Phylum Annelids
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Platyhelminthes, Nemertea, and "Aschelminthes" - A
BIOLOGICAL SCIENCE FUNDAMENTALS AND SYSTEMATICS – Vol. III - Platyhelminthes, Nemertea, and "Aschelminthes" - A. Schmidt-Rhaesa PLATYHELMINTHES, NEMERTEA, AND “ASCHELMINTHES” A. Schmidt-Rhaesa University of Bielefeld, Germany Keywords: Platyhelminthes, Nemertea, Gnathifera, Gnathostomulida, Micrognathozoa, Rotifera, Acanthocephala, Cycliophora, Nemathelminthes, Gastrotricha, Nematoda, Nematomorpha, Priapulida, Kinorhyncha, Loricifera Contents 1. Introduction 2. General Morphology 3. Platyhelminthes, the Flatworms 4. Nemertea (Nemertini), the Ribbon Worms 5. “Aschelminthes” 5.1. Gnathifera 5.1.1. Gnathostomulida 5.1.2. Micrognathozoa (Limnognathia maerski) 5.1.3. Rotifera 5.1.4. Acanthocephala 5.1.5. Cycliophora (Symbion pandora) 5.2. Nemathelminthes 5.2.1. Gastrotricha 5.2.2. Nematoda, the Roundworms 5.2.3. Nematomorpha, the Horsehair Worms 5.2.4. Priapulida 5.2.5. Kinorhyncha 5.2.6. Loricifera Acknowledgements Glossary Bibliography Biographical Sketch Summary UNESCO – EOLSS This chapter provides information on several basal bilaterian groups: flatworms, nemerteans, Gnathifera,SAMPLE and Nemathelminthes. CHAPTERS These include species-rich taxa such as Nematoda and Platyhelminthes, and as taxa with few or even only one species, such as Micrognathozoa (Limnognathia maerski) and Cycliophora (Symbion pandora). All Acanthocephala and subgroups of Platyhelminthes and Nematoda, are parasites that often exhibit complex life cycles. Most of the taxa described are marine, but some have also invaded freshwater or the terrestrial environment. “Aschelminthes” are not a natural group, instead, two taxa have been recognized that were earlier summarized under this name. Gnathifera include taxa with a conspicuous jaw apparatus such as Gnathostomulida, Micrognathozoa, and Rotifera. Although they do not possess a jaw apparatus, Acanthocephala also belong to Gnathifera due to their epidermal structure. ©Encyclopedia of Life Support Systems (EOLSS) BIOLOGICAL SCIENCE FUNDAMENTALS AND SYSTEMATICS – Vol. -
Spermiogenesis in the Acoel Symsagittifera Roscoffensis: Nucleus-Plasma
bioRxiv preprint doi: https://doi.org/10.1101/828251; this version posted November 1, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Spermiogenesis in the acoel Symsagittifera roscoffensis: nucleus-plasma membrane contact sites and microtubules. Matthew J. Hayes1, Anne-C. Zakrzewski2, Tim P. Levine1 and Maximilian J. Telford2 1University College London Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK 2 Centre for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK Running title: Contact sites and microtubule rearrangements in spermiogenesis Summary sentence: During spermiogenesis in the acoel flatworm Symsagittifera roscoffensis, two previously unidentified contact sites contribute to the structure of the mature spermatozoon and the axonemal structures show direct continuity between doublet and dense core microtubules. Keywords: Contact-site, acrosome, gamete biology, spermatid, spermatogenesis, spermiogenesis, acoel. bioRxiv preprint doi: https://doi.org/10.1101/828251; this version posted November 1, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Symsagittifera roscoffensis is a small marine worm found in the intertidal zone of sandy beaches around the European shores of the Atlantic. S. roscoffensis is a member of the Acoelomorpha, a group of flatworms formerly classified with the Platyhelminthes, but now recognised as Xenacoelomorpha, a separate phylum of disputed affinity. -
Nereis Vexillosa Class: Polychaeta, Errantia
