Surgical Anatomy and Embryology of the Frontal Sinus Chapter 3 23

Total Page:16

File Type:pdf, Size:1020Kb

Surgical Anatomy and Embryology of the Frontal Sinus Chapter 3 23 Chapter 3 Surgical Anatomy and Embryology 3 of the Frontal Sinus Carlos S. Duque, Roy R. Casiano Core Messages Introduction í (Overview) A thorough knowledge of fron- As with any surgical procedure, a thorough knowl- tal sinus anatomy is critical when perfor- edge of anatomy is the one most important factors in ming even basic endoscopic sinus surgical minimizing complications and maximizing one’s procedures. Every endoscopic sinus surge- chances of a good surgical outcome. This is particu- on must be aware of all the normal, as well larly important for otolaryngologists performing en- as the abnormal, variants that may exist doscopic sinus surgery, as each and every one of the paranasal sinuses are in close proximity to critical í The number and size of the paranasal sinu- orbital and skull base structures. A good knowledge ses are determined early during embryolo- of anatomy will enable the surgeon to operate with gic development. Disease processes during more confidence, by improving one’s ability to cor- childhood or early adulthood may modify rectly interpret normal variants from abnormal or this anatomy or its relationship to neighbo- pathological conditions, and determine an appropri- ring structures ate surgical treatment plan to reestablish mucociliary flow to the sinus. This is even more critical for dis- í The close relationship between the frontal torted anatomy, due to previous surgery or neo- sinus and neighboring orbit or anterior plasms. Furthermore, CT imaging has become an in- skull base makes it particularly vulnerable tegral part of the diagnostic armamentarium for si- to complications from disease or surgery nus surgeons. Technological advancements such as intraoperative navigational devices depend on the surgeon’s proper identification of normal or abnor- mal structures on CT or MRI scans. However, despite this technology’s intent of reducing complications, failure to know the sinus anatomy or properly identi- Contents fy critical structures on the scan may still result in Introduction . 21 disastrous consequences. The frontal sinus hides in the anterior cranial Embryology of the Frontal Sinus . 22 vault surrounded by two thick layers of cortical bone. Surgical Anatomy of the Frontal Sinuses . 25 Its naturally draining “ostium”, or frontal infundibu- Conclusions . 30 lum, remains immersed in an intricate complex area covered by ethmoid cells and other anatomical struc- References . 30 tures that may not be so easy to find. In order to bet- ter understand frontal sinus anatomy, one must be- gin with its embryological development. 22 Carlos S. Duque, Roy R. Casiano Embryology of the Frontal Sinus limited superiorly by the frontonasal prominence and inferiorly by the mandibular arch [10, 15, 16]. The frontonasal prominence differentiates inferi- It is important to know that all of the development of orly with two nasal projections, or nasal placodes, the head and neck, along with the face, nose, and par- that will be invaded by the growing ectoderm and anasal sinuses, takes place simultaneously in a very mesenchyme. These structures later fuse and form 3 short period of time. Frontal sinus development be- the nasal cavity and primitive choana, separated gins around the fourth or fifth week of gestation, and from the stomodeum by the oronasal membrane.The continues not only during the intrauterine growth primitive choana will be the point of development period, but also in the postnatal period through pu- for the posterior pharyngeal wall as well as the differ- berty and even early adulthood. ent sinuses. The oronasal membrane will be fully By the end of the fourth week of development, one formed by the end of the fifth week of development, begins to see the development of the branchial arch- to form the floor of the nose (palate). As the embryo es,along with the appearance of the branchial pouch- grows, the maxillary processes and the nasal pla- es and the primitive gut. This gives the embryo its codes come together in the midline, to form the max- first appearance of an identifiable head and face,with illary bone and the beginning of the external nose. an orifice in its middle, called the stomodeum The frontonasal prominence will also develop a cau- (Fig. 3.1). This structure is surrounded by the man- dal mesodermic projection that will form the nasal dibular and maxillary arches or prominences, bilat- septum, diving the nose into two chambers [15–17]. erally. Both of these prominences are derivatives of Simultaneously, while all these changes are start- the first branchial arch. This arch will ultimately give ing to take place, the cranial and facial bones are rise to all of the vascular and neural structures sup- forming as well. The skeletal system develops from plying this area. The newly developed stomodeum is the mesoderm, from which