SarahRynbeck IndividualProject GCAS9

MyoglobinexpressioninNotothenioid ancestor variegatus suggests lossisnotcoldadaptive

SarahRynbeck IndividualResearchProject Supervisedby:DrVictoriaMetcalf GCAS92006/07

1 SarahRynbeck IndividualProject GCAS9 Abstract The icefish family Channichthyidae has been the focus of considerable research in myoglobin expression. It is known that none of the sixteen species studied produce myoglobin protein in theirpectoralmuscle,andsixspeciesdonotproducemyoglobinatall.Thislossofexpression hasoccurredbyatleastthreeseparateeventsandtwodifferentmechanisms,andwasthoughtbe an adaptation to the cold waters of Antarctica. Four Bovichtus variegatus individuals were studied as the basal ancestor to the notothenioid suborder, and was compared to five notothenioids, a nonAntarctic notothenioid and an outgroup. Preliminary results suggest myoglobinexpressionisnotcoldadaptiveasnoneofthespeciesproducedmyoglobinproteinin the pectoral adductor profundus muscle, including the outgroup, NZ Spotty (Notolabrus celidotus). Allspecieshadmyoglobinproteinpresentinthehearttissueranging in sizefrom14kDato16kDa,andcouldonlybeseenbycomparingtheredmuscleandhearttissue ofeachspecies.TheRNAwasbetterqualitythanthegDNAbutneithercDNA(RTproduct)or gDNAboundwelltotheprimers,andonlyveryfaintbandscouldbeseenonthegels.Further analysisshouldbeundertakentoconfirmtheresultsofthisstudybypurifyingthesamplestogain brighterbandsonthegelandsequencingtheproducttocheckitismyoglobin.

Introduction Notothenioid have many adaptations to survive in the stable cold oceans surrounding Antarcticawithconstantseawatertemperaturesof1.86°C.Theseincludeincreasedfluidlipids, antifreezeglycoproteins,increasedheartsizeandbloodvolume,anddecreasedbloodviscosity, andtheseadaptationshavebeenthefocusofconsiderableresearch(Sidelletal,1997).Therehas been a large amount of research done on the Channichthyidae family of icefishes with some species losing haemoglobin and myoglobin protein expression from their heart and oxidative skeletaltissues(Sidelletal,1997).Itwassuggestedthatthislosswasadaptivetothecoldwater temperaturewithindividualshavingincreasedintracellularlipidstotransportoxygen,andlower metabolicrates.Theywereexpectedtorelyontheincreasedoxygensolubilityofthewaterto compensate (Vayda et al, 1997). No notothenioids studied to date express myoglobin in their pectoral adductor profundus muscle (oxidative (red) skeletal muscle), and it is known that multiple independent mutation events throughout evolution of the notothenioid family have

2 SarahRynbeck IndividualProject GCAS9 producedarandompatternofexpressionofmyoglobinexpression(Vaydaetal,1997;Moylan andSidell,2000;Smalletal,2003). Myoglobin (Mb) is an intracellular oxygen binding protein, that both stores and transports oxygen from capillaries to mitochondria in oxidative muscles, and gives red tissues their characteristic colour (Sidell, 1998; Moylan and Sidell, 2000; Vayda et al, 1997). Mb is a monomeric protein and therefore has a hyperbolic saturation curve, which would increase its affinityforoxygenatlowertemperaturesandreleaseboundoxygenonlyatverylowintracellular partialpressure(Sidell,1998). The Bovichtidae family is one of eight families in the suborder within the Perciformorder.Theyarethebasalgroupconsistingofthethreegenera , Halaphritis and Bovichtus,withhighspeciesdiversityanddispersal(Mazzei,2006).Thegenerallyaccepted relationships between the Notothenioidei suborder are (Bovichtidae, (Nototheniidae, (Harpagiferidae, (Artedidraconidae, (Bathydraconidae, (Channichthyidae)))))) (Ritchie et al, 1997), with the Notothenioid suborder evolving in Antarctic waters around 25 million years (Sidelletal,1997). Bovichtus variegatus ()arefoundbetweenWellingtonandtheSub AntarcticIslandsofNewZealand.Theaimofthisstudyistodeterminewhetherthisspecieshas lost the expression of the myoglobin protein and mRNA with comparison to other Antarctic notothenioidspecies.TheNZSpotty Notolabrus celidotus withinthe Labridae familyisusedas anoutgroup.ThehypothesisforthisstudyisthatallspecieswillhaveMbproteinandmRNA present in the heart tissue, and all (with the exception of NZ Spotty) will not express the Mb proteinormRNAinthepectoralmuscle,butwillretainthegeneinthegenomicDNA Method Speciesstudied Heart and pectoral adductor profundus muscle (oxidative (red) skeletal muscle) were analysed fromfour Bovichtus variegatus (BV)individuals(labeled1to4),andfivenotothenioidspecies. These included Chionodraco hamatus (CH) , Pagothenia borchgrevinki (PB) , Trematomus newnesi (TN) , Trematomus eulepidotus (TE) and Trematomus bernacchii(TB).Theredpectoral muscle of a NZ black cod Notothenia angustata (NA) was also analysed as a nonAntarctic

3 SarahRynbeck IndividualProject GCAS9 notothenioid.BothheartandredmusclewereanalysedintheNZSpotty Notolabrus celidotus, (NZspot)asanoutgroup.TheSpottybelongstoadifferentfamilywithintheperciformorder, andshouldbeasuitablecontrolforthestudy. Tissuepreparation Alltissueswerekeptat80°Cbeforeuse.Eachsamplewascutwithasterilizedscalpelintotwo pieces,oneforproteinanalysisandtheotherforRNAextraction.Eachtissuewasweighedtothe nearestmilligram,tobearound100milligramsiftherewassufficienttissue.Thesamplesbeing used for protein analysis were transferred to an ice bucket to keep them cool, and the other sampleswerereturnedtothe80°Cfreezertopreventdegradation.

Part A: Myoglobin Protein Analysis ProteinHomogenization TheproteinhomogenizationmethodwasmodifiedfromMoylanandSidell(2000).Between10 milligramsand140milligramsoftissuewashomogenizedwithninetimesthevolumeof20mM HEPES buffer (pH 7.8 at 4°C) to create a 10% (w/v)homogenate. Larger sized samples were placedintoaglassflatbottomtubeandgroundtwicefor30secondsintheTekmarTissumizer witharestperiodof15secondsoniceinbetween.Smallersamplesweregroundinasterilized mortarandpestle(baked4hoursat140°C)withliquidnitrogenbeforetheHEPESbufferwas added. The homogenates were spun at 10,000 x g in the Eppendorf Centrifuge 5403 for ten minutesat4°C.Thesupernatantwastransferredtoanewtubeandbothpelletandsupernatant tubeswereputintoarefrigerator. BradfordAssay Protein concentrations were determined using the BioRad Protein Assay method with the FLUOstarOptimaandassociatedprogram(SoftwareVersion2.00R3)fromBMGLabTech.All readingsweredoneat595nmanddoneinduplicate.Astandardcurvewascreated,usingbovine serumalbumin(BSA)asthestandard,andwaterasazero.FinalconcentrationsofBSAwere 2g/mlto20g/ml,inincrementsof2g/ml,withafinalvolumeof200l(160lofstandardand 40lofBradfordreagent).2g/ml,6g/ml,12g/ml,16g/mland20g/mlformedalinearline andwereusedasthestandardcurvepointstodetermineproteinconcentration.

