On-Line Computer Text Processing: a Tutorial* RICHARD C
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
OS/390 Introduction to ISPF
z/OS Basic Skills Information Center: ISPF Course Module Module 1: Main Features of ISPF © Copyright IBM Corp., 2005. All rights reserved. z/OS Basic Skills Information Center: ISPF Course Module Introduction This module, Main Features of ISPF, introduces you to the z/OS Interactive System Productivity Facility, or ISPF, with special emphasis on the Program Development Facility, or PDF. Time to complete: 10 – 15 minutes © Copyright IBM Corp., 2005. All rights reserved. Page 2 of 15 z/OS Basic Skills Information Center: ISPF Course Module Main Features of ISPF - Objectives Upon completion of this module, you should be able to: • Describe the purpose of ISPF and its relationship to TSO • List the four major components of ISPF • Explain the function of each of the four components © Copyright IBM Corp., 2005. All rights reserved. Page 3 of 15 z/OS Basic Skills Information Center: ISPF Course Module Main Features of ISPF – Purpose of ISPF The Interactive System Productivity Facility, or ISPF, is a development tool set for the z/OS operating system. It has been used since 1975 to increase the productivity of the development of mainframe applications, because it provides an extensive set of programmer oriented facilities. © Copyright IBM Corp., 2005. All rights reserved. Page 4 of 15 z/OS Basic Skills Information Center: ISPF Course Module Main Features of ISPF – The Time Sharing Option/Extended (TSO/E) The Time Sharing Option/Extended, or TSO/E, is a base element of IBM's mainframe z/OS operating system. TSO/E allows you to communicate interactively with the MVS operating system by typing commands (one line at a time) on a computer terminal. -
Facility/370: Introduction
File No. S370-20 Order No. GC20-1800=9 IDl\n \/:u+ •• ".1 I\n"n"': ..... ft IDIVI V IIlUQI .Via"'lllIlv Facility/370: Systems Introduction Release 6 PLC 4 This publication introduces VM/370, and is intended for anyone who is interested in VM/370. However, the reader should have a basic understanding of I BM data processing. VM/370 (Virtual Machine Facility/370) is a system control program (SCP) that tailors the resources and capabilities of a single System/370 computer to provide concurrent users their one unique (virtual) machine. VM/370 consists of a Control Program (CP), which manages the real computer, a Conversational Monitor System (CMS), which is a general-purpose conversational time-sharing system that executes in a virtual machine, a Remote Spooling Communications Subsystem (RSCS), which spools files to and from geographically remote locations, and a Interactive Problem Control System (I PCS), which provides problem analysis and management faci I ities. The first section of the publication is an introduction; it describes what VM/370 can do. The second, third, fourth, and fifth sections describe the Control Program, Conversational Monitor System, Remote Spooling Communications Subsystem, and Interactive Problem Control System respectively. The appendixes include information about VM/370 publication-to-audience relationship and VM/370-related publications for CMS users. , This publication is a prerequisite for the VM/370 system library. --...- --- ---.-- ------- ------ --..- --------- -~-y- Page of GC20-1800-9 As Updated Aug 1, 1979 by TNL GN25-0U89 ~b Edition (Karch 1919) This edition (GC20-1800-~ together with Technical Newsletter GN25-0489. dated August 1, 1919, applies to Release 6 PLC 4 (Program Level Change) of IBM Virtual Machine Facility/310 and to all subsequent releases until otherwise indicated in new editions or Technical Newsletters. -
Getting Started Computing at the Al Lab by Christopher C. Stacy Abstract
MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLI..IGENCE LABORATORY WORKING PAPER 235 7 September 1982 Getting Started Computing at the Al Lab by Christopher C. Stacy Abstract This document describes the computing facilities at the M.I.T. Artificial Intelligence Laboratory, and explains how to get started using them. It is intended as an orientation document for newcomers to the lab, and will be updated by the author from time to time. A.I. Laboratory Working Papers are produced for internal circulation. and may contain information that is, for example, too preliminary or too detailed for formal publication. It is not intended that they should be considered papers to which reference can be made in the literature. a MASACHUSETS INSTITUTE OF TECHNOLOGY 1982 Getting Started Table of Contents Page i Table of Contents 1. Introduction 1 1.1. Lisp Machines 2 1.2. Timesharing 3 1.3. Other Computers 3 1.3.1. Field Engineering 3 1.3.2. Vision and Robotics 3 1.3.3. Music 4 1,3.4. Altos 4 1.4. Output Peripherals 4 1.5. Other Machines 5 1.6. Terminals 5 2. Networks 7 2.1. The ARPAnet 7 2.2. The Chaosnet 7 2.3. Services 8 2.3.1. TELNET/SUPDUP 8 2.3.2. FTP 8 2.4. Mail 9 2.4.1. Processing Mail 9 2.4.2. Ettiquette 9 2.5. Mailing Lists 10 2.5.1. BBoards 11 2.6. Finger/Inquire 11 2.7. TIPs and TACs 12 2.7.1. ARPAnet TAC 12 2.7.2. Chaosnet TIP 13 3. -
Storage Organization and Management in TENEX I. Introduction
Storage Organization and Management in TENEX http://www.linique.com/dlm/tenex/fjcc72/ Storage Organization and Management in TENEX by Daniel L. Murphy Presented at the Fall Joint Computer Conference, 1972. Originally published in AFIPS Conference Proceedings Volume 41. I. Introduction In early 1969, BBN began an effort aimed at developing a new time-shared operating system. It was felt at the time that none of the commercially available systems could meet the needs of the research planned and in progress at BBN. The foremost requirement of the desired operating system was that it support a directly addressed process memory in which large list-processing computations could be performed. The cost of core storage prohibited the acquisition of sufficient memory for even one such process, and the problems of swapping such very large processes in a time-sharing environment made that solution technically infeasible as well. Paging was therefore the logical alternative, and our study and experience with list processing systems(1,2) led us to believe that using a demand-paged virtual memory system for such computations was a feasible approach. With demand paged process virtual memory added to our requirements, we found no existing system which could adequately meet our needs. Our approach was to take an existing system which was otherwise appropriate and add the necesary hardware to support paging. The system chosen was the DEC PDP-10 (3), which, although not paged, was available with a time-shared operating system and substantial support software. Consideration was given to modifying the existing PDP-10 operating system to support demand paging, but that approach was rejected because of the substantial amount of work which would be required, because of the inherent constraints imbedded in the architecture of any large system, and because development of a new operating system would allow the inclusion of a great many other features and facilities which were judged desirable. -
NWG/RFC# 752 MRC 2-Jan-79 01:22 Nnnnn a Universal Host Table
NWG/RFC# 752 MRC 2-Jan-79 01:22 nnnnn A Universal Host Table Network Working Group Mark Crispin Request for Comments 752 SU-AI NIC nnnnn 2 January 1979 A Universal Host Table ABSTRACT: The network host table in use at MIT and Stanford is described. This host table is superior to the NIC and Tenex host tables in several ways. A binary file, compiled from this host table, is also described. This file is used by subsystems on MIT's ITS and Stanford's WAITS timesharing systems for efficiency in host and network lookups. HISTORY: As with many other sites on the Arpanet, we found the NIC's host table unsuited to our needs. Part of the problem was because the NIC host table was often inaccurate and all too often failed to include several nicknames in common usage in our communities. In addition, the NIC host table's format was awkward for user programs to use, especially those which wanted to have the host table mapped into memory in some sort of structured binary form for efficient lookups. Finally, the NIC host table neglects to include some essential information. The ITS host table was originally designed to be compiled along with a network handling program (MIDAS, the PDP-10 assembler used, has a pseudo-op to insert a file into an assembly). In order to make the host table palatable to the assembler, every comment line began with a semicolon, and every actual data line began with the word HOST. Each program which used the host table defined HOST as an assembly macro before inserting the host table into the assembly. -