mesenchyme develops, forming the connective tissue (fibroblasts, chondro- blasts, osteoblasts) that eventually differentiates into the various support structures of the nose and para- nasal sinuses. The neural crest cells and mesenchyme migrate to the occipital area and the future site of the cranial cavity, and disperse in order to form the hya- line cartilage matrix that will later become ossified. Each cranial bone is formed by a series of bone spic- ules that grow from the center towards the periphery, to occupy its place.At birth, all cranial bones are sep- arated by layers of connective tissue that later be- come fused and ossified in the postnatal period. Al- though all of these cranial structures are made out of cartilage and eventually will become ossified, they can still be invaded by neighboring epithelial cells (from the nasal cavity), eventually giving rise to the future paranasal sinuses [16, 17]. Around the 25th to 28th week of development, three medially directed projections arise from the lateral wall of the nose. This begins the process of de- fining the anatomical structures of the paranasal si- Fig. 3.1. Ventral view of a 5-week-old embryo, showing the sto- nuses. Between these projections small lateral diver- modeum (S),mandibular arch (MA),2nd branchial arch (2nd), ticula will invaginate into the lateral wall of the prim- 3rd branchial arch (3rd), frontonasal prominence (FP), nasal placode (NP), maxillary prominences (MP), and cardiac bulge itive choana to eventually form the nasal meati (C) (Fig. 3.2) [15–17]. Surgical Anatomy and Embryology of the Frontal Sinus Chapter 3 23 form process. During the 13th week of development the infundibulum continues expanding superiorly, giving rise to the frontonasal recess. It has been pro- posed that the frontal sinus might develop during the 16th week simply as a direct elongation of the infun- dibulum and frontonasal recess, or as an upwards epithelial migration of the anterior ethmoidal cells that penetrate the most inferior aspect of the frontal bone between its two tables.Primary pneumatization of the frontal bone occurs as a slow process up to the end of the first year of life. Up to this moment, the frontal sinus remains as a small, smooth, blind pock- et, and will remain this way until the infant reaches approximately 2 years of life,when the process of sec- ondary pneumatization begins. From 2 years of age until adolescence, the frontal sinus will progressively grow and become fully pneumatized (see Fig. 3.3) [14, 15, 17]. Between 1 and 4 years of age, the frontal sinus starts its secondary pneumatization, forming a cavity no bigger than 4–8 mm long, 6–12 mm high, and Fig.3.2. Between the 25th and 28th week of gestation,lateral di- 11–19 mm wide. After 3 years of age, the frontal sinus verticula will invaginate into the lateral wall of the primitive may be seen in some CT scans. When a child reaches choana to eventually form the nasal meati. Between these in- vaginations lie the prominences that later form the middle tur- 8 years of age, the frontal sinus becomes more pneu- binate (MT), inferior turbinate (IT), and uncinate process (U). matized, and will be seen by most radiological stud- The infundibulum (I), maxillary sinus (M), and frontal recess ies. Significant frontal pneumatization is generally (FR) are seen as small blind recesses or pockets within the not seen until early adolescence, and continues until middle meatus (MM). The inferior meatus (IM) is also noted the child reaches 18 years of age. Frontal sinus development may be variable. On ca- daveric and radiological (CT) studies, the frontal si- The medial projections of ectodermal tissue form the nus is only identifiable in less than 1.5% of infants following structures: less than one year of age [6, 8, 9]. During this period, the frontal sinus remains as a potential pocket and í The anterior projection forms the agger nasi has been referred to as a “cellulae ethmoidalis”, since í The inferior projection (the maxillo-turbi- the findings point clearly to its close embryological nate) forms the inferior turbinate and maxil- and anatomical relationship with anterior ethmoid lary sinus [16, 17] air cells [19, 20, 25]. í The superior projection, known as the eth- The frontal sinuses develop within the frontal moido-turbinate, forms the middle and super- bones. Each bone remains separated by a vertical ior turbinate as well as the small ethmoidal (sagittal) suture line that becomes ossified. This will cells, with their corresponding draining meati, eventually form the frontal sinus intersinus septum. between the septum and the lateral wall of the It is not clear which factors trigger the formation of nose. Between the already formed inferior tur- the frontal sinuses. Some authors have speculated binate and the middle turbinate, the middle that the adolescent growth phase may be stimulated meatus will develop [14–16] by the different hormonal changes or even by the process of mastication itself [13, 19, 20, 25].