4 SarahRynbeck IndividualProject GCAS9 AdilutionserieswasdoneusingPBRMandTBHfrom1:4to1:1000withafinalvolumeof 1000l.1:500wasseenthebestdilutionwithabsorbancereadingsaround0.7at595nm.Each samplewasthendilutedto1:500tooptimizetheabsorbancereadingstodetermineconcentration. ThemethodfortheBradfordassayfollowstheMicroassayprocedureforMicrotiterplatesinthe BioRad Protein Assay instructions. 40l of dye reagent concentrate was added to each well, followedby160lofeachdilutedsample.Sarstedt(Aust)Microtestflatplateswereusedwith BarSeal™ film covers. The plate was inverted once sealed to mix the reagents, before being incubated at room temperature for 5 minutes. The plate was run at the specified program including orbital mixing. The absorbencies were read and this method was repeated until the duplicateswerewithin0.05to0.1ofeachother,andanaveragebetweenthetwowascalculated. ProteinSDSPAGE(agarosegelelectrophoresis) Aratioof6.5proteinsampleto3.5SDSandBMEbufferwascreatedinanewtubetogive35g of total protein in each well. The final volumes ranged form 10l to 31l. Three Invitrogen NuPAGE ® 412% BisTris 1.5 Gels were run. Each contained 5l of a Fermentas PageRuler proteinladderasamarker,followedbySpotandCHtissuesascontrols.1x50mMMOPSSDS runningbuffermadeof50mMTrisBase,0.1%SDSand1mMEDTAwasused.Eachgelwas runthrough Invitrogen200M ®dualpowerin InvitrogenSureLock™NovexMiniCellsfor70 minutes at 180 volts. The gels were then stained with Coomassie Blue Stain containing 0.1% Coomassie Brilliant Blue G for 30 minutes, and destained overnight in destain solution (10% aceticacid,5% Methanol).PhotographsweretakenusingChemiGenius²BioImagingSystem andGeneSnapforanalysis. Part B: RNA and gDNA Analysis RNAextraction ThemethodforRNAandgDNAextractionofheartandpectoralmusclewasfromtheTrizol™ reagent instructions (Invitrogen life technologies). Invitrogen RNase Away (Molecular BioproductsInc,SanDiego,CA)wasusedtocreateanRNasefreeworkspace.Theremaining tissue (up to 100 milligrams) of each sample was used and weighed to the nearest milligram.

5 SarahRynbeck IndividualProject GCAS9 Eachsamplewasgroundinasterilizedmortarandpestlewithliquidnitrogenuntilafinepowder wasformed.1mlofTrizol™reagentwasaddedtoeachmortarandmixedwiththegroundtissue. The solution was transferred to an eppendorf tube and incubated at room temperature for 5 minutestoallowcompletedissociationofnucleoproteins.0.2mlChloroformwasaddedtoeach tube,beforeshakinginhandfor15seconds.Afurther3minutesincubationatroomtemperature followed.ThesampleswerethencentrifugedintheEppendorfCentrifuge5810Rat11,500xg for15minutesat4°Ctoformthreelayers. TheupperaqueousphasewastransferredintoanewtubeforRNAanalysis,andtheremaining organicphasewaskeptforgDNAanalysis.0.5millilitresofisopropylalcoholwasaddedtothe tubecontainingtheRNAaqueousphase,andsampleswereincubatedatroomtemperaturefor10 minutes, before being spun at 11, 500 x g for 10 minutes at 4°C to precipitate the RNA. The supernatantwasremovedandtheRNApelletwaswashedoncewith1mlof75%ethanol,mixed byvortexfor5seconds,andcentrifugedat7,000xgfor5minutesat4°C.TheRNApelletwas driedfor10minutesinanRNasefreecupboardbeforebeingredissolvedin100lRNasefree water(DEPCH20)bypassingthepelletthroughapipettetip.Thesolutionwasthenincubatedat 60°Cfor10minutesbeforebeingtransferredtothe80°Cfreezer. DNAExtraction TheremainingorganicphasefromtheRNAextractionwasusedtoanalysethegenomicDNA. 0.3mlof100%ethanolwasaddedper1mlofTrizol™reagentinitiallyadded.Thiswasmixed by inversion and incubated at room temperature for 3 minutes. The samples were then centrifuged at 2000 x g for 5 minutes at 4°C. The supernatant was then removed and 1 ml of 0.1M sodium citrate was used to wash the pellet, and incubated at room temperature for 30 minuteswithperiodmixing.Afurther5minutesofcentrifugationat2000xgat4°Cfollowed. Thiswashwasrepeatedasecondtime,andiftherewasalargeamountofnonDNAmaterialora verylargepellet,itwasrepeatedathirdtime.1.5mlof75%ethanolwasaddedtothepelletand incubatedfor15minutesatroomtemperaturewithperiodicmixing,beforebeingspun(2,000xg, 5 minutes at 4°C). The supernatant was removed and the pellet air dried for 15 minutes. The pellet was dissolved in 8mM NaOH by pressing the pellet through the pipette tip, with 0.3ml NaOHfor50mgoftissue,upto1mlfor100mgtissue.86lof0.1MHEPESwasthenaddedper

6 SarahRynbeck IndividualProject GCAS9 1ml of NaOH, and 0.5M EDTA was added to make a concentration of 1mM. The resulting solution was centrifuged at 12,000 x g for 10 minutes to remove the insoluble material. The supernatantcontainingthegDNAwasthentransferredtoanewtube,andthistube,plustheone containingthepelletofinsolublematerialwerestoredintherefrigerator. RNAandgDNAconcentration BioLabNanoDrop ®ND1000Spectrophotometerwasusedtomeasurethe260:280ratioasatest of purity. The blank for RNA was DEPC H 20. 2l samples were placed on the tip, and read usingtheRNA40setting.Aratioof~2is‘pure’RNA.TheblankforgDNAwas8mMNaOHas thisisthesolutiontheDNAwasdissolvedin.2lsampleswereplacedonthetipandreadusing the DNA50 setting. A ratio of ~1.8 is ‘pure’ DNA. The ratio of RNA is higher as there is a higherratioofUracilcomparedtoThymine.Thevalueshouldbearoundthisratio,butnotexact as the ratio varies with the composition of nucleotides. The NanoDrop also gave the concentrationofthesampleinng/l. TotalRNAandgDNAYield Thefinalyield(g/mg)wascalculatedbydividingtheconcentrationfromtheNanoDropreading bytenandbythemilligramsoftissueinitiallyused.TheexpectedRNAyieldis11.5g/mg, andtheexpectedgDNAyieldis23g/mg. TotalRNAAgaroseGelElectrophoresistocheckintegrity ThemethodwasfromSambrooketal,1989.AnRNasefreeworkspacewascreatedandthetanks and combs were washed in 0.1M NaOH for 2 minutes and then rinsed with DEPCH20. 1% Agarosegelsweremadeusing0.5%TBEbuffer,with1gramofAgaroseaddedto100mlof0.5x TBE Buffer. Each well contained 14g of total RNA and 2l of 6x RNA loading dye (30% glycerol,0.25%BromophenolBlue,0.25%XyleneCyanolFFand1mlDEPCH 20),whichwere wellmixedthoughapipettetipbeforeloading. 4lof0.240.95kbRNAladderwasusedasa marker.Thegelswererunin0.5xTBEBufferat120voltsfor~40minutes.Thegelswerethen stainedinEthidiumBromide(EtBr)for30minutesandwashedinwaterbeforeaphotographwas taken under UV light. Two bands representing the ribosomal RNA, and background smearing representingthemRNAwasexpectedineachlaneiftheRNAqualitywashigh.

