Network Medicine — from Obesity to the “Diseasome” Albert-László Barabási, Ph.D

Total Page:16

File Type:pdf, Size:1020Kb

Network Medicine — from Obesity to the “Diseasome” Albert-László Barabási, Ph.D T h e new england journal o f medicine vided by the primary physician faced with a young, cal and research approaches. Pediatr Infect Dis J 2003;22:Suppl: S58­S65. distressed infant and anxious parents. Withhold­ 8. Martinez FD. Respiratory syncytial virus bronchiolitis and ing therapy is much more difficult than giving it. the pathogenesis of childhood asthma. Pediatr Infect Dis J 2003; 22:Suppl:S76­S82. No potential conflict of interest relevant to this article was re­ 9. Behrendt CE, Decker MD, Burch DJ, Watson PH. Interna­ ported. tional variation in the management of infants hospitalized with respiratory syncytial virus. Eur J Pediatr 1998;157:215­20. From the Department of Infectious Diseases, University of Roch- 10. Christakis DA, Cowan CA, Garrison MM, Molteni R, Mar­ ester School of Medicine and Dentistry, Rochester, NY. cuse E, Zerr DM. Variation in inpatient diagnostic testing and management of bronchiolitis. Pediatrics 2005;115:878­84. 1. Knapp VJ. Major medical explanations for high infant mor­ 11. Rowe BH, Spooner C, Ducharme FM, Bretzlaff JA, Bota GW. tality in nineteenth­century Europe. Can Bull Med Hist 1998;15: Early emergency department treatment of acute asthma with 317­36. systemic corticosteroids. Cochrane Database Syst Rev 2001;1: 2. Leader S, Kohlhase K. Recent trends in severe respiratory CD002178. syncytial virus (RSV) among US infants, 1997­2000. J Pediatr 12. Corneli HM, Zorc JJ, Majahan P, et al. A multicenter, random­ 2003;143:Suppl:S127­S132. ized, controlled trial of dexamethasone for bronchiolitis. N Engl 3. Shay DK, Holman RC, Newman RD, Liu LL, Stout JW, Ander­ J Med 2007;357:331­9. son LJ. Bronchiolitis­associated hospitalizations among US chil­ 13. Schuh S, Coates AL, Binnie R, et al. Efficacy of oral dexa­ dren, 1980­1996. JAMA 1999;282:1440­6. methasone in outpatients with acute bronchiolitis. J Pediatr 4. Falsey AR, Hennessey PA, Formica MA, Cox C, Walsh EE. 2002;140:27­32. Respiratory syncytial virus infection in elderly and high­risk 14. Parrott RH, Kim HW, Arrobio JO, et al. Epidemiology of adults. N Engl J Med 2005;352:1749­59. respiratory syncytial virus infection in Washington, D.C. II. Infec­ 5. American Academy of Pediatrics Subcommittee on Diagno­ tion and disease with respect to age, immunologic status, race sis and Management of Bronchiolitis. Diagnosis and management and sex. Am J Epidemiol 1973;98:289­300. of bronchiolitis. Pediatrics 2006;118:1774­93. 15. Nicholson KG, McNally T, Silverman M, Simons P, Stockton 6. Management of bronchiolitis in infants and children. Evi­ JD, Zambon MC. Rates of hospitalisation for influenza, respira­ dence report/technology assessment. No. 69. Rockville, MD: tory syncytial virus and human metapneumovirus among infants Agency for Healthcare Research and Quality, January 2003:1­5. and young children. Vaccine 2006;24:102­8. (AHRQ publication no. 03­E009.) 16. Gern JE. Mechanisms of virus­induced asthma. J Pediatr 2003; 7. Openshaw PJ, Dean GS, Culley FJ. Links between respira­ 142:Suppl:S9­S14. tory syncytial virus bronchiolitis and childhood asthma: clini­ Copyright © 2007 Massachusetts Medical Society. Network Medicine — From Obesity to the “Diseasome” Albert-László Barabási, Ph.D. A recent study reported that among people who Study, making use of the fact that the participants carried a single copy of the high­risk allele for had been asked to name their friends to facilitate the FTO gene, which is associated with fat mass follow­up in the study. The authors observed that and obesity, the risk of obesity increased by 30%. when two persons perceived each other as friends, The risk of obesity increased by 67% among peo­ if one friend became obese during a given time ple who carried two alleles, and on average they interval, the other friend’s chances of following gained 3.0 kg (6.6 lb) or more.1 Given that ap­ suit increased by 171%. Among pairs of adult sib­ proximately one sixth of the population of Euro­ lings, if one sibling became obese, the chance pean descent is homozygous for this allele, this that the other would become obese increased by link between the FTO gene and obesity appears 40%. The results of this study also indicate that to be one of the strongest genotype–phenotype obesity is clustered in communities. For example, associations detected by modern genome­screen­ the risk that the friend of a friend of an obese ing techniques. person would be obese was about 20% higher in That obesity has a genetic component is not the observed network than in a random network; surprising: researchers have long known that it this effect vanished only by the fourth degree of often runs in families. In this issue of the Journal, separation. Christakis and Fowler suggest that friends have In the past 7 years, our understanding of net­ an even more important effect on a person’s risk works has undergone a revolution because of the of obesity