Recommended publications
  • Septation of the Sphenoid Sinus and Its Clinical Significance
    1793 International Journal of Collaborative Research on Internal Medicine & Public Health Septation of the Sphenoid Sinus and its Clinical Significance Eldan Kapur 1* , Adnan Kapidžić 2, Amela Kulenović 1, Lana Sarajlić 2, Adis Šahinović 2, Maida Šahinović 3 1 Department of anatomy, Medical faculty, University of Sarajevo, Čekaluša 90, 71000 Sarajevo, Bosnia and Herzegovina 2 Clinic for otorhinolaryngology, Clinical centre University of Sarajevo, Bolnička 25, 71000 Sarajevo, Bosnia and Herzegovina 3 Department of histology and embriology, Medical faculty, University of Sarajevo, Čekaluša 90, 71000 Sarajevo, Bosnia and Herzegovina * Corresponding Author: Eldan Kapur, MD, PhD Department of anatomy, Medical faculty, University of Sarajevo, Bosnia and Herzegovina Email: [email protected] Phone: 033 66 55 49; 033 22 64 78 (ext. 136) Abstract Introduction: Sphenoid sinus is located in the body of sphenoid, closed with a thin plate of bone tissue that separates it from the important structures such as the optic nerve, optic chiasm, cavernous sinus, pituitary gland, and internal carotid artery. It is divided by one or more vertical septa that are often asymmetric. Because of its location and the relationships with important neurovascular and glandular structures, sphenoid sinus represents a great diagnostic and therapeutic challenge. Aim: The aim of this study was to assess the septation of the sphenoid sinus and relationship between the number and position of septa and internal carotid artery in the adult BH population. Participants and Methods: A retrospective study of the CT analysis of the paranasal sinuses in 200 patients (104 male, 96 female) were performed using Siemens Somatom Art with the following parameters: 130 mAs: 120 kV, Slice: 3 mm.
    [Show full text]
  • A Forensic Case Report
    Skeletonized body identified by analysis of frontal sinus morphology and characteristics of osteosynthesis material: a forensic case report Rhonan Ferreira-Silva1, Andréa Pinheiro de- Abreu Meirelles2, Isabela Machado3, Lívia Graziele Rodrigues4, Roberta Gomes-Resende5, Alicia Picapedra6, Carlos Sassi7 DOI: 10.22592/ode2018n31a10 Abstract Forensic dentistry is essential for the identification of highly decomposed and charred bodies, as well as skeletal remains. This study reports a case of human identification by analyzing the morphology of the frontal sinuses and osteosynthesis material. In the anthropological assess- ment of skeletal remains a surgical plate used for osteosynthesis was detected in the periorbital regions. Relatives of the potential victim provided ante-mortem (AM) radiographs which re- vealed the presence of an osteosynthesis plate. Post-mortem (PM) imaging exams were per- formed to reproduce the AM data. Similarities were observed between the AM and PM radio- graphs, especially regarding the morphology of the frontal sinuses and the position and outline of the surgical plate used for osteosynthesis. The comparison of AM and PM images made it possible to identify the victim and to aid the criminal investigation. It also highlighted the role of radiographs and anatomical characteristics in the process of human identification. Keywords: forensic dentistry, forensic anthropology, frontal sinus, radiography. 1 Professor of Forensic Dentistry, School of Dentistry, Universidad Federal de Goiás. Criminal Expert at the Scientific Police of Goiás (Goiânia, Goiás, Brazil). ORCID: 0000-0002-3680-7020 2 Undergraduate Student, School of Dentistry, Universidad Federal de Goiás (Goiânia, Goiás, Brazil). ORCID: 0000-0002-1290-3755 3 Undergraduate Student, School of Dentistry, Universidad Federal de Goiás (Goiânia, Goiás, Brazil).
