You will also learn more about a philosopher, their philosophy and the lens of philosophical inquiry that they are most clearly connected to. Focus Question What are the ten lenses of philosophical inquiry, and what are some examples of how they are connected to the philosophies of different philosopher’s throughout history? Philosophical Inquiry Research Process 1) QUESTION - Develop the philosophical questions that you will use to drive your inquiry. 2) PLAN – Determine the types of sources that you will need to answer your questions. 3) GATHER EVIDENCE – Gather the information (textual, visual, quantitative, etc.) you need to explore and answer your questions. 4) ANALYZE – Analyze the answers to your questions, making sure to keep in mind the larger focus question guiding this inquiry. 5) COMMUNICATE CONCLUSIONS – Use evidence and reasons to write an organized (logically sequenced) explanation to the inquiry’s topic/focus question.
    [Show full text]
  • A Feminist Epistemological Framework: Preventing Knowledge Distortions in Scientific Inquiry
    Claremont Colleges Scholarship @ Claremont Scripps Senior Theses Scripps Student Scholarship 2019 A Feminist Epistemological Framework: Preventing Knowledge Distortions in Scientific Inquiry Karina Bucciarelli Follow this and additional works at: https://scholarship.claremont.edu/scripps_theses Part of the Epistemology Commons, Feminist Philosophy Commons, and the Philosophy of Science Commons Recommended Citation Bucciarelli, Karina, "A Feminist Epistemological Framework: Preventing Knowledge Distortions in Scientific Inquiry" (2019). Scripps Senior Theses. 1365. https://scholarship.claremont.edu/scripps_theses/1365 This Open Access Senior Thesis is brought to you for free and open access by the Scripps Student Scholarship at Scholarship @ Claremont. It has been accepted for inclusion in Scripps Senior Theses by an authorized administrator of Scholarship @ Claremont. For more information, please contact [email protected]. A FEMINIST EPISTEMOLOGICAL FRAMEWORK: PREVENTING KNOWLEDGE DISTORTIONS IN SCIENTIFIC INQUIRY by KARINA MARTINS BUCCIARELLI SUBMITTED TO SCRIPPS COLLEGE IN PARTIAL FULFILLMENT OF THE DEGREE OF BACHELOR OF ARTS PROFESSOR SUSAN CASTAGNETTO PROFESSOR RIMA BASU APRIL 26, 2019 Bucciarelli 2 Acknowledgements First off, I would like to thank my wonderful family for supporting me every step of the way. Mamãe e Papai, obrigada pelo amor e carinho, mil telefonemas, conversas e risadas. Obrigada por não só proporcionar essa educação incrível, mas também me dar um exemplo de como viver. Rafa, thanks for the jokes, the editing help and the spontaneous phone calls. Bela, thank you for the endless time you give to me, for your patience and for your support (even through WhatsApp audios). To my dear friends, thank you for the late study nights, the wild dance parties, the laughs and the endless support.
    [Show full text]
  • Principles of Scientific Inquiry
    Chapter 2 PRINCIPLES OF SCIENTIFIC INQUIRY Introduction This chapter provides a summary of the principles of scientific inquiry. The purpose is to explain terminology, and introduce concepts, which are explained more completely in later chapters. Much of the content has been based on explanations and examples given by Wilson (1). The Scientific Method Although most of us have heard, at some time in our careers, that research must be carried out according to “the scientific method”, there is no single, scientific method. The term is usually used to mean a systematic approach to solving a problem in science. Three types of investigation, or method, can be recognized: · The Observational Method · The Experimental (and quasi-experimental) Methods, and · The Survey Method. The observational method is most common in the natural sciences, especially in fields such as biology, geology and environmental science. It involves recording observations according to a plan, which prescribes what information to collect, where it should be sought, and how it should be recorded. In the observational method, the researcher does not control any of the variables. In fact, it is important that the research be carried out in such a manner that the investigations do not change the behaviour of what is being observed. Errors introduced as a result of observing a phenomenon are known as systematic errors because they apply to all observations. Once a valid statistical sample (see Chapter Four) of observations has been recorded, the researcher analyzes and interprets the data, and develops a theory or hypothesis, which explains the observations. The experimental method begins with a hypothesis.