7 SarahRynbeck IndividualProject GCAS9 gDNAAgaroseGelElectrophoresistocheckintegrity The method was from Sambrook et al, 1989. A 1% Agarose gel were made using 0.5% TBE buffer(1gramofAgaroseaddedto100mlof0.5xTBEBuffer).Eachwellcontained110gof gDNAand2lof6xDNAloadingdye(0.25%BromophenolBlue,0.25%XyleneCyanolFF,

40% (w/v) sucrose and 1ml DEPC H 20), which were well mixed though a pipette tip before loading.10lofhighrangeladderwasusedasamarker.Thegelwasrunin0.5xTBEBufferat 150voltsfor40minutes.ThegelwasthenstainedinEthidiumBromide(EtBr)for15minutes andwashedinwater,beforeaphotographwastakenunderUVlight.Asinglelargebandwas expectedineachlaneifthequalityofgDNAwasgood. ReverseTranscriptionofRNAtocDNA The method for reverse transcription was followed from the BioLine cDNA Synthesis Kit Instructions.Amastermixwascreatedonicefrom15lOligo(dT)18PrimerMixand15l 10mMdNTPMix.2lofthismastermixwasaddedtonewtubes.1g/lRNAwasaddedto eachtube,andDEPCH20wasaddedtomakethesolutionineachtubeto10l.thesampleswere incubated at 65°C for 10 minutes and placed on ice for 2 minutes. A second master mix was created with 60l of 5x BioScript Reaction Buffer, 15l of 10u/l RNase Inhibitor, 3.75l of

200u/l BioScript enzyme, and 71.25 l of DEPC H 20. After 2 minutes on ice, 10l of this mastermixwasaddedtoeachtubeandsampleswereincubatedbetween42°Cand50°Cfor50 minutes,beforethereactionwasterminatedbyincubationat70°Cfor15minutesbefore.The cDNAsampleswerethenchilledoniceandplacedintherefrigeratoruntilthepolymerasechain reaction(PCR)wasstarted. PolymeraseChainReaction(PCR)ongDNA Mastermixesweremadewiththefollowingratios2.5l10xbuffer,2.5l2mMdNTP,5l1:50

Taqpolymerase,0.75l50mMMgCl 2,1lof10Mforward(F)primerand1lof10Mreverse

(R)primerand7.25lDEPCH20.20laliquotsofthismastermixwereputintoeachtube,and 5lofgDNAwasadded,resultinginatotalvolumeof25lineachtube.Theprimerpairsused wereMyo1FandMyo3R,andNMyo1F1andNMyo3R1.Thesequencesareshownbelowin table 1. Myo1 and Myo3 are degenerate fish Mb primers that are known to work on

8 SarahRynbeck IndividualProject GCAS9 Notothenioids. NMyo primers are notothenioid specific and should work on the NZ Spotty as well,astheregionishighlyconserved. Table1:PrimerSequencesandLocationandAnnealingTemperature Primer Name Primer sequence c. Primer AT Location Myo1F GTNCTNAARTGYTGGGG +19to+35 Myo3R CCYGCYTTYTCNGYCATNACY +323to+347 TTAC NMyo1F1 GTTTATTCACAGAGCACCCAG ~140ntinfrom 56.1 AA mRNA beginning NMyo3R1 GCCATCACGTTCCTCAGGGCA ~100ntfrom 64.7 GTC endofmRNA OncethegDNAwasaddedtothemastermixaliquots,thetubeswereplacedintheEppendorf MastercyclerepgradientSwithatemperaturegradientfrom50°Cto60°C,todeterminethebest annealingtemperature.ThePCRcyclebeganwithasinglecycleat94°Cfor2minutes,followed by 30 cycles of 30 seconds at 94°C, 20 seconds at 5060°C gradient and 30 seconds at 72°C. Once30cycleswerecompleted,thesampleswerekeptat72°Cfor7minutesfollowedbyahold at4°CuntiltheAgarosegelwasreadytoberuntopreventdegradation.ThiswasdoneusingTN, CHandSpothearttissueasapilottodeterminethebestannealingtemperatureforfurtherPCR’s. Theexpectedproductsizeis~451bpforMyo1/3primersand431forNMyo1F1/3R1primerson gDNA(table2). Table2:ProductsofPCR PCR primer pair cDNA product size gDNA product size Tm Myo1/Myo3 329 ~451 ? NMyo1F1/NMyo3R1 309 431 56.8 AgaroseGelElectrophoresisonPCRgDNA The same method explained above for gDNA Agarose Gel Electrophoresis to check integrity (page7)wasused(Sambrooketal,1989),witha1%agarosegel.Eachwellhad2lof6xDNA loadingdyeand5lofPCRgDNA,whichwerewellmixedthoughapipettetipbeforeloading. 3lofFermentasFastRuler™DNAlowrangeladderwasusedasamarker.Thesampleswere loaded in order of low annealing temperature to high annealing temperature to show which

9 SarahRynbeck IndividualProject GCAS9 temperatureproducedthebrightestsetofbands.Thegelwasrunin0.5xTBEBufferat180volts for30minutes.ThegelwasthenstainedinEthidiumBromide(EtBr)for15minutesandwashed inwater,beforeaphotographwastakenunderUVlight. PCRandAgaroseGelElectrophoresisonPCRcDNA(RTProducts) The same method for PCR was followed as above (page 7) and gel electrophoresis on the products from the reverse transcription (RT) of cDNA was from Sambrook et al (1989). A similarmastermixwasusedbutwith2lofcDNAwithincreasedDEPCH 20tomaintainthe totalvolumeat25l.2lof cDNAwereaddedto23lofmastermixandthesampleswere placedintotheEppendorfMastercyclerepgradientSandwererunonthesameprogramasthe genomicDNA,alsowithatemperaturegradientfrom50°Cto60°C.ThiswasdoneusingTN, CH,Spot,BV2andTBhearttissueasapilotruntodeterminethebestannealingtemperaturefor furthersamples.Thegelwasrunin0.5xTBEBufferat180voltsfor30minutes.Thegelwas then stained in Ethidium Bromide (EtBr) for 15 minutes and washed in water, before a photographwastakenunderUVlight. ControlPCRandPAGEonInvitrogenSalmonSpermDNA AcontrolPCRandagarosegelelectrophoresisusingcommercialsalmonspermDNAweredone byJonci Wolff.ThiswascomparedtopreviousgelstocompareDNAqualityandthelevelof humanerror.Theannealingtemperaturewasalsoextendedfrom45°Cto60°C.Theamountof dNTP’swerereducedto1lof2mMdNTP’sandthemagnesiumconcentrationwasincreasedto 1.5 l of 50mM Mg, with 2 l of 100ng/l of Salmon sperm DNA in each tube. All other variableswerethesameaspreviousruns.