    [Show full text]
  • Benign Tumors of the Frontal Sinuses with and Fibro-Osseous Tumors of the Frontal Sinus: Their Propensity to Recur and Cause Local Open Approaches
    Chapter 18 Benign Tumors 18 of the Frontal Sinuses Brent A. Senior, Marc G. Dubin Management of Benign Lesions of the Frontal Sinus . 157 Core Messages Preoperative Evaluation . 157 í Surgical Treatment of Bony Benign tumors of the frontal sinuses with and Fibro-osseous Tumors of the Frontal Sinus: their propensity to recur and cause local Open Approaches . 157 injury present unique challenges to the Surgical Treatment of Bony otolaryngologist and Fibro-osseous Tumors of the Frontal Sinus: Endoscopic Approaches . 158 í Fibro-osseous lesions may be managed ex- Cases: Fibro-osseus Lesions of the Frontal Sinus . 159 pectantly, or may be removed in the setting Case 1: Endoscopic Resection of Tumor of symptomatic pathology such as cosmet- in the Frontal Recess . 159 ic or functional deformity Case 2: Open Resection of Tumor of the Frontal Sinus . 160 í Inverted papillomas with their high rate of Surgical Management of Inverted Papilloma: associated malignancy should be complete- Open and Endoscopic . 161 ly removed Cases: Inverted Papilloma of the Frontal Sinus . 161 Case 1: Recurrent Inverted Papilloma of the Frontal Sinus . 161 í Tumors that in the past required open ap- proaches may now be managed successful- Postoperative Considerations . 162 ly with endoscopic approaches alone or Conclusions . 163 with combined approaches, lowering over- References . 163 all morbidity while not sacrificing outcome í Cases must be individually assessed in or- der to determine the appropriate manage- ment approach Introduction Management of disease of the frontal recess and frontal sinus is one of the greatest challenges in rhi- nology. Despite advances in the understanding of the Contents anatomy and physiology of this area along with in- creased comfort with endoscopic techniques, man- Introduction .
    [Show full text]
  • Nasoconchal Paranasal Sinus in White Rhino
    IDENTIFICATION OF A NASOCONCHAL PARANASAL SINUS IN THE WHITE RHINOCEROS (CERATOTHERIUM SIMUM) Author(s): Mathew P. Gerard, B.V.Sc., Ph.D., Dipl. A.C.V.S., Zoe G. Glyphis, B.Sc., B.V.Sc., Christine Crawford, B.S., Anthony T. Blikslager, D.V.M., Ph.D., Dipl. A.C.V.S., and Johan Marais, B.V.Sc., M.Sc. Source: Journal of Zoo and Wildlife Medicine, 49(2):444-449. Published By: American Association of Zoo Veterinarians https://doi.org/10.1638/2017-0185.1 URL: http://www.bioone.org/doi/full/10.1638/2017-0185.1 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/ terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Journal of Zoo and Wildlife Medicine 49(2): 444–449, 2018 Copyright 2018 by American Association of Zoo Veterinarians IDENTIFICATION OF A NASOCONCHAL PARANASAL SINUS IN THE WHITE RHINOCEROS (CERATOTHERIUM SIMUM) Mathew P.