    [Show full text]
  • Experiential & Inquiry-Based Learning with Youth in Non-Formal Settings
    Working with youth in non-formal settings ensuring rich enrichment Experiential & Inquiry-based Learning with Youth in Non-formal Settings 4-H Science learning for youth can be deepened by building inquiry-based learning methods into programs and curricula. For over two decades of educational reform, science education has focused on inquiry as a method for learning and doing natural science in formal classrooms. When used to make sense of the natural world from within the discipline of science, inquiry-based learning is ‘scientific inquiry. ’ Non-formal program designers and practitioners are faced with decisions about which scientific inquiry methods to transfer from the formal classroom to the non-formal setting, which methods to adapt to better fit the non-formal learning needs of youth, and how to best prepare adults to facilitate scientific inquiry with youth. Why is this thinking important to 4-H staff and volunteers? Evaluation results indicate that inquiry-based methods support youth in Key Concepts their learning. Minner et al (2010) reviewed 138 evaluation studies and found that inquiry-based approaches in the science, engineering, technology ,and math Experiential learning: content areas had the largest effect sizes, or made the greatest positive Constructing learning through hands-on experiences that are difference, when there was an emphasis on active learning and involvement in highly social in nature. the investigative process (asking questions, designing investigations, collecting data, drawing conclusions, communicating findings). Hands-on experiences with Inquiry-based learning: Constructing learning through natural phenomena were also found to be associated with increased conceptual hands-on experiences that provide learning in the science content investigated.
    [Show full text]
  • The Stoics and the Practical: a Roman Reply to Aristotle
    DePaul University Via Sapientiae College of Liberal Arts & Social Sciences Theses and Dissertations College of Liberal Arts and Social Sciences 8-2013 The Stoics and the practical: a Roman reply to Aristotle Robin Weiss DePaul University, [email protected] Follow this and additional works at: https://via.library.depaul.edu/etd Recommended Citation Weiss, Robin, "The Stoics and the practical: a Roman reply to Aristotle" (2013). College of Liberal Arts & Social Sciences Theses and Dissertations. 143. https://via.library.depaul.edu/etd/143 This Thesis is brought to you for free and open access by the College of Liberal Arts and Social Sciences at Via Sapientiae. It has been accepted for inclusion in College of Liberal Arts & Social Sciences Theses and Dissertations by an authorized administrator of Via Sapientiae. For more information, please contact [email protected]. THE STOICS AND THE PRACTICAL: A ROMAN REPLY TO ARISTOTLE A Thesis Presented in Partial Fulfillment of the Degree of Doctor of Philosophy August, 2013 BY Robin Weiss Department of Philosophy College of Liberal Arts and Social Sciences DePaul University Chicago, IL - TABLE OF CONTENTS - Introduction……………………..............................................................................................................p.i Chapter One: Practical Knowledge and its Others Technê and Natural Philosophy…………………………….....……..……………………………….....p. 1 Virtue and technical expertise conflated – subsequently distinguished in Plato – ethical knowledge contrasted with that of nature in
    [Show full text]
  • Notes on Hume's Problem of Induction 1748 - Inquiry Concerning Human Understanding
    1740 - Treatise of Human Nature Notes on Hume's Problem of Induction 1748 - Inquiry Concerning Human Understanding Recall: Subject of confirmation = How scientific claims are justified. This assumes that they are capable of justification in the first place. Hume asks: Is there a rational basis for inductive inferences? Hume response: No! Consequence: To the extent that scientific claims are based on inductive inferences, they cannot be justified. Example: All observed ravens are black. Hume asks, Can we ever be justified in believing the conclusion? All ravens are black. Two types of objects of knowledge, according to Hume (I) Relations of ideas = Products of deductive (truth-preserving) Ex: 2 + 2 = 4 inferences; negation entails a contradiction. (II) Matters of fact = Products of inductive inferences; negation does Ex: All ravens are black. not entail a contradiction. Outline of Hume's Argument (1) Matters of fact can only be known through experience ("a posteriori"). (2) Therefore matters of fact can only be justified by recourse to experience. (3) But any attempt to do so is circular. ∴ There is no justification for inductive inferences. ASIDE 1. Hume is not just saying that we can never be certain about inductive inferences (i.e., we can never be 100% certain that all ravens are black). This would be uncontentious: Most people would agree that there's always room for error in making an inductive inference. However, most people would at the same time claim that we are justified in making (some) inductive inferences, even though they aren't 100% guaranteed to work (i.e., we think there are standards by which we can judge good inductive inferences from bad ones).