than genes do.2 The authors recon­ emergence of a new array of theoretical tools structed a social network showing the ties between and techniques for mapping out real networks. friends, neighbors, spouses, and family members These advances have included some surprises in­ among participants of the Framingham Heart dicating that most real networks in technologi­ 404 n engl j med 357;4 www.nejm.org july 26, 2007 Downloaded from www.nejm.org on July 27, 2007 . For personal use only. No other uses without permission. Copyright © 2007 Massachusetts Medical Society. All rights reserved. editorials cal, social, and biologic systems have common gins. Human diseases, therefore, themselves form designs that are governed by simple and quanti­ a network in which two diseases are connected fiable organizing principles.3 The growing inter­ if they share at least one gene.7 In this disease est in interconnectedness has brought into focus network, obesity has links to seven diseases, in­ an often ignored issue: networks pervade all as­ cluding asthma, lipodystrophy, and glioblastoma pects of human health. One example of this trend (Fig. 1). Thus, the network concept reveals a num­ involves social networks and their impact on the ber of surprising connections between diseases, spread of obesity or pathogens — from influenza forcing us to rethink the way in which we classify to the severe acute respiratory syndrome or the hu­ and separate them. man immunodeficiency virus. The role of neural In the long run, networks may affect all as­ networks in various psychiatric and neurodegen­ pects of medical research and practice.8 Indeed, erative diseases is another example. In fact, net­ the fundamental question of where function lies work analysis is poised to play the biggest role within a cell is slowly shifting from a single­ at the cellular level,4 since most cellular compo­ minded focus on genes to the understanding that nents are connected to each other through intri­ behind each cellular function there is a discerni­ cate regulatory, metabolic, and protein–protein ble network module consisting of genes, transcrip­ interactions. Because of these many functional tion factors, RNAs, enzymes, and metabolites. links, the defects of various genes spread through­ This understanding forces us to view diseases as out the intracellular network, affecting the activ­ the breakdown of selected functional modules ity of genes that otherwise carry no defects. rather than as single or small groups of genes. To understand various disease mechanisms, Given the many components of such functional it is not sufficient to know the precise list of modules, there are different paths to disease­ “disease genes”; instead, we should try to map inducing systems failure; this explains why often out the detailed wiring diagram of the various many genes are linked to the same disease pheno­ cellular components that are influenced by type. Similarly, the effects of drugs are not lim­ these genes and gene products. Such network­ ited to the molecules to which they directly bind; based thinking has already provided insights into instead, these effects can spread throughout the the pathogenesis of several diseases. For exam­ cellular network in which they act, causing un­ ple, a recent study suggested that 18 of the 23 wanted side effects. Therefore, drug side effects genes known to be associated with ataxia are are inherently network phenomena. part of a highly interlinked subnetwork5; in an­ Naturally, network­based thinking may account other example, a reverse­engineered subnetwork for the environmental and social influences on indicated that the androgen­receptor gene might disease as well. In this context, we must under­ be used to detect the aggressiveness of primary stand the human interactions encompassing so­ prostate cancer.6 cial and family links, proximity­based contacts, The existence of intricate molecular links be­ and transportation networks.9 For example, recent tween subcellular components and disease genes advances in the study of sexual networks have raises another possibility: that is, diseases may led to new protocols for drug dispersion. These not be as independent of each other as medical protocols are expected to be more efficient in practitioners currently consider them to be. For combating the acquired immunodeficiency syn­ example, could a genetic origin account for the drome in underdeveloped countries than current fact that obesity is a risk factor for diabetes? A protocols that are based on social need.10 quick look at the list of genes associated with The Human Genome Project has revolution­ these two diseases indicates that several genes, ized gene hunting, leading to an explosion in including ectoenzyme nucleotide pyrophosphate the number of detected associations between phosphodiesterase (ENPP1), peroxisome­prolifera­ genes and disease phenotypes. The beauty of ge­ tor–activated receptor γ (PPARγ), and — more re­ nomewide association studies lies in their ability cently — FTO, may be implicated in both diseas­ to quantify their own limitations.