Engineering Strategy Overview Preliminary
March 1982 Engineering Preliminary Strategy Company Overview Confidential If.-t8···· L..4L ~ \:')' j.~.! / .;.' ' 1985 1990 1995 2000 - P,O S SIB L E DEC PRO Due T S - $lJOO cellular radio net discontinouous.100 word ~ lim! ted context HANDHELD speaker independent speaker independent $1.0K speech recogn. • sketchpad , interpretation Glata structures , ' & relat~onsh~ps object filing natural languaqe (invisible, protected structures) $40K I CAB I NET I ,4 (dedicated fixture) ~~~n limited context [:~~~~e~ ~~~:~~i:ti~n ~ ak rind pendent • voice ~tuate~ retrieval spe ~ e _ .. • te1econferenc1ng center cont1nued speechlrecogn~tion " ;., encryption associa tiveJparallel a;;;'e'los (, ..j." .---~ provide CAtt= ASSISTANT -------...--- .. • LIBRARlj\N ~ ?ertified "best match" retrieval ~ (secure) os (holographic? ) $650K BD 1/15/81 PRELIMINARY ENGINEERING STRATEGY OVERVIEW MARCH lYtil SECONIJ IJRAFT PRELIMINARY ENGINEERING STRATEGY OVERVIEW TABLE OF CONTENTS ,Preface Chapter I fhe Product Strategy and Transitioning to the Fifth Generation - Product Strategy Overview - The Transitions - Personal Computer Clusters, PCC, Are An Alternative to Timeshared Computers - The Product Strategy - Fifth and Sixth Computer Technology Generations - Uistributed Processing and Limits to Its Growth Chapter II Essays on the Criteria for Allocation of Engineering Resources - Overview, - Heuristics for Building Great Products, - Proposed Resource Allocation Criteria - UEC's Position in the VAN - Buyout Philosophy/Process/Criteria - Example of a "Make vs Buy" Analysis - Engineering Investment Sieve Chapter III Essays on Strategic Threats and Opportunities - Uverview, - Strategic Threats - Getting Organized in Engineering and Manufacturing to Face Our Future Competitors p - View of Competitors ---~,.~".~.-~ l f;t-1) IPrT Co?"! v. 7U/L, / IJ ...J - Te-Iecommunications Environment ) ;2f e-c.. - Competitive TeChnology Exercise, ltv • Chapter IV TeChnology Managers Committee Report ,MC- . -
Lisp: Program Is Data
LISP: PROGRAM IS DATA A HISTORICAL PERSPECTIVE ON MACLISP Jon L White Laboratory for Computer Science, M.I.T.* ABSTRACT For over 10 years, MACLISP has supported a variety of projects at M.I.T.'s Artificial Intelligence Laboratory, and the Laboratory for Computer Science (formerly Project MAC). During this time, there has been a continuing development of the MACLISP system, spurred in great measure by the needs of MACSYMAdevelopment. Herein are reported, in amosiac, historical style, the major features of the system. For each feature discussed, an attempt will be made to mention the year of initial development, andthe names of persons or projectsprimarily responsible for requiring, needing, or suggestingsuch features. INTRODUCTION In 1964,Greenblatt and others participated in thecheck-out phase of DigitalEquipment Corporation's new computer, the PDP-6. This machine had a number of innovative features that were thought to be ideal for the development of a list processing system, and thus it was very appropriate that thefirst working program actually run on thePDP-6 was anancestor of thecurrent MACLISP. This earlyLISP was patterned after the existing PDP-1 LISP (see reference l), and was produced by using the text editor and a mini-assembler on the PDP-1. That first PDP-6 finally found its way into M.I.T.'s ProjectMAC for use by theArtificial lntelligence group (the A.1. grouplater became the M.I.T. Artificial Intelligence Laboratory, and Project MAC became the Laboratory for Computer Science). By 1968, the PDP-6 wasrunning the Incompatible Time-sharing system, and was soon supplanted by the PDP-IO.Today, the KL-I 0, anadvanced version of thePDP-10, supports a variety of time sharing systems, most of which are capable of running a MACLISP. -
Non Unix Family Tree and Timeline Version 0.3.2