Results Forallgelfigureheadings,thesymbolsHrepresentheart(ventricular)tissue,andRMrepresent redmuscleorpectoraladductorprofundusmuscle.Thespeciesnameshavealsobeenshortened toinitials.Theseare Bovichtus variegatus (BV1toBV), Chionodraco hamatus (CH) , Pagothenia borchgrevinki (PB) , Trematomus newnesi (TN) , Trematomus eulepidotus (TE) and Trematomus bernacchii (TB), NZ black cod Notothenia angustata (NA) and the NZ Spotty Notolabrus celidotus (Spot).

10 SarahRynbeck IndividualProject GCAS9 Part A: Myoglobin Protein The absorbance readings from the Bradford Assay were averaged and the concentration was calculatedusingtheformulafromthestandardcurve.Theabsorbancereadingsat595nmranged from0.411forBV2hearttissueto0.934forTNredmuscle(table3),withanaveragereadingof 0.7214. The concentration formula was Concentration = (Absorbance0.4255)/0.039. The two dilutionswerethentakenintoaccount,sothevaluewasmultipliedby500forthe1:500dilution of the sample, and by 1.25 for the dilution of the Bradford reagent. The final concentrations rangedfromcloseto0mg/mlforBV2heartto7.97mg/mlforTNredmuscle.Theamounttoload wasthencalculatedbasedonthisconcentration,andbufferwasaddedtohavea6.5sample:3.5 buffer ratio with the remainder made up of DEPCH20. The final volume in each well ranged from10lto31l(table3). Table3:Calculationsusedindetermininggelloadingamounts Conc [F] Amountfor Final SAMPLE ABS from 35gprotein/ Water Buffer mg/ml (l) (l) volume abs well(l) (l) RM PB 0.724 7.48 4.68 7.5 2.3 5.25 15 TE 0.621 4.90 3.06 11.4 1.6 7 20 TN 0.934 12.74 7.97 4.4 2.1 3.5 10 CH 0.733 7.71 4.82 7.3 2.5 5.25 15 NA 0.7565 8.30 5.18 6.8 3.0 5.25 15 TB 0.6775 6.32 3.95 8.9 0.9 5.25 15 SPOT 0.6635 5.96 3.73 9.4 0.4 5.25 15 BV1 0.5055 2.01 1.25 20.0 0.0 11 31 BV2 0.5805 3.88 2.43 14.4 1.9 8.75 25 BV3 0.7245 7.49 4.68 7.5 2.3 5.25 15 BV4 0.7165 7.29 4.56 7.7 2.1 5.25 15 HEART TN 0.891 11.67 7.29 4.8 1.7 3.5 10 TE 0.84 10.39 6.49 5.4 1.1 3.5 10 CH 0.7035 6.97 4.35 8.0 1.75 5.25 15 TB 0.891 11.67 7.29 4.8 1.7 3.5 10 PB 0.7665 8.55 5.34 6.6 3.2 5.25 15 SPOT 0.864 10.99 6.87 5.1 1.4 3.5 10 BV2 0.4115 0.35 0.22 20.0 0.0 11 31 BV3 0.5085 2.08 1.30 20.0 0.0 11 31 BV4 0.916 12.29 7.68 4.6 1.9 3.5 10

11 SarahRynbeck IndividualProject GCAS9

kDa 200 150 120 Figure 1: SDS PAGE gel 100 85 Protein1. Lane1,5lPageRulerProtein 70 60 ladder;lane2,SpotH;lane3, SpotRM;lane4,CHH;lane5, 50 CHRM;lane6,BV2H;lane7, 40 BV3H;lane8,BV4H;lane9 30 PBH;lane10TBH 25 20 Myoglobin 15 ~16kDa 10 12345 678910 Eachlanehad35lofproteinbasedonconcentrationsfromtheBradfordAssaybutsomelanes arepalerthanothers.Eachsampleshowsarangeofproteinbandsfrom200kDtoaround10kD. Each sample generally has larger bands at 85kDa, 50kDa, 40kDa and 15kDa. The myoglobin proteinbandislocatedaround16kDa,buttheactualsizeisdifferentbetweenspeciesandranges fromaround14to16kDa.SpotHhasadistinctivebrightbandaround14kDaandthisbrightband isusedamarkerforthemyoglobinproteinband.Itappearsthatalthoughtherearemanybandsin this region, the band at 14kDa is absent from the Spot RM (lane 3). All three bovictid hearts (lanes6,7,8)showadarkerbandatthebottomofgroupofbandsaround14kDa,suggestingthis speciesexpressesmyoglobinprotein.BothPBandTBheartsalsohaveadarkerbandwhichis likelytobemyoglobinbutisabithigherthanthebovictids,suggestingitislargerinsize,around 15kDa.Alltheheartmusclesonthisgelshowthemyoglobinproteins.Itisbesttocompareeach speciesredandheartmusclestolookfordifferences,ratherthancomparingspecieswitheach other.

12 SarahRynbeck IndividualProject GCAS9 kDa 200 150 Figure 2: SDS PAGE gel 120 Protein2. 100 85 Lane1,5lPageRulerProtein ladder;lane2,SpotH;lane3, 70 SpotRM;lane4,CHH;lane5, 60 CHRM;lane6,TNH;lane7, 50 TEH;lane8,BV1RM;lane 40 9, BV 2 RM; lane 10, BV 3 30 RM 25 20 15 Myoglobin 10 ~16kDa 12345678910 Thefirstfivelanesarethesameasthepreviousgelandshowthesamepattern,withbothSpot andCHheartsexpressingtheproteinandbothredmusclesnot.BothTNandTEhearts(lane6 and 7) show a very distinctive bad around 15kDa showing myoglobin is also present in these hearts,whilenoneofthebovichtidredmuscles(lane8,9,10)showadarkerbandatthebottom as seen on the previous gel (figure 1). This shows that the heart and pectoral muscle of the bovichtidsisdistinctlydifferent,asexpected.