Recommended publications
  • Network-Based Drug Repurposing for Novel Coronavirus 2019-Ncov/SARS-Cov-2 Yadi Zhou1,Yuanhou1,Jiayushen1,Yinhuang1, William Martin 1 and Feixiong Cheng1,2,3
    Zhou et al. Cell Discovery (2020) 6:14 Cell Discovery https://doi.org/10.1038/s41421-020-0153-3 www.nature.com/celldisc ARTICLE Open Access Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2 Yadi Zhou1,YuanHou1,JiayuShen1,YinHuang1, William Martin 1 and Feixiong Cheng1,2,3 Abstract Human coronaviruses (HCoVs), including severe acute respiratory syndrome coronavirus (SARS-CoV) and 2019 novel coronavirus (2019-nCoV, also known as SARS-CoV-2), lead global epidemics with high morbidity and mortality. However, there are currently no effective drugs targeting 2019-nCoV/SARS-CoV-2. Drug repurposing, representing as an effective drug discovery strategy from existing drugs, could shorten the time and reduce the cost compared to de novo drug discovery. In this study, we present an integrative, antiviral drug repurposing methodology implementing a systems pharmacology-based network medicine platform, quantifying the interplay between the HCoV–host interactome and drug targets in the human protein–protein interaction network. Phylogenetic analyses of 15 HCoV whole genomes reveal that 2019-nCoV/SARS-CoV-2 shares the highest nucleotide sequence identity with SARS-CoV (79.7%). Specifically, the envelope and nucleocapsid proteins of 2019-nCoV/SARS-CoV-2 are two evolutionarily conserved regions, having the sequence identities of 96% and 89.6%, respectively, compared to SARS-CoV. Using network proximity analyses of drug targets and HCoV–host interactions in the human interactome, we prioritize 16 potential anti-HCoV repurposable drugs (e.g., melatonin, mercaptopurine, and sirolimus) that are further validated by enrichment analyses of drug-gene signatures and HCoV-induced transcriptomics data in human cell lines.
    [Show full text]
  • The Network Behind the Cosmic Web
    The Network Behind the Cosmic Web B. C. Coutinho,1 Sungryong Hong,2, 3 Kim Albrecht,1 Arjun Dey,2 Albert-L´aszl´o Barab´asi,1, 4, 5, 6 Paul Torrey,7, 8 Mark Vogelsberger,9 and Lars Hernquist9 1Center for Complex Network Research and Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA 2National Optical Astronomy Observatory, 950 N. Cherry Ave., Tucson, AZ 85719 3The University of Texas at Austin, Austin, TX 78712, USA 4Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA 5Department of Medicine and Channing Division of Network Medicine, Brigham and Womens Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA 6Center for Network Science, Central European University, 1051, Budapest, Hungary 7MIT Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Ave. 37-241, Cambridge MA 02139, USA 8California Institute of Technology, Pasadena, CA 911, USA 9Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA The concept of the cosmic web, viewing the Universe as a set of discrete galaxies held together by gravity, is deeply engrained in cosmology. Yet, little is known about the most effective construction and the characteristics of the underlying network. Here we explore seven network construction algorithms that use various galaxy properties, from their location, to their size and relative velocity, to assign a network to galaxy distributions provided by both simulations and observations. We find that a model relying only on spatial proximity offers the best correlations between the physical characteristics of the connected galaxies. We show that the properties of the networks generated from simulations and observations are identical, unveiling a deep universality of the cosmic web.