    [Show full text]
  • Macroscopic Anatomy of the Nasal Cavity and Paranasal Sinuses of the Domestic Pig (Sus Scrofa Domestica) Daniel John Hillmann Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1971 Macroscopic anatomy of the nasal cavity and paranasal sinuses of the domestic pig (Sus scrofa domestica) Daniel John Hillmann Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Animal Structures Commons, and the Veterinary Anatomy Commons Recommended Citation Hillmann, Daniel John, "Macroscopic anatomy of the nasal cavity and paranasal sinuses of the domestic pig (Sus scrofa domestica)" (1971). Retrospective Theses and Dissertations. 4460. https://lib.dr.iastate.edu/rtd/4460 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. 72-5208 HILLMANN, Daniel John, 1938- MACROSCOPIC ANATOMY OF THE NASAL CAVITY AND PARANASAL SINUSES OF THE DOMESTIC PIG (SUS SCROFA DOMESTICA). Iowa State University, Ph.D., 1971 Anatomy I University Microfilms, A XEROX Company, Ann Arbor. Michigan I , THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED Macroscopic anatomy of the nasal cavity and paranasal sinuses of the domestic pig (Sus scrofa domestica) by Daniel John Hillmann A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Veterinary Anatomy Approved: Signature was redacted for privacy. h Charge of -^lajoï^ Wor Signature was redacted for privacy. For/the Major Department For the Graduate College Iowa State University Ames/ Iowa 19 71 PLEASE NOTE: Some Pages have indistinct print.
    [Show full text]
  • MBB: Head & Neck Anatomy
    MBB: Head & Neck Anatomy Skull Osteology • This is a comprehensive guide of all the skull features you must know by the practical exam. • Many of these structures will be presented multiple times during upcoming labs. • This PowerPoint Handout is the resource you will use during lab when you have access to skulls. Mind, Brain & Behavior 2021 Osteology of the Skull Slide Title Slide Number Slide Title Slide Number Ethmoid Slide 3 Paranasal Sinuses Slide 19 Vomer, Nasal Bone, and Inferior Turbinate (Concha) Slide4 Paranasal Sinus Imaging Slide 20 Lacrimal and Palatine Bones Slide 5 Paranasal Sinus Imaging (Sagittal Section) Slide 21 Zygomatic Bone Slide 6 Skull Sutures Slide 22 Frontal Bone Slide 7 Foramen RevieW Slide 23 Mandible Slide 8 Skull Subdivisions Slide 24 Maxilla Slide 9 Sphenoid Bone Slide 10 Skull Subdivisions: Viscerocranium Slide 25 Temporal Bone Slide 11 Skull Subdivisions: Neurocranium Slide 26 Temporal Bone (Continued) Slide 12 Cranial Base: Cranial Fossae Slide 27 Temporal Bone (Middle Ear Cavity and Facial Canal) Slide 13 Skull Development: Intramembranous vs Endochondral Slide 28 Occipital Bone Slide 14 Ossification Structures/Spaces Formed by More Than One Bone Slide 15 Intramembranous Ossification: Fontanelles Slide 29 Structures/Apertures Formed by More Than One Bone Slide 16 Intramembranous Ossification: Craniosynostosis Slide 30 Nasal Septum Slide 17 Endochondral Ossification Slide 31 Infratemporal Fossa & Pterygopalatine Fossa Slide 18 Achondroplasia and Skull Growth Slide 32 Ethmoid • Cribriform plate/foramina
    [Show full text]
  • Anatomic Variations of Paranasal Sinus on Multidetector Computed Tomography Examinations for Functional Endoscopic Sinus Surgery