13 SarahRynbeck IndividualProject GCAS9

kDa 200 Figure 3: SDS PAGE gel 150 Protein3. 120 100 Lane1,5lPageRulerProtein 85 ladder;lane2,SpotH;lane3, CHH;lane4,CHRM;lane5, 70 60 BV 4 RM; lane 6, PB RM; 50 lane 7, TB RM; lane 8, TN RM;lane9,TERM;lane10, 40 30 NARM 25 20 15 Myoglobin 10 ~16kDa 12345678910 Lane4istheBV4RM(figure3).Whencomparedtolane8offigure1,itappearsthemyoglobin bandisnotpresent,whichisconsistentwiththethreeotherbovichtidredmusclelanesinfigure2. PBandTBredmuscle(lane6and7)haveabrightbandatthesamelocationat15kDa,butwhen comparedtoheartmuscle,itisadifferentlocation,suggestingmyoglobinisnotpresent.TN(lane 8)andNA(lane10)haveabrighterbandaround14kDa,butismuchpalerthaninthehearttissue and further analysis would be to be done to confirm if this band is present. Based on a comparisonoftheheartandredmuscle,itappearsthemyoglobinisnotpresentintheredmuscle ofeitherspecies.TERMisknownfrompreviousstudiestohavenomyoglobinpresentinthered muscle,butdohaveitinthehearttissue.Thisprovidesevidencethatthebrightbandintheheart muscle(lane7,figure2)isthemyoglobinprotein,andshouldbefoundinbetweenthetwopaler bands(lane9offigure3)around15kDaifitwerepresentintheredmuscle.Therefore,theheart tissueofallspeciesanalysedappeartoexpressmyoglobin,andallredmuscletissueshowsan absenceofmyoglobinprotein,includingspotRM,whichissurprising.

14 SarahRynbeck IndividualProject GCAS9 Part B: RNA and gDNA analysis Table4:RNAConcentrationand260:280ratios RNASAMPLE Conc Initialmg Yield 260:280 ng/l tissue g/mg fromNanoDrop BV1 H 1.94 108.3 15 0.722 RM 1.90 212.3 37 0.574 BV2 H 2.01 160.7 19 0.846 Aratioofaround2is‘pure’forRNA.Mostof RM 2.02 126.2 52 0.243 BV3 H 1.77 58 10 0.580 the samples have ratios around 2 suggesting 1.80 RM 21 22 0.095 purity is high. However, PB RM has lower BV4 H 1.98 262 49 0.535 RM 1.88 161.6 89 0.182 purityat1.53,andBV3HandCHRMare1.73 Spot H 1.82 257.5 20 1.288 and1.72respectively,whichisalsoabitlow. RM 1.97 212.5 36 0.590 PB H 2.01 802.6 83 0.967 RM 1.53 846.9 91 0.931 TB H 2.06 1096.7 85 1.290 The expected RNA yield from the Trizol RM 2.00 658 89 0.739 extractionis11.5gper1milligramoftissue. TE H 2.06 1806.9 96 1.882 RM 2.09 913.5 99 0.923 Most of these values are less than this, around H 2.06 TN 471.9 60 0.787 0.7to0.9g/mg,withanaverageyieldof0.735 RM 2.08 1074.1 97 1.107 CH H 2.03 672 89 0.755 g/mg. RM 1.72 55.7 91 0.061 NA RM 1.95 318.6 96 0.332

Table5:gDNAconcentrationand260:280 Initial gDNASAMPLE Conc. mg Yield ratiosfromNanoDrop 260:280 ng/l tissue g/mg BV1 H 1.64 99.9 15 0.666 RM 1.61 46.8 37 0.126 Aratioofaround1.8is‘pure’forgDNA.Most BV2 H 2.05 19.3 19 0.102 RM 1.61 21.7 52 0.042 of these values are between 1.6 and 2.0 BV3 H 8.25 2.6 10 0.026 RM 2.00 416.1 22 1.891 suggesting purity is ok. BV3 H has a ratio of BV4 H 1.89 22.9 49 0.047 RM 1.65 849.1 89 0.954 8.25soisnotverypureatall,whichmaybedue Spot H 1.99 20.8 20 0.104 RM 1.72 1230.6 36 3.418 tothesmallinitialsamplesizeof10milligrams. PB H 2.18 12.8 83 0.015 TB RM has a low ratio of 1.0, which is RM 1.62 60.1 91 0.066 TB H 1.73 149.3 85 0.176 unexpectedduetothelargetissuesizeof89mg. RM 1.00 0 89 0.000 TE H 1.81 278.4 96 0.290 RM 1.84 311.6 99 0.315 TN H 1.83 32.6 60 0.054 The expected DNA yield from the Trizol RM 1.84 290.6 97 0.300 extraction is 23 g per 1 milligram of tissue. CH H 1.94 13.8 89 0.016 RM 2.11 531.1 91 0.584 Theaverageyieldwaslesswith0.443 g/mg. NA RM 1.63 112.5 96 0.117

15 SarahRynbeck IndividualProject GCAS9 Figure4:SDSPAGEtotalRNA1 Lane 1, 5 l PageRulerlowrange;lane 2, Spot H; Kb lane3,SpotRM;lane4,TNH;lane5,TNRM;lane 9.49 6,BV1H;lane7,BV1RM;lane8,BV2H;lane9, 7.46 BV2RM;lane10,TEH;lane11TERM;lane12 4.40 NARM. 2.37 RibosomalRNA(rRNA) 1.35 MessengerRNA(mRNA) 0.24 1 23456789 10 1112 TotalRNAgelswereruntoshowtheintegrityoftheRNA.GoodqualityRNAshouldhavetwo distinctbandsat~5kb(28S)and~2kb(16S)whichrepresentthetworibosomalRNA’s(rRNA) andbackgroundsmearingwhichrepresentsthemessengerRNA(mRNA).SpotH(lane1),BV1 H(lane6),andBV2H(lane8)allshowsomedegradationwithonlyonerRNAbandseen(figure 4).ThesecondbandisveryfaintintheredmuscleofBV1(lane7).Allotherbandsshowsome degradationbutgenerallythequalityshouldbesufficientforanalysis,asthetworRNAbandsare distinctive with background smearing of smaller size. The two ribosomal RNA bands occur around2.4kband1.35kb,whicharesmallerthanexpected.ThemRNAsizeisaround1.53Kb whichisconsistentwiththebandseenonthegel.

16 SarahRynbeck IndividualProject GCAS9

Kb Figure5:SDSPAGEtotalRNA2 Lane1,5lPageRulerlowrange;lane2,CHH; 9.49 lane3,CHRM;lane4,BV3H;lane5,BV3 7.46 RM;lane6,BV4H;lane7,BV4RM;lane8, 4.40 PBH;lane9,PBRM;lane10,TBH;lane11TB

RM 2.37 1.35 RibosomalRNA(rRNA) MessengerRNA(mRNA) 0.24

1 2 3 4 56 7 8 910 11 The two rRNA bands are at the same location as the previous gel around 2.4kb and 1.35kb (figure5).CHH,BV4HandRM,PBRM,andTBHandRMareallreasonablygoodquality withtworRNAbandsandabackgroundsmear(figure5).PBH(lane8)hasbackgroundsmearof mRNAbutnorRNAbands.TheheartandredmuscleofBV3(lanes4and5)areverydegraded withaverypalebandat1.35andlittlebackgroundsmearingshowingthequalityispoor,andCH RM(lane2)isheavilydegradedandunlikelytobesuitableforreversetranscription.