Phylum: Annelida Nereis vexillosa Class: Polychaeta, Errantia Order: Phyllodocida, Nereidiformia A large mussel worm Family: Nereididae, Nereidinae Taxonomy: One may find several subjective third setiger (Hilbig 1997). Posterior notopo- synonyms for Nereis vexillosa, but none are dial lobes gradually change into long strap- widely used currently. like ligules (Fig. 6), with dorsal cirrus inserted terminally (most important species characte- Description ristic). The parapodia of epitokous individuals Size: Individuals living in gravel are larger are modified for swimming and are wide and than those on pilings and sizes range from plate-like (Kozloff 1993). 150–300 mm in length (Johnson 1943; Rick- Setae (chaetae): Notopodia bear ho- etts and Calvin 1971; Kozloff 1993) and up mogomph spinigers anteriorly (Fig. 8d) that to 12 mm in width (Hartman 1968). gradually transition to few short homogomph Epitokous adults are much larger than sex- falcigers posteriorly (Fig. 8a). Both anterior ually immature individuals. For example, and posterior neuropodia have homo- and one year old heteronereids were at least 560 heterogomph spinigers (Fig. 8c, d) and heter- mm in length (Johnson 1943). ogomph falcigers (Fig. 8b) (Nereis, Hilbig Color: Body color grey and iridescent green, 1997). Acicula, or heavy internal black blue and red body color. Females have spines, are found on all noto- and neuropodia more a reddish posterior than males (Kozloff (Figs. 6). 1993). Eyes/Eyespots: Two pairs of small ocelli are General Morphology: Thick worms that are present on the prostomium (Fig. 2). rather wide for their length (Fig. 1). Anterior Appendages: Prostomium bears Body: More than 100 body segments are two small antennae and two massive palps normal for this species (Hartman 1968), the each with small styles. -
Neanthes Limnicola Class: Polychaeta, Errantia
Phylum: Annelida Neanthes limnicola Class: Polychaeta, Errantia Order: Phyllodocida, Nereidiformia A mussel worm Family: Nereididae, Nereidinae Taxonomy: Depending on the author, Ne- wider than long, with a longitudinal depression anthes is currently considered a separate or (Fig. 2b). subspecies to the genus Nereis (Hilbig Trunk: Very thick segments that are 1997). Nereis sensu stricto differs from the wider than they are long, gently tapers to pos- genus Neanthes because the latter genus terior (Fig. 1). includes species with spinigerous notosetae Posterior: Pygidium bears two, styli- only. Furthermore, N. limnicola has most form ventrolateral anal cirri that are as long as recently been included in the genus (or sub- last seven segments (Fig. 1) (Hartman 1938). genus) Hediste due to the neuropodial setal Parapodia: The first two setigers are unira- morphology (Sato 1999; Bakken and Wilson mous. All other parapodia are biramous 2005; Tusuji and Sato 2012). However, re- (Nereididae, Blake and Ruff 2007) where both production is markedly different in N. limni- notopodia and neuropodia have acicular lobes cola than other Hediste species (Sato 1999). and each lobe bears 1–3 additional, medial Thus, synonyms of Neanthes limnicola in- and triangular lobes (above and below), called clude Nereis limnicola (which was synony- ligules (Blake and Ruff 2007) (Figs. 1, 5). The mized with Neanthes lighti in 1959 (Smith)), notopodial ligule is always smaller than the Nereis (Neanthes) limnicola, Nereis neuropodial one. The parapodial lobes are (Hediste) limnicola and Hediste limnicola. conical and not leaf-like or globular as in the The predominating name in current local in- family Phyllodocidae. (A parapodium should tertidal guides (e.g. -
Introduction to the Body-Plan of Onychophora and Tardigrada
Joakim Eriksson, 02.12.13 Animal bodyplans Onychophora Tardigrada Bauplan, bodyplan • A Bauplan is a set of conservative characters that are typical for one group but distinctively different from a Bauplan of another group Arthropoda Bauplan 2 Bauplan 3 Bauplan 4 Tardigrada Onychophora Euarthropoda/Arthropoda Insects Chelicerates Myriapods Crustaceans Arthropoda/Panarthropoda Bauplan 1 Arthropod characters • Body segmented, with limbs on several segments • Adult body cavity a haemocoel that extends into the limbs • Cuticle of α-chitin which is molted regularly • Appendages with chitinous claws, and mixocoel with metanephridia and ostiate heart (absent in tardigrades) • Engrailed gene expressed