    [Show full text]
  • Analysis of Vaccine-Related Networks Using Semantic MEDLINE and the Vaccine Ontology
    Analysis of Vaccine-related Networks using Semantic MEDLINE and the Vaccine Ontology Yuji Zhang1,*, Cui Tao1, Yongqun He2, Pradip Kanjamala1, Hongfang Liu1 1 Department of Health Sciences Research, Mayo College of Medicine, Rochester, MN 55905, USA 2Unit of Laboratory of Animal Medicine, University of Michigan, Ann Arbor, MI 48109, USA ABSTRACT medicines and vaccines were developed based on previ- A major challenge in the vaccine research has been to ous marketed products. This suggested that drug reposi- identify important vaccine-related networks and logically tioning has drawn great attention from the both industry explain the results. In this paper, we showed that network- and academic institutes (Graul, Sorbera et al. 2010). based analysis of vaccine-related networks can discover However, many of these drug repositioning have been the underlying structure information consistent with that serendipitous discoveries (Ashburn and Thor 2004) or on captured by the Vaccine Ontology and propose new hy- observable clinical phenotypes, which are lack of system- potheses for vaccine disease or gene associations. First, a atic ways to identify new targets. Recent research has vaccine-vaccine network was inferred using a bipartite shown that bioinformatics-based approaches can aid to network projection strategy on the vaccine-disease net- reposition drugs based on the complex relationships work extracted from the Semantic MEDLINE database. In among drugs, diseases and genes (Liu, Fang et al. 2013). total, 76 vaccines and 573 relationships were identified to Such approaches can also be applied in the future vaccine construct the vaccine network. The shortest paths between development. all pairs of vaccines were calculated within the vaccine In recent years, high-throughput biological data and network.
    [Show full text]
  • Drug Repurposing Using Biological Networks
    processes Review Drug Repurposing Using Biological Networks Francisco Javier Somolinos 1 , Carlos León 1,2,3,* and Sara Guerrero-Aspizua 1,2,3 1 Department of Bioengineering, Carlos III University, Leganés, 28911 Madrid, Spain; [email protected] (F.J.S.); [email protected] (S.G.-A.) 2 Network Research on Rare Diseases (CIBERER), U714, 28029 Madrid, Spain 3 Regenerative Medicine and Tissue Engineering Group, Health Research Institute-Jimenez Diaz Foundation University Hospital (IIS-FJD), 28040 Madrid, Spain * Correspondence: [email protected] Abstract: Drug repositioning is a strategy to identify new uses for existing, approved, or research drugs that are outside the scope of its original medical indication. Drug repurposing is based on the fact that one drug can act on multiple targets or that two diseases can have molecular similarities, among others. Currently, thanks to the rapid advancement of high-performance technologies, a massive amount of biological and biomedical data is being generated. This allows the use of computational methods and models based on biological networks to develop new possibilities for drug repurposing. Therefore, here, we provide an in-depth review of the main applications of drug repositioning that have been carried out using biological network models. The goal of this review is to show the usefulness of these computational methods to predict associations and to find candidate drugs for repositioning in new indications of certain diseases. Keywords: drug repurposing; network models; metabolic networks; network analysis; drug interac- tions; drug targets Citation: Somolinos, F.J.; León, C.; Guerrero-Aspizua, S. Drug 1. Introduction Repurposing Using Biological Networks.