17 SarahRynbeck IndividualProject GCAS9 bp 10kb 4kb 2kb 1000 500

12 3 4 5 6 78 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Figure6:SDSPAGEofgDNA Lane1,5lPageRulerlowrange;lane2,SpotH;lane3,SpotRM;lane4,TNH;lane5,TNRM;lane6,BV1H; lane7,BV1RM;lane8,BV2H;lane9,BV2RM;lane10,BV3H;lane11,BV3RM;lane12,BV4H;lane13, BV4RM;lane14,CHH;lane15,CHRM;lane16,TEH;lane17,TERM;lane18,PBH;lane19,PBRM;lane20, TBH;lane21,TBRM;lane22,NARM;lane23,5lPageRulerlowrange

AsinglebandoflargesizewasexpectedinthegenomicDNAgel.However,somelanesshowed abackgroundsmearacrosstheentiresizerange,whileothersshowednothing(figure6).SpotH (lane2),TNH(lane4),BV2H(lane8),BV4H(lane12),CHH(lane14),TEH(lane18)and TBH(lane20)allhadthebackgroundsmear(figure6).Thissuggeststhathearttissuewasless susceptibletodegradationandredmuscleismorelikelytobecomedegradedovertime.TNRM (lane5)andBV3H(lane10)showedaverypalesmearbetween750basepairsand10kb.

18 SarahRynbeck IndividualProject GCAS9 bp 10kb 4kb 2kb 1000 500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Figure7:SDSPAGEgDNA Lane1,4lPageRulerlowrange;lane2,SpotRM;lane3,TNRM;lane4,BV1H;lane5,BV1RM;lane6,BV2 RM;lane7,BV3H;lane8,BV3RM;lane9,BV4H;lane10,BV4RM;lane11,CHRM;lane12,TERM;lane13, PBRM;lane14,TBRM;lane15,NARM;lane16,4lPageRulerlowrange TheSDSPAGEforgDNAwasrerunforsamplesthatwereunsuccessfulinthepreviousgelwith 10lofgDNAaddedtoeachwelltomakesuretherewassufficientgeneticmaterialinthewell. Morebandswereseen,butnoneofthemwereasinglebandoflargesizeasexpected(figure7). SmearswerenotseenatallforBV1RM(lane5)orBV2RM(lane6),BV3RM(lane8)orBV4 RM (lane 10) showing there was no genomic DNA in any of these lanes for red muscle in Bovichtus variegatus individuals.TherewasalsonobandseenforNARMinlane15.

19 SarahRynbeck IndividualProject GCAS9

bp 1500 850

1 2 3 4 5678 9 10111213 14 1516 17 181920212 2 400 200 12345678910111213141516171819202122232425 50 bp 1500 850 400 262728293031323334353637383940 Figure8:PCRongDNA Lane1,3lPageRulerlowrange;lane1,TNH(Myo);lane2,SpotH(Myo);lane3,CHH(Myo);lane4,TNH (NMyo);lane5,SpotH(NMyo);lane6,CHH(NMyo);lanes738continued.Lanes39and40arenegativecontrols.

This gel was run for the heart tissue of TN, CH and Spot using the two primer sets for a temperaturerangefrom50°Cto60°C.AsmearofDNAisseenacrossalllanesbutnobandscan beseen.Theyareeitherfadedintothebackgroundsmearandnotbright,orthePCRdidnotwork forreasonssuchasthegDNAistoodegradedorachemicalwasnotatthecorrectsoncentration. Aprimerdimerbandcanbeseenaround50kbshowingtheprimersdidnotannealtothegDNA.

20 SarahRynbeck IndividualProject GCAS9

bp 1500 850 400 200 50 12 3 4 5 6 789 10 11 12 13 141516 1718192021

50° C52 °C54 °C56 °C

bp 1 2 3 4 1500 850 400 200 2223242526272829303132 50 58 °C60 °C Figure9:SDSPAGEcDNA(RTproduct) Lane1,3lFermentasFastRulerDNAladderlowrange;lane2,TNH;lane3,CHH;lane4,SpotH;lane5,BV1H,;lane6,TB H;lane7,TNH;lane8,CHH;lane9,SpotH;lane10,BV1H;lane11,TBH;lane12,TNH;lane13,CHH;lane14,SpotH; lane15,BV1H;lane16,TBH;lane17,TNH;lane18,CHH;lane19,SpotH;lane20,BV1H;lane21,TBH;lane22,3l FermentasFastRulerDNAladderlowrange,lane23,TNH;lane24,CHH;lane25,SpotH;lane26,BV1H;lane27,TBH; lane28,TNH;lane29,CHH;lane30,SpotH;lane31,BV1H;lane32,TBH. Thisgelwasrunoveratemperaturegradientfrom50°Cto60°Cforfivedifferentspeciestowork out the best annealing temperature for the Myo 1/ 3 primers. TN and CH heart muscle tissue producedadominantsmearoverthegelatmosttemperatures,butthebandswithinthissmearof MbcDNAwerefadedintothesmearornotpresent.NobandswereseenforSpotH,BV1Hor TBHoverthetemperaturerange.Aprimerdimerbandcanbeseenaround50bpshowingthe primersdidnotbindsuccessfullytothecDNA.Itisalsopossiblethatthereversetranscription processdidnotworkasitwasunabletobetested.

21 SarahRynbeck IndividualProject GCAS9 Figure10:ControlPCRwithsalmonDNA Lane1,3lFermentasFastRulerDNAladderlowrange;lane2,45°C; lane3,48°C;lane4,51°C;lane5,55°C;lane6,58°C;lane7,60°C; This control gel was run using 100ng/l of Invitrogen bp SalmonSpermDNAandMyo1/3primers.Itshouldhave 1500 shownclearbands.Thetemperaturegradientshouldhave 850 shown which annealing temperature was best for this primer set. This gel was testing the primer quality and 400 master mix, and also seeing if DNA and RNA quality 200 were too poor for previous analysis. Again, the bands 50 werenotseenclearlybutmaybepresentwithinthesmear. 1234567 A faint primer dimer band can be seen around 50kb showingPCRdidnotworkonthesalmonspermDNA. Figure11:SalmonDNAcontrol2 . bp Lanes1to8containsalmonspermDNA 1500 and Myo 1/3 primers with a temperature 700 gradientfrom45°Cto60°C;lane9λEco 500 500 RIladder;lane10BiolineHyperladderV, 400 300 250 lanes12to18containsalmonspermDNA 200400 175 and NMyo 1F/3 R primers with a temp 150 125 gradientfrom45°Cto60°C;lanes19and 100 75 20areapositivecontrol,andlanes21and 50 25 22areanegativecontrol. 1234567891011121314151617181920212 2 Myo1/3 NMyo1F/3R ThisgelwasrunbyJonciWolffasacontrol.TheMyo1/3primerstotheleftoftherulerworked wellbutwerenotveryspecificastheyaredegenerateprimersandashortsequence,producing manybandsfrom1500bpto100bp.TheMbgDNAproductsizeusingMyo1/3primersis~451 andtherearefaintbandsinthisareasuggestingtheseprimersdidwork.TheNMyoprimersdid notworkhowever,asnobandswereseenexcepttheprimerdimerbandat50bpineverylane. TheexpectedsizeforabandofMbherewas431bp.BothpositivecontrolsworkedshowingPCR wassuccessful,andbothnegativeswereclearshowingtherewasnocontamination.