    MÜSBED 2013;3(2):102-106 DOI: 10.5455/musbed.20130410100848 Derleme / Review Anatomic Variations of Paranasal Sinus on Multidetector Computed Tomography Examinations for Functional Endoscopic Sinus Surgery Filiz Namdar Pekiner Department of Oral Diagnosis and Radiology, Faculty of Dentistry, Marmara University, Istanbul - Turkey Ya zış ma Ad re si / Add ress rep rint re qu ests to: Filiz Namdar Pekiner, Marmara University, Faculty of Dentistry, Department of Oral Diagnosis and Radiology, Nisantasi, Istanbul - Turkey Elekt ro nik pos ta ad re si / E-ma il add ress: [email protected] Ka bul ta ri hi / Da te of ac cep tan ce: 10 Nisan 2013 / April 10, 2013 ÖZET ABS TRACT Fonksiyonel endoskopik sinüs cerrahisinde mul- Anatomic variations of paranasal sinus tidetektör bilgisayarlı tomografide paranasal on multidetector computed tomography sinüslerin anatomik varyasyonları examinations for functional endoscopic sinus surgery Bilgisayarlı tomografi paranasal sinüslerin hastalıklarının ve fonksiyo- nel endoskopik sinüs cerrahisi ile tedavilerinin değerlendirilmesinde Computed tomography is excellent means of providing anatomical anatomik olarak sağladığı bilgi oldukça önemlidir. Paranasal sinüs- information of paranasal sinuses, assessing disease and guiding lerde izlenen anatomik varyasyonlar nadir değildir. Bu makalenin treatment with functional endoscopic sinus surgery (FESS). Common amacı paranasal sinüslerde izlenebilen bazı anatomik varyasyonları anatomical variations are not rare in the paranasal sinuses. The aim of sunmaktır. this article was presented radiological characteristics of some anatomic Anahtar sözcükler: Paranasal sinüsler, anatomik varyasyonlar, bilgi- variation in paranasal sinuses. sayarlı tomografi, fonksiyonel endoskopik sinüs cerrahisi Key words: Paranasal sinus, anatomical variation, computed tomography, functional endoscopic sinus surgery INTRODUCTION anatomy as shown on CT are of potential significance, it may predispose to certain pathologic conditions and Functional endoscopic sinus surgery (FESS) has been diseases (5).
    [Show full text]
  • Frontal Sinus Cerebrospinal Fluid Leaks Chapter 17 145
    Chapter 17 Frontal Sinus Cerebrospinal 17 Fluid Leaks Bradford A. Woodworth, Rodney J. Schlosser Contents Core Messages Introduction . 143 í Identification of a CSF leak etiology; Anatomic Site . 144 accidental trauma, surgical trauma, Etiology . 147 tumors, congenital, or spontaneous; Trauma . 147 is essential for successful repair Tumors . 148 Congenital . 148 í Anatomically, frontal sinus CSF leaks are Spontaneous . 148 divided into those located adjacent to the Diagnosis . 149 frontal recess, within the frontal recess, or Surgical Technique . 149 within the frontal sinus proper Endoscopic Approaches . 149 Extracranial Repair . 150 í Pre-operative evaluation may include beta- Intracranial Repair . 151 2 transferrin, radioactive/CT cisternogram, Adjuncts and Postoperative Care . 151 high-resolution CT, MRI, or intrathecal flu- orescein and should be individualized for Conclusion . 151 the purposes of diagnosis and localization References . 151 í Frontal sinus CSF leaks adjacent to or with- in the frontal recess are typically amenable to endoscopic repair Introduction í CSF leaks affecting the posterior table Pathology of the frontal sinus represents one of the within the frontal sinus proper may require most challenging and technically demanding areas external approaches, such as frontal tre- for the sinus surgeon to reach endoscopically. Cere- phine or osteoplastic flap. Combined endo- brospinal fluid (CSF) leaks in other parts of the sino- scopic and external techniques are useful nasal cavity have been repaired with relatively high
    [Show full text]
  • Dissertation on an OBSERVATIONAL STUDY COMPARING the EFFECT of SPHENOPALATINE ARTERY BLOCK on BLEEDING in ENDOSCOPIC SINUS SURGE