    [Show full text]
  • Network Medicine Links SARS-Cov-2/COVID-19 Infection To
    Zhou et al. Alzheimer's Research & Therapy (2021) 13:110 https://doi.org/10.1186/s13195-021-00850-3 RESEARCH Open Access Network medicine links SARS-CoV-2/COVID- 19 infection to brain microvascular injury and neuroinflammation in dementia-like cognitive impairment Yadi Zhou1†, Jielin Xu1†, Yuan Hou1†, James B. Leverenz2,3, Asha Kallianpur1,2, Reena Mehra2,4, Yunlong Liu5, Haiyuan Yu6,7,8, Andrew A. Pieper9,10,11,12,13,14, Lara Jehi2,3 and Feixiong Cheng1,2,15* Abstract Background: Dementia-like cognitive impairment is an increasingly reported complication of SARS-CoV-2 infection. However, the underlying mechanisms responsible for this complication remain unclear. A better understanding of causative processes by which COVID-19 may lead to cognitive impairment is essential for developing preventive and therapeutic interventions. Methods: In this study, we conducted a network-based, multimodal omics comparison of COVID-19 and neurologic complications. We constructed the SARS-CoV-2 virus-host interactome from protein-protein interaction assay and CRISPR- Cas9-based genetic assay results and compared network-based relationships therein with those of known neurological manifestations using network proximity measures. We also investigated the transcriptomic profiles (including single-cell/ nuclei RNA-sequencing) of Alzheimer’s disease (AD) marker genes from patients infected with COVID-19, as well as the prevalence of SARS-CoV-2 entry factors in the brains of AD patients not infected with SARS-CoV-2. Results: We found significant network-based relationships between COVID-19 and neuroinflammation and brain microvascular injury pathways and processes which are implicated in AD. We also detected aberrant expression of AD biomarkers in the cerebrospinal fluid and blood of patients with COVID-19.
    [Show full text]
  • NIH Public Access Author Manuscript Clin Pharmacol Ther
    NIH Public Access Author Manuscript Clin Pharmacol Ther. Author manuscript; available in PMC 2013 January 15. Published in final edited form as: Clin Pharmacol Ther. 2013 January ; 93(1): 26±28. doi:10.1038/clpt.2012.207. Developing New Drug Treatments in the Era of Network Medicine Edwin K. Silverman, M.D., Ph.D.1,2,4,5 and Joseph Loscalzo, M.D., Ph.D.1,3,4,5 Edwin K. Silverman: [email protected]; Joseph Loscalzo: [email protected] $watermark-text1Channing $watermark-text Division $watermark-text of Network Medicine, Brigham and Women’s Hospital, 75 Francis Street, Boston, MA 02115 2Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, 75 Francis Street, Boston, MA 02115 3Division of Cardiovascular Medicine, Brigham and Women’s Hospital, 75 Francis Street, Boston, MA 02115 4Department of Medicine, Brigham and Women’s Hospital, 75 Francis Street, Boston, MA 02115; 617-732-6340; 617-732-6439 (fax); 5Harvard Medical School Keywords network medicine; systems pharmacology; complex diseases; pharmacogenetics Introduction Although impressive advances have been made in determining the genetic and molecular causes of disease, treatment for many complex diseases remains inadequate. Despite compelling unmet medical needs and new insights into disease pathobiology, new drug approvals for complex diseases have stagnated. A new paradigm for drug development is needed, and key concepts from network medicine and systems pharmacology may be essential to this effort. Overview of Network Medicine and Systems Pharmacology Network medicine is the developing new field which applies network science and systems biology approaches to understand complex diseases and systems pharmacology approaches to develop treatments for these diseases1.
    [Show full text]
  • A Network Medicine Approach for Drug Repurposing in Duchenne Muscular Dystrophy
    G C A T T A C G G C A T genes Article A Network Medicine Approach for Drug Repurposing in Duchenne Muscular Dystrophy Salvo Danilo Lombardo 1 , Maria Sofia Basile 2 , Rosella Ciurleo 2, Alessia Bramanti 2, Antonio Arcidiacono 3, Katia Mangano 3 , Placido Bramanti 2, Ferdinando Nicoletti 3,* and Paolo Fagone 3 1 Department of Structural & Computational Biology at the Max Perutz Labs, University of Vienna, 1010 Vienna, Austria; [email protected] 2 IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; sofi[email protected] (M.S.B.); [email protected] (R.C.); [email protected] (A.B.); [email protected] (P.B.) 3 Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy; [email protected] (A.A.); [email protected] (K.M.); [email protected] (P.F.) * Correspondence: [email protected] Abstract: Duchenne muscular dystrophy (DMD) is a progressive hereditary muscular disease caused by a lack of dystrophin, leading to membrane instability, cell damage, and inflammatory response. However, gene-editing alone is not enough to restore the healthy phenotype and additional treat- ments are required. In the present study, we have first conducted a meta-analysis of three microarray datasets, GSE38417, GSE3307, and GSE6011, to identify the differentially expressed genes (DEGs) be- tween healthy donors and DMD patients. We have then integrated this analysis with the knowledge Citation: Lombardo, S.D.; Basile, obtained from DisGeNET and DIAMOnD, a well-known algorithm for drug–gene association discov- M.S.; Ciurleo, R.; Bramanti, A.; eries in the human interactome.