22 SarahRynbeck IndividualProject GCAS9 Figure 12: Repeat control expt

incl salmon. Lane 1, 3 l Fermentas

FastRulerDNAladderlowrange;lane2,BV1 H(Myo);lane3,SpotH(Myo);lane4,Salmon bp (myo);lane5,BV1H(NMyo);lane6,SpotH (NMyo); lane 7, Salmon (Nmyo); lane 8, 1500 positivecontrol;lane9,negativecontrol.Lanes 2to9usingJonci’singredientsformastermix. 850 Lane10,BV1H(Myo);lane11,SpotH(Myo);

1 2 3 4 5678 9 10111213 14 1516 17 181920212 2 lane 12, Salmon (myo); lane 13, BV 1 H 400 (NMyo); lane 14 Spot H (NMyo); lane 15, 200 Salmon(Nmyo);lane16,positivecontrol;lane 50 17, negative control. Lanes 10 to 17 using 1234567891011121314151617 Victoria’singredientsformastermix. Thisgelwasexpectedtoshowsimilarbandstothegelabove(figure11),particularlyinlanes7 and 15, however the bands were extremely faint. Because the bands are present but faint, it appearsthePCRhasworked,justnotverywell.Faintbandscanbeseeninlane3,lane7and possiblylane6around1500bp,andinlane11around2000bp.Aprimerdimerbandcanalsobe seenin most lanes at50bp.Thepositivecontrolinlane 8did work andshowsbands at3 kb, 200bp and 50bp, and as there was nothing in the negative control lanes, there was no contamination.Lanes10to17aremuchfainterthanlanes2to8suggestingoneofthereagents maybeadifferentconcentrationornotaddedcorrectlytothemastermix,asthisusedseparate mastermixingredients.

23 SarahRynbeck IndividualProject GCAS9 Discussion Protein analysis Myoglobinproteinwasexpressedinthehearttissueofallspeciesstudied,andwasnotexpressed in the pectoral (red) muscle of any species, including the NZ Spotty outgroup, Notolabrus celidotus .ThiswasunexpectedastheSpottyisnotinthenotothenioidsuborder.Itistherefore suggestedthatmyoglobinexpressioninthepectoralmusclewaslostbeforetheradiationofthe Notothenioids.TheaverageabsorbancereadingsfromtheBradfordAssaywas0.7214,withfinal concentrations ranging from close to 0mg/ml for BV2 heart tissue to 7.97mg/ml for TN red muscle.TheBV2hearttissuewasonly15milligramsandBV3Hwas12milligramsinsizeand itislikelytheseextremely smallsamplesizes resultedintheproteinconcentrationbeing very small.Onaverage,hearttissuehasahigherconcentrationofprotein (5.16mg/ml)thanthered muscle (4.61). The SDS PAGE for proteins was run using a crude protein mix. The gel percentagewaslowresultinginthesmallersizedbandsbeingveryclosetoeachother,making analysisdifficult.Itwouldbebeneficialtorunthegelagainusingahigherpercentagetotryto separatethebandsoutforeasiercomparison.Alternatively,itmaybebeneficialtocutthebands outofthegelandpurifythatsectionandrerunthegelstoseparatethebandsfurther.Thebands alsodifferinsizebasedonthecompositionsoitisdifficulttocomparespecieswitheachother and know which band represents the myoglobin protein. Therefore, it would be beneficial to sequencethebandtocheckthatitiscorrecttohaveconclusiveresults.

RNA analysis RNAextractionusingtheTrizolmethodwassuccessfulformostsamples.TheNanoDropratios shouldbearound2for‘pure’RNA.Theaveragereadingwasslightlylowerthanthisat1.937, whichisstillclosesuggestingthepurityisgenerallygood.However,PBredmusclehaslower purityat1.53,andBV3heartandCHredmuscleare1.73and1.72respectively,whichisalsoa bitlow.CHandPBredmuscleshadalargeinitialsamplesizesoitwasexpectedthatthepurity wouldberelativelygood,butmayhavebeencontaminatedwiththephenolphaseortheRNA pelletwasnotcompletelydissolved.Allothersampleslookrelativelypurewithratiosveryclose to2.TheexpectedRNAyieldfromtheTrizolextractionis11.5gper1milligramoftissue. The average yield was about half of this at 0.735 g/mg. A low RNA yield from the Trizol extraction can be due to incomplete homogenization of samples or the pellet not being

24 SarahRynbeck IndividualProject GCAS9 redissolvedcompletely.RNAgelswereruntoshowtheintegrityoftheRNA.GoodqualityRNA shouldhavetwodistinctbandsat~5kb(28S)and~2kb(16S)whichrepresentthetworibosomal RNA’s(rRNA)andbackgroundsmearingwhichrepresentsthemessengerRNA(mRNA).Spot, BV1andBV2hearttissueallshowsomedegradationwithonlyonerRNAbandseen.Allthree ofthesesampleshadinitialtissuesamplesoflessthan20milligrams,whichislikelytobean errorsource.PBhearthadanmRNAbackgroundsmearbutnorRNAbands.Theheartandred muscleofBV3weredegradedwithavery paleband at1.35kb andlessbackgroundsmearing showingthequalityispoor,andCHredmusclewasheavilydegradedandunlikelytobesuitable forreversetranscription.AllotherbandsshowedsomedegradationbutbothrRNAbandswere clear with background smearing of smaller size. The two ribosomal RNA bands occur around 2.4kb and 1.35kb, which were also smaller than expected. The mRNA was around 1.5 2kb, whichistheaveragesizeformRNAsuggestingthequalityisgood.RNAdegradationfromthe TrizolextractionmethodcanbecausedbyRNase’s,butassomeRNAwasseeninalllanesofthe gel,thisisunlikely.Itismorelikelythatthesampleswerenotkeptatalowenoughtemperature, astheywerekeptoniceforconsiderableperiodsoftimewhileanalysiswasbeingperformed, ratherthaninafreezer. Several polymerase chain reactions (PCR) and agarose gels were run on a smaller sample of speciesusingthereversetranscriptionproducts(cDNA),andweregenerallyunsuccessful.The primersdidnotbindtothemRNAatanyoftheannealingtemperatureswithinthegradientfrom 50°Cto60°C.TNandCHheartmuscletissueproducedadominantsmearoverthegelatmost temperatures,butthebandswithinthissmearofMbcDNAwerefadedornotpresent.Nobands wereseenforSpotH,BV1HorTBHoverthetemperaturerange.Aprimerdimerbandcanbe seenaround50bpshowingtheprimersdidnotbindsuccessfullytothecDNA.Itisalsopossible thatthereversetranscriptionprocessdidnotworkandthesmearisthemRNA,astheproductsof reversetranscriptionareunabletobetested. Thetestwassuccessfulwhenrunoncommercial salmonspermDNA,suggestingtheRNAmayhavebeentoodegradedforPCReventhoughthe quality is high, based on NanoDrop 260:280 ratio and concentrations. When the gel was run usingpositiveandnegativecontrols,thepositiveshowedclearbandswhileonlyaprimerdimer bandwasseeninthenegative,suggestingthePCRworkedandthattherewasnocontamination in the samples. Some very pale bands were seen on a couple of the samples, particularly the