in posterior ectoderm of each segment • Primitively possess a terminal mouth, a non-retractable proboscis, and a thick integument of diverse plates Phylogenomics and miRNAs suggest velvets worm are the sister group to the arthropods within a monophyletic Panarthropoda. Campbell L I et al. PNAS 2011;108:15920-15924 Fossil arthropods, the Cambrian explosion Aysheaia An onychophoran or phylum of its own? Anomalocaris A phylum on its own? Crown group and stem group Arthropoda Bauplan 2 Bauplan 3 Bauplan 4 Tardigrada Onychophora Euarthropoda/Arthropoda Arthropoda/Panarthropoda Bauplan 1 How do arthropods relate to other animal groups Articulata Georges Cuvier, 1817 Characters uniting articulata: •Segmentation •Ventral nerv cord •Teloblastic growth zone Ecdysozoa Aguinaldo et al 1997 Ecdysozoa Character uniting ecdysozoa: •Body covered by cuticle of α-chitin -
OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber ......................................................................... -
A Phylogenetic Analysis of Myosin Heavy Chain Type II Sequences Corroborates That Acoela and Nemertodermatida Are Basal Bilaterians
A phylogenetic analysis of myosin heavy chain type II sequences corroborates that Acoela and Nemertodermatida are basal bilaterians I. Ruiz-Trillo*, J. Paps*, M. Loukota†, C. Ribera†, U. Jondelius‡, J. Bagun˜ a` *, and M. Riutort*§ *Departament de Gene`tica and †Departament de Biologia Animal, Universitat Barcelona, Av. Diagonal, 645 08028 Barcelona, Spain; and ‡Evolutionary Biology Centre, University Uppsala, Norbyva¨gen 18D, 752 36 Uppsala, Sweden Communicated by James W. Valentine, University of California, Berkeley, CA, June 28, 2002 (received for review April 15, 2002) Bilateria are currently subdivided into three superclades: Deuter- across all bilaterians. However different, this scheme also suited ostomia, Ecdysozoa, and Lophotrochozoa. Within this new taxo- alternative hypotheses such as the ‘‘set-aside cells’’ theory (13, nomic frame, acoelomate Platyhelminthes, for a long time held to 14) and the colonial ancestor theory (15). be basal bilaterians, are now considered spiralian lophotrochozo- This new status quo was soon questioned. A SSU-based study ans. However, recent 18S rDNA [small subunit (SSU)] analyses have using a large set of Platyhelminthes acoels and other metazoans shown Platyhelminthes to be polyphyletic with two of its orders, showed acoels to be the extant earliest branching bilaterians the Acoela and the Nemertodermatida, as the earliest extant (16), turning Platyhelminthes into a polyphyletic group. In bilaterians. To corroborate such position and avoid the criticisms of addition, Jenner (17) noted that phylogenies put forward to back saturation and long-branch effects thrown on the SSU molecule, the new metazoan molecular trees (10–12, 18) were incomplete we have searched for independent molecular data bearing good and heavily pruned. -
Alitta Virens (M
Alitta virens (M. Sars, 1835) Nomenclature Phylum Annelida Class Polychaeta Order Phyllodocida Family Nereididae Synonyms: Nereis virens Sars, 1835 Neanthes virens (M. Sars, 1835) Nereis (Neanthes) varia Treadwell, 1941 Superseded combinations: Nereis (Alitta) virens M Sars, 1835 Synonyms Nereis (Neanthes) virens Sars, 1835 Distribution Type Locality Manger, western Norway (Bakken and Wilson 2005) Geographic Distribution Boreal areas of northern hemisphere (Bakken and Wilson 2005) Habitat Intertidal, sand and rock (Blake and Ruff 2007) Description From Hartman 1968 (unless otherwise noted) Size/Color: Large; length 500-900 mm, width to 45 mm for up to 200 segments (Hartman 1968). Generally cream to tan in alcohol, although larger specimens may be green in color. Prostomium pigmented except for white line down the center (personal observation). Body: Robust; widest anteriorly and tapering posteriorly. Prostomium: Small, triangular, with 4 eyes of moderate size on posterior half. Antennae short, palps large and thick. Eversible proboscis with sparse paragnaths present on