Non Unix family tree and Timeline Version 0.3.2 1958 FMS SOS 1958 Late 1950's Late 1950's 1960 1960 IBM 1410/1710 OS Early 1960's CTSS 1961-1962 1962 IBSYS PDP-1 OS 1962 Early 1960's 1962 SABRE 1962-64 EXEC I 1964 Tops-10 1.4 1964 1964 Early 1960's OS/360 Multics TOS (BOS, TOS,DOS) 1965 1965 EXEC II Early 1960's DOS CP-40 1966 (CP-67) Tops-10 1.9 MS/8 1966 1966 1966 1966 CAL BPS/360 CP/CMS Tops-10 2.18 Late 1960's ITS WAITS EXEC 3 Late 1960's 1967 1967 1967 1967 Late 1960's DOS/VSE 1968 PARS Tops-10 3.27 1968 1968 SCOPE TDOS 1968 Late 1960's EXEC 4 Late 1960's Late 1960's VMOS ACP v4 EXEC 8 OS/MFT Tops-10 4.50 ACP TENEX Unix Late 1960's 1969 1969 1969 1969 MSS 4.0 1969 Late 1960's Tops-10 4.72 10/1969 1969 MSS 5.0 1970 12/1969 1970 Tops-10 5.01 DOS/Batch 11 MSS 6.0 1970 1970 3/1970 MSS 7.0 3/1970 MSS 8.0 6/1970 1971 RSTS-11 1971 1971 Tops-10 5.02 Tape Scope 2 KRONOS 1971 OS/8 Early 1970's Early 1970's VS/9 Chios 1971 VM/CMS Earl 1970's Early 1970's 1972 OS/VS1 Tops-10 5.03 BKY 1972 1972 1972 Early 1970's Tops-10 5.04 5/1972? KI-TELNEX Tops-10 5.05 mid 1972 7/1972? Tops-10 5.06 1973 11/1972 1973 VSE RSX-11D 5/1973 RT-11 OS/12 Alto 7/1973 1973 OS/VS2 r1 1974 1974 MSS 22.0 1974 RSX-11M 1/1974 1974 Tops-10 5.07 Tops-10 6.01 MR 1.0 CP/M 1.0 5/1974 5/1974 6/1974 1974 OS/VS2 r2 7/1974 1975 1975 OS/VS2 MVS r3 3/1975 Tops-10 5.07A Tops-10 6.01A 5/1975 5/1975 CP/M 1.3 1976 Tops-10 6.02 1975 RSX-11M Plus 1976 Tops-20 1 MSS 28.0 1976 2/1976 2/1976 Tops-20 1A 4/1976 Tops-20 1B 10/1976 Tops-20 101B 12/1976 1977 1977 Tops-10 6.03 p-System I.0 3/1977 -
TITLE SPIRES (Stanford Public Information Retrieval System) 1970-71 Annual Report INSTITUTION Stanford Univ
DOCUMENT REsUME ED 057 828 LI 003 325 AUTHOR Parker, Edwin B. TITLE SPIRES (Stanford Public Information Retrieval System) 1970-71 Annual Report INSTITUTION Stanford Univ. , Calif. Inst. for Communication Research. SPONS AGENCY National Science Foundation, Washington, D.C. Office of Science Information Services. PUB DATE Dec 71 NOTE 154p.;(23 References) EDRS PRICE MF-$0.65 HC-$6.58 DESCRIPTORS *Computer Programs; *Information Retrieval; *Information Storage; *Information Systems; *On Line Systems IDENTIFIERS Computer Software; SPIRES; *Stanford Public Information Retrieval System ABSTRACT SPIRES (Stanford Public Information REtrieval System) is a computer information storage and retrieval system being developed at Stanford University with funding from the National Science Foundation. SPIRES has two major goals: to provide a user-oriented, interactive, on-line retrieval syste for a variety of researchers at Stanford; and to support the automation efforts of the university libraries by developing and implementing common software. SPIRES I, a prototype system, was implemented at the Stanford Linear Accelerator Center (SLAC) in 1969, from a design based on a 1967 information study involving physicists at SLAC. Its primary data base is a high-energy-physics preprints file. Evaluation of SPIRES I resulted in the definition of a production information storage and retrieval system, SPIRES II. This system will be available -daily, beginning in mid-1972, to faculty, staff, and students of the University.- It is characterized by flexibility, simplicity, and economy. _SPIRES II will operate on-line on an IBM 360/67 computer. This report summarizes the uses of the SPIRES I system over the past year and describes both the nature of SPIRES II and this system,s development over the past year. -
MTS on Wikipedia Snapshot Taken 9 January 2011
MTS on Wikipedia Snapshot taken 9 January 2011 PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sun, 09 Jan 2011 13:08:01 UTC Contents Articles Michigan Terminal System 1 MTS system architecture 17 IBM System/360 Model 67 40 MAD programming language 46 UBC PLUS 55 Micro DBMS 57 Bruce Arden 58 Bernard Galler 59 TSS/360 60 References Article Sources and Contributors 64 Image Sources, Licenses and Contributors 65 Article Licenses License 66 Michigan Terminal System 1 Michigan Terminal System The MTS welcome screen as seen through a 3270 terminal emulator. Company / developer University of Michigan and 7 other universities in the U.S., Canada, and the UK Programmed in various