25 SarahRynbeck IndividualProject GCAS9 salmon sperm DNA suggesting that the PCR is working, but not completely. It would be beneficialtorerunthesamplesusingdifferentmastermixesandpossiblydifferentprimersetsto trytogainbrighterbandswithlessbackgroundsmearing.Althoughthetemperaturegradientwas included in the program, it may also be helpful to try different program lengths at each temperaturetoallowmoretimefortheprimeranddNTP’stobindtothemRNA. Genomic DNA analysis AllspeciesthathavebeenstudiedpreviouslyareknowntoretainthegeneinthegenomicDNA evenwhentheproteinisnotexpressed,whichiswhatwasexpectedofthespeciesinthisstudy. TheNanoDropratiosshowthatthesamplesarenotclosetopureDNAwithanaverageratioof 2.092, when pure DNA has a ratio around 1.8. When the samples were run on a gel, a background smear was seen, rather than a distinctive band. This suggests the gDNA has been degraded,andcouldbecausedbyoldsamples,andfreezeandthawcycles.Samplesweresnap frozeninliquidnitrogenaftertheinitialsamplewasdividedintwotopreventthisandthenkept ina80°Cfreezer,sothiswasunlikely.Anothersourceofdegradationcouldbethatoncethe supernatantcontainingRNAwasremoved,theremainingsolutionwasputintotherefrigerator andnotafreezer.Theyieldwasalsomuchlowerthanexpectedwithonlyis 0.443 g/mgwhen2 3 g per 1 milligram of tissue was expected. A low yield can be caused by incomplete homogenizationofthetissueorthefinalDNApelletnotcompletelyredissolvedinNaOH.There wasalargeamountofnonDNAmaterialinmanyofthesamplesandathirdwashwithsodium citratewasdone,butmaynothavebeensufficient.Itislikelythatthebandswereverypaledue toacombinationofinsufficientwashingandtheDNAnotbeingcompletelyredissolved.Asthe gDNAwasdegraded,thepolymerase chainreactionwithMyo1/3and NMyo1F/3Rwasalso unsuccessful,withnobandsseen.FurtheranalysiswasnotdoneonthegDNA,andcDNAwas usedinstead. Recommendations FurtheranalysisshouldbedoneonthemRNAandcDNAtoconfirmtheresultsfromtheprotein analysis.ItwouldbeusefultopurifybothproteinandcDNAsamplesbeforePCRisrunagain. More samples should be used as there was a large amount of variation between the four bovichtidsanditislikelythisistrueforallspecies,althoughthisisdifficultasmostfisharefrom

26 SarahRynbeck IndividualProject GCAS9 Antarcticwaters.ItwouldalsobegoodtosequencebothproteinusingtheMaldiTOFanalysis methodtogettheaminoacidsequence,andalsothecDNAtochecktheprimersboundtothe correctlocation.Astheproteinbandsaresimilarinsizebutnotexact,sequencingthebandwould provideabsoluteevidencewhethermyoglobinispresentintheheartandpectoralmuscleofeach species.Thiscouldthenbeusedinferevolutionaryrelationshipsbetweenspecies.Speciesthatdo not have myoglobin should have compensatory mechanisms to transport oxygen and it is hypothesizedthatsomespecieshaveincreasednumbersofmitochondriawithfluidmembranes, andthiscouldbeausefuldirectionfortheworktoprogress. Conclusion 1Preliminaryresultsbasedontheproteingelssugge 2 3 4 5 6 7 8 9 10 11stthatthelossofmyoglobinexpressionisnot 12 13141516 coldadaptiveasitisnotpresentinthepectoraladductorprofundus(red)muscleofanyofthe nothenioidspeciessampledincludingthebasalancestor Bovichtus variegatus andtheNZSpotty outgroup, Notolabrus celidotus. Thissuggestsitisnotspecifictothenotothenioidsuborder,and was lost earlier within the Perciform order before the radiation of the Notothenioids. The expressionofmyoglobinisselectivelyneutralinthepectoralmuscle,withselectiveadvantages intheheartmuscleofthesespecies. Acknowledgements IwouldliketothankmysupervisorDrVictoriaMetcalfforherassistancewiththisprojectin designingthe method,providingtissuesamples andequipment,andalsoforhertime. Iwould alsoliketothankJonciWolffforhishelpwiththePCRmethodandanalysisofthegels.

27 SarahRynbeck IndividualProject GCAS9 References CashonRE,Vayda ME andSidellBD(1997). Kinetic characterisation of myoglobins from vertebrates with vastly different body temperatures. Comparative Biochemistry and Physiology117B(4):613620 Moylan TJ and Sidell BD (2000). Concentrations of myoglobin and myoglobin mRNA in heart ventricles from Antarctic .TheJournalofExperimentalBiology203:12771286 MazzeiF,GhigliottiL,LecointreG,OzoufCostazC,CoutanceauJP,DetrichWandPisanoE (2006). Karotypes of basal lineages in notothenioid fishes: the genus Bovichtus . Polar Biology29:10711076 RitchiePA,ImoueS,andLecointreG(1997). Molecular phylogenetics and the evolution of Antarctic notothenioid fishes. Comparative Biochemistry and Physiology Part A: Physiology 118(4):10091025 SambrookJ,FritschEFandManiatisT(1989). Molecular Cloning,1.EditedbyChrisNolan. ColdSpringHarbourPress,USA. SmallDJ,MoylanT,VaydaMEandSidellBD(2002).The myoglobin gene of the Antarctic icefish Chaenocephalus aceratus, contains a duplicated TATAAAA sequence that interferes with transcription. TheJournalofExperimentalBiology206:131139 Sidell,BD(1998). Intracellular Oxygen Diffusion: The roles of myoglobin and lipid at cold body temperature .TheJournalofExperimentalBiology201:11181127 SidellBD,VaydaME,SmallDJ,MoylanTJ,LondravilleRL,YuanML,RodnickKJ,Eppley ZA and Costello L (1997). Variable expression of myoglobin among the hemoglobinless Antarctic icefishes . ProceedingsoftheNationalAcademyof SciencesoftheUnitedStatesof America94:64203424 VaydaME,SmallDJ,YuanMLandCostelloL(1997). Conservation of the myoglobin gene among Antarctic notothenioid fishes. MolecularMarineBiologyandBiotechnology6(3):207 216

28