    [Show full text]
  • Network-Based Prediction of Drug Combinations
    Corrected: Publisher correction ARTICLE https://doi.org/10.1038/s41467-019-09186-x OPEN Network-based prediction of drug combinations Feixiong Cheng1,2,3,4,5, Istvań A. Kovacś1,2 & Albert-Laszló ́Barabasí1,2,6,7 Drug combinations, offering increased therapeutic efficacy and reduced toxicity, play an important role in treating multiple complex diseases. Yet, our ability to identify and validate effective combinations is limited by a combinatorial explosion, driven by both the large number of drug pairs as well as dosage combinations. Here we propose a network-based methodology to identify clinically efficacious drug combinations for specific diseases. By 1234567890():,; quantifying the network-based relationship between drug targets and disease proteins in the human protein–protein interactome, we show the existence of six distinct classes of drug–drug–disease combinations. Relying on approved drug combinations for hypertension and cancer, we find that only one of the six classes correlates with therapeutic effects: if the targets of the drugs both hit disease module, but target separate neighborhoods. This finding allows us to identify and validate antihypertensive combinations, offering a generic, powerful network methodology to identify efficacious combination therapies in drug development. 1 Center for Complex Networks Research and Department of Physics, Northeastern University, Boston, MA 02115, USA. 2 Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. 3 Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA. 4 Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA. 5 Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
    [Show full text]
  • Network Medicine Framework for Identifying Drug Repurposing Opportunities for COVID-19
    Network Medicine Framework for Identifying Drug Repurposing Opportunities for COVID-19 Deisy Morselli Gysi1,2,*, Ítalo Do Valle1,*, Marinka Zitnik3,4,*, Asher Ameli5,6,*, Xiao Gan1,2,*, Onur Varol1,7, Susan Dina Ghiassian5, JJ Patten8, Robert Davey8, Joseph Loscalzo9, and Albert-László Barabási1,10 1 Network Science Institute and Department of Physics, Northeastern University, Boston, MA 02115, USA;2 Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; 3 Department of Biomedical Informatics, Harvard University, Boston, MA 02115, USA; 4Harvard Data Science Initiative, Harvard University, Cambridge, MA 02138, USA.5 Scipher Medicine, 221 Crescent St, Suite 103A, Waltham, MA 02453; 6 Department of Physics, Northeastern University, Boston, MA 02115, USA; 7 Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey; 8 Department of microbiology, NEIDL, Boston University, Boston, MA, USA; 9 Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; 10 Department of Network and Data Science, Central European University, Budapest 1051, Hungary. *Those authors contributed equally Abstract The current pandemic has highlighted the need for methodologies that can quickly and reliably prioritize clinically approved compounds for their potential effectiveness for SARS-CoV-2 infections. In the past decade, network medicine has developed and validated multiple predictive algorithms for drug repurposing, exploiting the sub-cellular network-based relationship between a drug’s targets and disease genes. Here, we deployed algorithms relying on artificial intelligence, network diffusion, and network proximity, tasking each of them to rank 6,340 drugs for their expected efficacy against SARS-CoV-2.