all areas except occasionally absent from Area I (see “Diagnostic Characteristics” section below for definition of areas). Areas VII and VIII with 2-3 irregular rows. 4 pairs of tentacular cirri, the longest extending to at least chaetiger 6. Parapodia: First 2 pairs uniramous, reduced; subsequent pairs larger, foliaceous, with conspicuous dorsal cirri. Chaetae: Notochetae all spinigers; neuropodia with spinigers and heterogomph falcigers. Pygidium: 2 long, slender anal cirri. WA STATE DEPARTMENT OF ECOLOGY 1 of 5 2/26/2018 Diagnostic Characteristics Photo, Diagnostic Illustration Characteristics Photo, Illustrations Credit Marine Sediment Monitoring Team 2 pairs of moderately-sized eyes Prostomium and anterior body region (dorsal view); specimen from 2015 PSEMP Urban Bays Station 160 (Bainbridge Basin, WA) Bakken and Wilson 2005, p. -
Frontiers in Zoology Biomed Central
Frontiers in Zoology BioMed Central Research Open Access Myogenesis in the basal bilaterian Symsagittifera roscoffensis (Acoela) Henrike Semmler*1, Xavier Bailly2 and Andreas Wanninger1 Address: 1University of Copenhagen, Department of Biology, Research Group for Comparative Zoology, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark and 2Station Station Biologique de Roscoff, Place Georges Teissier BP74, F-29682 Roscoff Cedex, France Email: Henrike Semmler* - [email protected]; Xavier Bailly - [email protected]; Andreas Wanninger - [email protected] * Corresponding author Published: 19 September 2008 Received: 5 May 2008 Accepted: 19 September 2008 Frontiers in Zoology 2008, 5:14 doi:10.1186/1742-9994-5-14 This article is available from: http://www.frontiersinzoology.com/content/5/1/14 © 2008 Semmler et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: In order to increase the weak database concerning the organogenesis of Acoela – a clade regarded by many as the earliest extant offshoot of Bilateria and thus of particular interest for studies concerning the evolution of animal bodyplans – we analyzed the development of the musculature of Symsagittifera roscoffensis using F-actin labelling, confocal laserscanning microscopy, and 3D reconstruction software. Results: At 40% of development between egg deposition and hatching short subepidermal fibres form. Muscle fibre development in the anterior body half precedes myogenesis in the posterior half. At 42% of development a grid of outer circular and inner longitudinal muscles is present in the bodywall. -
Phylum Onychophora
Lab exercise 6: Arthropoda General Zoology Laborarory . Matt Nelson phylum onychophora Velvet worms Once considered to represent a transitional form between annelids and arthropods, the Onychophora (velvet worms) are now generally considered to be sister to the Arthropoda, and are included in chordata the clade Panarthropoda. They are no hemichordata longer considered to be closely related to echinodermata the Annelida. Molecular evidence strongly deuterostomia supports the clade Panarthropoda, platyhelminthes indicating that those characteristics which the velvet worms share with segmented rotifera worms (e.g. unjointed limbs and acanthocephala metanephridia) must be plesiomorphies. lophotrochozoa nemertea mollusca Onychophorans share many annelida synapomorphies with arthropods. Like arthropods, velvet worms possess a chitinous bilateria protostomia exoskeleton that necessitates molting. The nemata ecdysozoa also possess a tracheal system similar to that nematomorpha of insects and myriapods. Onychophorans panarthropoda have an open circulatory system with tardigrada hemocoels and a ventral heart. As in arthropoda arthropods, the fluid-filled hemocoel is the onychophora main body cavity. However, unlike the arthropods, the hemocoel of onychophorans is used as a hydrostatic acoela skeleton. Onychophorans feed mostly on small invertebrates such as insects. These prey items are captured using a special “slime” which is secreted from large slime glands inside the body and expelled through two oral papillae on either side of the mouth. This slime is protein based, sticking to the cuticle of insects, but not to the cuticle of the velvet worm itself. Secreted as a liquid, the slime quickly becomes solid when exposed to air. Once a prey item is captured, an onychophoran feeds much like a spider. -