    Dissertation On AN OBSERVATIONAL STUDY COMPARING THE EFFECT OF SPHENOPALATINE ARTERY BLOCK ON BLEEDING IN ENDOSCOPIC SINUS SURGERY Dissertation submitted to TAMIL NADU DR. M.G.R. MEDICAL UNIVERSITY CHENNAI For M.S.BRANCH IV (OTORHINOLARYNGOLOGY) Under the guidance of DR. F ANTHONY IRUDHAYARAJAN, M.S., D.L.O Professor & HOD, Department of ENT & Head and Neck Surgery, Govt. Stanley Medical College, Chennai. GOVERNMENT STANLEY MEDICAL COLLEGE THE TAMILNADU DR. M.G.R. MEDICAL UNIVERSITY, CHENNAI-32, TAMILNADU APRIL 2017 CERTIFICATE This is to certify that this dissertation titled AN OBSERVATIONAL STUDY COMPARING THE EFFECT OF SPHENOPALATINE ARTERY BLOCK ON BLEEDING IN ENDOSCOPIC SINUS SURGERY is the original and bonafide work done by Dr. NIGIL SREEDHARAN under the guidance of Prof Dr F ANTHONY IRUDHAYARAJAN, M.S., DLO Professor & HOD, Department of ENT & Head and Neck Surgery at the Government Stanley Medical College & Hospital, Chennai – 600 001, during the tenure of his course in M.S. ENT from July-2014 to April- 2017 held under the regulation of the Tamilnadu Dr. M.G.R Medical University, Guindy, Chennai – 600 032. Prof Dr F Anthony Irudhayarajan, M.S., DLO Place : Chennai Professor & HOD, Date : .10.2016 Department of ENT & Head and Neck Surgery Government Stanley Medical College & Hospital, Chennai – 600 001. Dr. Isaac Christian Moses M.D, FICP, FACP Place: Chennai Dean, Date : .10.2016 Govt.Stanley Medical College, Chennai – 600 001. CERTIFICATE BY THE GUIDE This is to certify that this dissertation titled “AN OBSERVATIONAL STUDY COMPARING THE EFFECT OF SPHENOPALATINE ARTERY BLOCK ON BLEEDING IN ENDOSCOPIC SINUS SURGERY” is the original and bonafide work done by Dr NIGIL SREEDHARAN under my guidance and supervision at the Government Stanley Medical College & Hospital, Chennai – 600001, during the tenure of his course in M.S.
    [Show full text]
  • Level I to III Craniofacial Approaches Based on Barrow Classification For
    Neurosurg Focus 30 (5):E5, 2011 Level I to III craniofacial approaches based on Barrow classification for treatment of skull base meningiomas: surgical technique, microsurgical anatomy, and case illustrations EMEL AVCı, M.D.,1 ERINÇ AKTÜRE, M.D.,1 HAKAN SEÇKIN, M.D., PH.D.,1 KUTLUAY ULUÇ, M.D.,1 ANDREW M. BAUER, M.D.,1 YUSUF IZCI, M.D.,1 JACQUes J. MORCOS, M.D.,2 AND MUSTAFA K. BAşKAYA, M.D.1 1Department of Neurological Surgery, University of Wisconsin–Madison, Wisconsin; and 2Department of Neurological Surgery, University of Miami, Florida Object. Although craniofacial approaches to the midline skull base have been defined and surgical results have been published, clear descriptions of these complex approaches in a step-wise manner are lacking. The objective of this study is to demonstrate the surgical technique of craniofacial approaches based on Barrow classification (Levels I–III) and to study the microsurgical anatomy pertinent to these complex craniofacial approaches. Methods. Ten adult cadaveric heads perfused with colored silicone and 24 dry human skulls were used to study the microsurgical anatomy and to demonstrate craniofacial approaches in a step-wise manner. In addition to cadaveric studies, case illustrations of anterior skull base meningiomas were presented to demonstrate the clinical application of the first 3 (Levels I–III) approaches. Results. Cadaveric head dissection was performed in 10 heads using craniofacial approaches. Ethmoid and sphe- noid sinuses, cribriform plate, orbit, planum sphenoidale, clivus, sellar, and parasellar regions were shown at Levels I, II, and III. In 24 human dry skulls (48 sides), a supraorbital notch (85.4%) was observed more frequently than the supraorbital foramen (14.6%).