    [Show full text]
  • Statistical Methods for Gene and Brain Networks
    UCLA UCLA Previously Published Works Title Network Modeling in Biology: Statistical Methods for Gene and Brain Networks. Permalink https://escholarship.org/uc/item/1vj3r20c Journal Statistical science : a review journal of the Institute of Mathematical Statistics, 36(1) ISSN 0883-4237 Authors Wang, YX Rachel Li, Lexin Li, Jingyi Jessica et al. Publication Date 2021-02-01 DOI 10.1214/20-sts792 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Statistical Science 2021, Vol. 36, No. 1, 89–108 https://doi.org/10.1214/20-STS792 © Institute of Mathematical Statistics, 2021 Network Modeling in Biology: Statistical Methods for Gene and Brain Networks Y. X. Rachel Wang, Lexin Li, Jingyi Jessica Li and Haiyan Huang Abstract. The rise of network data in many different domains has offered researchers new insights into the problem of modeling complex systems and propelled the development of numerous innovative statistical methodologies and computational tools. In this paper, we primarily focus on two types of biological networks, gene networks and brain networks, where statistical net- work modeling has found both fruitful and challenging applications. Unlike other network examples such as social networks where network edges can be directly observed, both gene and brain networks require careful estimation of edges using measured data as a first step. We provide a discussion on exist- ing statistical and computational methods for edge estimation and subsequent statistical inference problems in these two types of biological networks. Key words and phrases: Gene regulatory networks, brain connectivity net- works, network reconstruction, network inference. 1. INTRODUCTION many biochemical networks have a scale-free topology with a few highly connected nodes [14], known as hubs in Network structures exist everywhere in biology as network analysis, which may correspond to key enzymes many biological systems function via complex interac- in biochemical processes.
    [Show full text]
  • Gene Regulatory Network. Marc-Thorsten Hütt, Annick Lesne
    Gene regulatory network. Marc-Thorsten Hütt, Annick Lesne To cite this version: Marc-Thorsten Hütt, Annick Lesne. Gene regulatory network.: Dissecting structure and dynamics. O. Wolkenhauer. Systems Medicine: Integrative, Qualitative and Computational Approaches, Elsevier, pp.77-85, 2020, Reference Modules in Biomedical Sciences (peer-reviewed, accepted 20/06/2019). hal- 02313633 HAL Id: hal-02313633 https://hal.archives-ouvertes.fr/hal-02313633 Submitted on 11 Oct 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Gene regulatory network inference I Dissecting structure and dynamics Marc-Thorsten H¨utta,∗, Annick Lesneb,c aDepartment of Life Sciences and Chemistry, Jacobs University Bremen, D-28759 Bremen, Germany bSorbonne Universit´e,CNRS, Laboratoire de Physique Th´eoriquede la Mati`ere Condens´ee, LPTMC, F-75252, Paris, France cInstitut de G´en´etiqueMol´eculaire de Montpellier, University of Montpellier, CNRS, F-34293, Montpellier, France Abstract Gene network inference is the task of reconstructing regulatory networks among genes from high-throughput (in particular transcriptomic) data. Here we in- troduce the main concepts of this rich and rapidly evolving field. In order to illustrate the basic principles of gene network inference we simulate gene expres- sion patterns using two distinct computational models, Boolean dynamics and ordinary differential equations.
    [Show full text]
  • Network Medicine Framework Shows Proximity of Polyphenol Targets and 2 Disease Proteins Is Predictive of the Therapeutic Effects of Polyphenols 3 4 Italo F
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.27.270173; this version posted February 8, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Network Medicine Framework Shows Proximity of Polyphenol Targets and 2 Disease Proteins is Predictive of the Therapeutic Effects of Polyphenols 3 4 Italo F. do Valle1, Harvey G. Roweth2,3, Michael W. Malloy2,3, Sofia Moco4, Denis 5 Barron4, Elisabeth Battinelli2,3, Joseph Loscalzo3,5, Albert-László Barabási1,6,7 6 7 1 Network Science Institute and Department of Physics, Northeastern University, Boston, MA, USA 8 2 Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA 9 3 Harvard Medical School, Boston, MA, USA 10 4 Nestle Institute of Health Sciences, Lausanne, Switzerland 11 5 Department of Medicine Brigham and Women’s Hospital 12 6 Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical 13 School, Boston, MA, USA 14 7 Department of Network and Data Science, Central European University, Budapest, Hungary 15 16 Abstract 17 18 Polyphenols, natural products present in plant-based foods, play a protective role 19 against several complex diseases through their antioxidant activity and by diverse 20 molecular mechanisms. Here we developed a network medicine framework to uncover 21 the mechanistic roles of polyphenols on health by considering the molecular interactions 22 between polyphenol protein targets and proteins associated with diseases.
    [Show full text]