A New Cryptic Species of Neanthes (Annelida: Phyllodocida: Nereididae)
RAFFLES BULLETIN OF ZOOLOGY 2015 RAFFLES BULLETIN OF ZOOLOGY Supplement No. 31: 75–95 Date of publication: 10 July 2015 http://zoobank.org/urn:lsid:zoobank.org:pub:A039A3A6-C05B-4F36-8D7F-D295FA236C6B A new cryptic species of Neanthes (Annelida: Phyllodocida: Nereididae) from Singapore confused with Neanthes glandicincta Southern, 1921 and Ceratonereis (Composetia) burmensis (Monro, 1937) Yen-Ling Lee1* & Christopher J. Glasby2 Abstract. A new cryptic species of Neanthes (Nereididae), N. wilsonchani, new species, is described from intertidal mudflats of eastern Singapore. The new species was confused with both Ceratonereis (Composetia) burmensis (Monro, 1937) and Neanthes glandicincta Southern, 1921, which were found to be conspecific with the latter name having priority. Neanthes glandicincta is newly recorded from Singapore, its reproductive forms (epitokes) are redescribed, and Singapore specimens are compared with topotype material from India. The new species can be distinguished from N. glandicincta by slight body colour differences and by having fewer pharyngeal paragnaths in Areas II (4–8 vs 7–21), III (11–28 vs 30–63) and IV (1–9 vs 7–20), and in the total number of paragnaths for all Areas (16–41 vs 70–113). No significant differences were found in the morphology of the epitokes between the two species. The two species have largely non-overlapping distributions in Singapore; the new species is restricted to Pleistocene coastal alluvium in eastern Singapore, while N. glandicinta occurs in western Singapore as well as in Malaysia and westward to India. Key words. polychaete, new species, taxonomy, ragworm INTRODUCTION Both species are atypical members of their respective nominative genera: N. -
(Includes Insects) Myriapods Pycnogonids Limulids Arachnids
N. Dean Pentcheff Insect Friends and Relations Regina Wetzer What do we know How do we know that? about arthropod relationships? Examples of lines of evidence: Onychophorans Genetics and Genomics Genomic approaches The figures at left show the can look at patterns protein structure of opsins Common of occurrence of (visual pigments). Yellow iden- tifies areas of the protein that Ancestor of whole genes across Crustaceans (includes Insects) have important evolutionary Panarthropoda taxa to identify pat- terns of common and functional differences. This ancestry. provides information about how the opsin gene family has Cook, C. E., Smith, M. L., evolved across different taxa. Telford, M. J., Bastianello, Myriapods A., Akam, M. 2001. Hox Porter, M. L., Cronin, T. W., McClellan, Panarthropoda genes and the phylogeny D. A., Crandall, K. A. 2007. Molecular of the arthropods. Cur- characterization of crustacean visual rent Biology 11: 759-763. pigments and the evolution of pan- crustacean opsins. Molecular Biology This phylogenetic tree of the Arthropoda and Evolution 24(1): 253-268. Arthropoda Pycnogonids outlines our best current knowledge about relationships in the group. Dunn, C.W. et al. 2008. Broad phylogenetic sampling improves resolution of the animal tree of life. Nature Morphology 452: 745-749. Limulids Comparing similarities and differences among arthropod appendages is a fertile source of infor- Chelicerata mation about patterns of ancestry. Morphological Arachnids evidence can be espec- ially valuable because it is available for both living Unraveling arthropod phylogeny and fossil taxa. There are about 1,100,000 described arthropods – 85% of multicellular animals! Segmentation, jointed appendages, and the devel- opment of pattern-forming genes profoundly affected arthropod evolution and created the most morphologically diverse taxon on [Left:] Cotton, T.