    [Show full text]
  • Approach to Frontal Sinus Outflow Tract Injury
    Arch Craniofac Surg Vol.18 No.1, 1-4 Archives of Cr aniofacial Surgery https://doi.org/10.7181/acfs.2017.18.1.1 Review Article Approach to Frontal Sinus Outflow Tract Injury Yong Hyun Kim, Frontal sinus outflow tract (FSOT) injury may occur in cases of frontal sinus fractures and Baek-Kyu Kim nasoethmoid orbital fractures. Since the FSOT is lined with mucosa that is responsible for the path from the frontal sinus to the nasal cavity, an untreated injury may lead to complica- Department of Plastic and Reconstructive tions such as mucocele formation or chronic frontal sinusitis. Therefore, evaluation of FSOT Surgery, Seoul National University Bundang is of clinical significance, with FSOT being diagnosed mostly by computed tomography or Hospital, Seoul National University College of Medicine, Seongnam, Korea intraoperative dye. Several options are available to surgeons when treating FSOT injury, and they need to be familiar with these options to take the proper treatment measures in order to follow the treatment principle for FSOT, which is a safe sinus, and to reduce com- plications. This paper aimed to examine the surrounding anatomy, diagnosis, and treatment of FSOT. No potential conflict of interest relevant to this article was reported. Keywords: Frontal sinus / Frontonasal / Recess / Duct INTRODUCTION the anatomy of the frontal sinus, and it is important to maintain sinus function, restore facial aesthetics, and prevent complications Frontal sinus fracture and nasoethmoid orbital fracutre accounts [4]. Being FSOT injury present is of special clinical significance, for approximately 10% of all craniofacial fractures and it occurs because complications associated with FSOT injury can include from high velocity impact with the main cause of injury being mucocele formation or chronic frontal sinusitis (infection) [1,3].
    [Show full text]
  • Surgical Anatomy of the Paranasal Sinus M
    13674_C01.qxd 7/28/04 2:14 PM Page 1 1 Surgical Anatomy of the Paranasal Sinus M. PAIS CLEMENTE The paranasal sinus region is one of the most complex This chapter is divided into three sections: develop- areas of the human body and is consequently very diffi- mental anatomy, macroscopic anatomy, and endoscopic cult to study. The surgical anatomy of the nose and anatomy. A basic understanding of the embryogenesis of paranasal sinuses is published with great detail in most the nose and the paranasal sinuses facilitates compre- standard textbooks, but it is the purpose of this chapter hension of the complex and variable adult anatomy. In to describe those structures in a very clear and systematic addition, this comprehension is quite useful for an accu- presentation focused for the endoscopic sinus surgeon. rate evaluation of the various potential pathologies and A thorough knowledge of all anatomical structures their managements. Macroscopic description of the and variations combined with cadaveric dissections using nose and paranasal sinuses is presented through a dis- paranasal blocks is of utmost importance to perform cussion of the important structures of this complicated proper sinus surgery and to avoid complications. The region. A correlation with intricate endoscopic topo- complications seen with this surgery are commonly due graphical anatomy is discussed for a clear understanding to nonfamiliarity with the anatomical landmarks of the of the nasal cavity and its relationship to adjoining si- paranasal sinus during surgical dissection, which is con- nuses and danger areas. A three-dimensional anatomy is sequently performed beyond the safe limits of the sinus.
    [Show full text]