    [Show full text]
  • An Introduction to Philosophy
    An Introduction to Philosophy W. Russ Payne Bellevue College Copyright (cc by nc 4.0) 2015 W. Russ Payne Permission is granted to copy, distribute and/or modify this document with attribution under the terms of Creative Commons: Attribution Noncommercial 4.0 International or any later version of this license. A copy of the license is found at http://creativecommons.org/licenses/by-nc/4.0/ 1 Contents Introduction ………………………………………………. 3 Chapter 1: What Philosophy Is ………………………….. 5 Chapter 2: How to do Philosophy ………………….……. 11 Chapter 3: Ancient Philosophy ………………….………. 23 Chapter 4: Rationalism ………….………………….……. 38 Chapter 5: Empiricism …………………………………… 50 Chapter 6: Philosophy of Science ………………….…..… 58 Chapter 7: Philosophy of Mind …………………….……. 72 Chapter 8: Love and Happiness …………………….……. 79 Chapter 9: Meta Ethics …………………………………… 94 Chapter 10: Right Action ……………………...…………. 108 Chapter 11: Social Justice …………………………...…… 120 2 Introduction The goal of this text is to present philosophy to newcomers as a living discipline with historical roots. While a few early chapters are historically organized, my goal in the historical chapters is to trace a developmental progression of thought that introduces basic philosophical methods and frames issues that remain relevant today. Later chapters are topically organized. These include philosophy of science and philosophy of mind, areas where philosophy has shown dramatic recent progress. This text concludes with four chapters on ethics, broadly construed. I cover traditional theories of right action in the third of these. Students are first invited first to think about what is good for themselves and their relationships in a chapter of love and happiness. Next a few meta-ethical issues are considered; namely, whether they are moral truths and if so what makes them so.
    [Show full text]
  • Turns in the Evolution of the Problem of Induction*
    CARL G. HEMPEL TURNS IN THE EVOLUTION OF THE PROBLEM OF INDUCTION* 1. THE STANDARD CONCEPTION: INDUCTIVE "INFERENCE" Since the days of Hume's skeptical doubt, philosophical conceptions of the problem of induction and of ways in which it might be properly solved or dissolved have undergone a series of striking metamor- phoses. In my paper, I propose to examine some of those turnings, which seem to me to raise particularly important questions about the nature of empirical knowledge and especially scientific knowledge. Many, but by no means all, of the statements asserted by empirical science at a given time are accepted on the basis of previously established evidence sentences. Hume's skeptical doubt reflects the realization that most of those indirectly, or inferentially, accepted assertions rest on evidence that gives them no complete, no logically conclusive, support. This is, of course, the point of Hume's obser- vation that even if we have examined many occurrences of A and have found them all to be accompanied by B, it is quite conceivable, or logically possible, that some future occurrence of A might not be accompanied by B. Nor, we might add, does our evidence guarantee that past or present occurrences of A that we have not observed were- or are- accompanied by B, let alone that all occurrences ever of A are, without exception, accompanied by B. Yet, in our everyday pursuits as well as in scientific research we constantly rely on what I will call the method of inductive ac- ceptance, or MIA for short: we adopt beliefs, or expectations, about empirical matters on logically incomplete evidence, and we even base our actions on such beliefs- to the point of staking our lives on some of them.
    [Show full text]
  • The Inquiry Wheel, an Alternative to the Scientific Method. a View of The
    Chemical Education Today Reports from Other Journals The Inquiry Wheel, an Alternative to the Scientific Method A View of the Science Education Research Literature by William R. Robinson For many years I have felt that the scientific method as entific inquiry emerged and led to the description of the presented in many textbooks was not how my colleagues in inquiry wheel illustrated in Figure 1 and discussed below. chemistry did research. Even so, when I wrote a general However, before we look at the inquiry wheel, I think chemistry text I was told to put in a description of the sci- it worth noting that the majority of the scientists interviewed entific method because it was expected. Now, Reiff, (38 of 52) identified the most important aspect of an in- Harwood, and Phillipson have developed a more satisfac- vestigation as being literature based. To them a worthwhile tory model of scientific inquiry, the inquiry wheel, based on investigation was one that crossed the boundary from the information gathered from practicing scientists. This model known to the unknown and a knowledge of the literature is described in their paper “A Scientific Method Based upon is important in identifying that boundary. Research Scientists’ Conceptions of Scientific Inquiry” (1) based on interview data described in “Scientists’ Concep- Stages of Scientific Inquiry tions of Scientific Inquiry: Voices from the Front” (2). As a result of their interviews (2), the investigators de- The informants in this research were 52 science faculty scribe the process used by scientists as they pursue research members in nine science departments (anthropology, biol- as a wheel with questions at the hub and various stages of ogy, chemistry, geography, geology, medical sciences, physics, the inquiry in a circular arrangement around the hub (1).