languages, mostly 360/370 Assembler Working state Historic Initial release 1967 Latest stable release 6.0 / 1988 (final) Available language(s) English Available programming Assembler, FORTRAN, PL/I, PLUS, ALGOL W, Pascal, C, LISP, SNOBOL4, COBOL, PL360, languages(s) MAD/I, GOM (Good Old Mad), APL, and many more Supported platforms IBM S/360-67, IBM S/370 and successors History of IBM mainframe operating systems On early mainframe computers: • GM OS & GM-NAA I/O 1955 • BESYS 1957 • UMES 1958 • SOS 1959 • IBSYS 1960 • CTSS 1961 On S/360 and successors: • BOS/360 1965 • TOS/360 1965 • TSS/360 1967 • MTS 1967 • ORVYL 1967 • MUSIC 1972 • MUSIC/SP 1985 • DOS/360 and successors 1966 • DOS/VS 1972 • DOS/VSE 1980s • VSE/SP late 1980s • VSE/ESA 1991 • z/VSE 2005 Michigan Terminal System 2 • OS/360 and successors -
The UNIX Time- Sharing System
1. Introduction There have been three versions of UNIX. The earliest version (circa 1969–70) ran on the Digital Equipment Cor- poration PDP-7 and -9 computers. The second version ran on the unprotected PDP-11/20 computer. This paper describes only the PDP-11/40 and /45 [l] system since it is The UNIX Time- more modern and many of the differences between it and older UNIX systems result from redesign of features found Sharing System to be deficient or lacking. Since PDP-11 UNIX became operational in February Dennis M. Ritchie and Ken Thompson 1971, about 40 installations have been put into service; they Bell Laboratories are generally smaller than the system described here. Most of them are engaged in applications such as the preparation and formatting of patent applications and other textual material, the collection and processing of trouble data from various switching machines within the Bell System, and recording and checking telephone service orders. Our own installation is used mainly for research in operating sys- tems, languages, computer networks, and other topics in computer science, and also for document preparation. UNIX is a general-purpose, multi-user, interactive Perhaps the most important achievement of UNIX is to operating system for the Digital Equipment Corpora- demonstrate that a powerful operating system for interac- tion PDP-11/40 and 11/45 computers. It offers a number tive use need not be expensive either in equipment or in of features seldom found even in larger operating sys- human effort: UNIX can run on hardware costing as little as tems, including: (1) a hierarchical file system incorpo- $40,000, and less than two man years were spent on the rating demountable volumes; (2) compatible file, device, main system software. -
The Mainframe Operating System Part 2 – TSO, ISPF and Unix Shell
Uni Hamburg – Mainframe Summit 2010 z/OS – The Mainframe Operating System Part 2 – TSO, ISPF and Unix Shell Redelf Janßen IBM Technical Sales Mainframe Systems [email protected] © Copyright IBM Corporation 2010 Course materials may not be reproduced in whole or in part without the prior written permission of IBM. 4.0.1 Introduction to the new mainframe Chapter 4: Interactive facilities of z/OS: TSO/E, ISPF, and UNIX © Copyright IBM Corp., 2010. All rights reserved. Introduction to the new mainframe Chapter 4 objectives Be able to: • Log on to z/OS • Run programs from the TSO READY prompt • Navigate through the menu options of ISPF • Use the ISPF editor to make changes to a file • Use the UNIX interfaces on z/OS, including the z/OS UNIX command shell. © Copyright IBM Corp., 2010. All rights reserved. 3 Introduction to the new mainframe Key terms in this chapter • 3270 and 3270 emulator • OMVS command • CLIST • path • ISHELL • READY prompt • ISPF • Restructured Extended • logon Executor (REXX) • native mode • shell • Time Sharing Option / Extensions (TSO/E) © Copyright IBM Corp., 2010. All rights reserved. 4 Introduction to the new mainframe How do we interact with z/OS? TSO/E • Allows users to logon to z/OS and use a limited set of basic commands. This is sometimes called using TSO in its native mode. ISPF • Provides a menu system for accessing many of the most commonly used z/OS functions. z/OS UNIX shell and utilities • Allows users to write and invoke shell scripts and utilities, and use the shell programming language.