    [Show full text]
  • SCIENTIFIC METHOD NOTES Modern Scientific Inquiry Or Science
    SCIENTIFIC METHOD NOTES Modern scientific inquiry or science (from scientia , Latin for knowledge) is generally attributed to the historical contributions of Galileo Galilei and Roger Bacon. However, some historians believe that their practices were inspired by earlier Islamic tradition. In spite of the rich human tradition of scientific inquiry, today there is no single or universal method of performing science. According to the National Science Teachers Association, science is “characterized by the systematic gathering of information through various forms of direct and indirect observations and the testing of this information by methods including, but not limited to, experimentation.” Although this definition is helpful in explaining the process of science, it does not specify a list of experimental steps that one should logically progress through to perform an experiment. (An experiment can be defined as an organized series of steps used to test a probable solution to a problem, commonly called a hypothesis.) Despite the absence of a standard scientific method, there is a generally agreed upon model that describes how science operates. Steps of the Scientific Method 1. State the problem: What is the problem? This is typically stated in a question format. EXAMPLE: Will taking one aspirin per day for 60 days decrease blood pressure in females ages 12-14? 2. Research the problem: The researcher will typically gather information on the problem. They may read accounts and journals on the subject, or be involved in communications with other scientists. EXAMPLE: Some people relate stories to doctors that they feel relief from high blood pressure after taking one aspirin per day.
    [Show full text]
  • Stoicism a School of Thought That Flourished in Greek and Roman
    Stoicism A school of thought that flourished in Greek and Roman antiquity. It was one of the loftiest and most sublime philosophies in the record of Western civilization. In urging participation in the affairs of man, Stoics have always believed that the goal of all inquiry is to provide man with a mode of conduct characterized by tranquillity of mind and certainty of moral worth. Nature and scope of Stoicism For the early Stoic philosopher, as for all the post-Aristotelian schools, knowledge and its pursuit are no longer held to be ends in themselves. The Hellenistic Age was a time of transition, and the Stoic philosopher was perhaps its most influential spokesman. A new culture was in the making. The heritage of an earlier period, with Athens as its intellectual leader, was to continue, but to undergo many changes. If, as with Socrates, to know is to know oneself, rationality as the sole means by which something outside of the self might be achieved may be said to be the hallmark of Stoic belief. As a Hellenistic philosophy, Stoicism presented an ars vitae, a way of accommodation for people to whom the human condition no longer appeared as the mirror of a universal, calm, and ordered existence. Reason alone could reveal the constancy of cosmic order and the originative source of unyielding value; thus, reason became the true model for human existence. To the Stoic, virtue is an inherent feature of the world, no less inexorable in relation to man than are the laws of nature. The Stoics believed that perception is the basis of true knowledge.
    [Show full text]
  • The Four Stages of the Research (Inquiry) Process the Research (Inquiry) Process
    The Four Stages of the Research (Inquiry) Process The Research (Inquiry) Process Basically, the stage where you figure out what you're going to do! Stage 1: Exploring • What do you know already (prior knowledge)about your topic? • What keywords are related to this topic (it's okay to use wikipedia at this stage)? • After gaining some background knowledge on your topic, develop key questions that need to be answered • Narrow your ideas further to a focus question/argument and be ready to share with your teacher Create a folder for the project, inserting a copy of the assignment and noting the due date(s). Keep your brainstorming (thought webs, mind maps, etc.) definitions of key terms, rough notes, as proof of your process work. Did it on the computer? Save it to a USB, Cloud, moodle, or folder! Basically, the stage where you access the resources necessary to make it all happen! Stage 2: Investigating • confirm the key words necessary for successful searches (this is where exploring should have helped you out) to find support and sources for your focus/argument • gather a variety of print and non-print, academic, (maybe even peer reviewed) sources; remember to note citation information, incl. date accessed • use the library web site to access EBSCO, Britannica, Historica, etc. to begin academic research • fine-tune (or narrow) your focus question/argument as you investigate further During this stage you may have a conference with your teacher. Keep notes during the session and add them to your folder. Your teacher may ask to see what notes you have on sources so far.
    [Show full text]