The Catalytic Amination of Alcohols Sebastian BHn, Sebastian Imm, Lorenz Neubert, Min Zhang, Helfried Neumann, and Matthias Beller*[A]

Total Page:16

File Type:pdf, Size:1020Kb

The Catalytic Amination of Alcohols Sebastian B�Hn, Sebastian Imm, Lorenz Neubert, Min Zhang, Helfried Neumann, and Matthias Beller*[A] DOI: 10.1002/cctc.201100255 The Catalytic Amination of Alcohols Sebastian Bhn, Sebastian Imm, Lorenz Neubert, Min Zhang, Helfried Neumann, and Matthias Beller*[a] In this Minireview, the synthesis of amines by the amination of amines are produced in bulk by the chemical industry with alcohols, by means of the so-called borrowing hydrogen meth- this synthetic method. In particular, the recent progress apply- odology, is presented. Compared to other synthetic methodol- ing organometallic catalysts based on iridium, ruthenium, and ogies for the synthesis of amines, these transformations are other metals will be discussed. Notable recent achievements highly attractive because often alcohols are readily available include the conversion of challenging substrates such as diols, starting materials, some of them on a large scale from renewa- the development of recyclable catalysts, milder reaction tem- ble sources. In addition, the amination of alcohols produces peratures, and the direct alkylation of ammonia or its equiva- water as the only by-product, which makes the process poten- lents with alcohols. tially environmentally benign. Already today, lower alkyl Introduction The importance of amines Scheme 1. Amination of alcohols with ammonia. Amines are of significant importance for the chemical industry, but also for numerous biological processes. For instance, amino acids and nucleotides constitute essential biological production of lower alkyl amines (Scheme 1).[13] One reason for building blocks and numerous bioactive compounds such as its large scale use is the availability of many alcohols by indus- vitamins, hormones, alkaloids, neurotransmitters, or natural trial processes such as hydroformylation/reduction of olefins toxics contain amino groups.[1] It is, therefore, not surprising, (e.g. 1-propanol, 1-butanol, 2-ethylhexanol), hydration of ole- that numerous amines and their derivatives find application as fins (2-propanol, ethanol), fermentation of sugars (ethanol), or agrochemicals, pharmaceuticals, or food additives. direct production from synthesis gas (methanol). In addition, Since the Haber–Bosch process was implemented in the the amination of alcohols affords water as the only by-product, early 20th century, ammonia has been available on a large scale which is by far less problematic than the salt waste generated and, today, more than 100 million tons are synthesized annual- in the amination of alkyl or aryl halides. ly, consuming 1–2% of the worldwide produced energy![2] The Notably, the reaction temperature and pressure for the in- impact of ammonia for the chemistry of amines arises from dustrial processes using ammonia vary significantly, depending the simple fact that almost every nitrogen atom in synthetic on the substrates and the catalysts. For example, methanol compounds either directly or indirectly comes from ammonia. and ammonia are reacted together at 350–5008C and 15– Although only a minority of the produced ammonia is em- 30 bar using aluminum-based heterogeneous catalysts.[14] ployed in the synthesis of structurally diverse amines, that still Today more than 1 million tons of methylamines are produced results in several million annual tons of amine products.[3] The according to this method. Other heterogeneous catalysts for various applications of these synthetic amines include their alcohol amination are based on tungsten, chromium, nickel, use as solvents, agrochemicals, pharmaceuticals, detergents, cobalt, iron, and copper. Applying such catalysts to current in- fabric softeners, flotation agents, corrosion inhibitors, anti- dustrial processes usually results in a mixture of primary, sec- static additives, lubricants, polymers, varnishes, and dyes.[4] ondary, and tertiary amines. However, the ratio of products can Owing to their importance, a variety of procedures for their be tuned by reaction parameters, such as residence time and synthesis, such as Hofmann alkylation,[5] Buchwald–Hartwig[6] excess of ammonia. In analogy to ammonia, primary or secon- and Ullmann[7] reactions, hydroamination,[8] hydroaminomethy- dary amines can be employed in these transformations to lation,[9] reduction of nitriles,[10] and nitro[11] compounds, or re- obtain secondary or tertiary amines. ductive amination[12] have been developed in the last century. [a] S. Bhn, S. Imm, L. Neubert, Prof. Dr. M. Zhang, Dr. H. Neumann, Prof. Dr. M. Beller Amination of alcohols Leibniz-Institut fr Katalyse an der Universitt Rostock e.V. Among the various known procedures to prepare amines, the Albert-Einstein-Str. 29a, 18059 Rostock (Germany) Fax: (+ 49)381-1281-51113 reaction of ammonia with alcohols is of special industrial im- E-mail: [email protected] portance as it constitutes the most common method for the Homepage: www.catalysis.de ChemCatChem 2011, 3, 1853 – 1864 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 1853 M. Beller et al. So far, to the best of our knowledge, no homogeneously also known as the hydrogen auto transfer process.[19,23] Here, catalyzed alcohol amination is employed on industrial scale, the alcohol is activated by oxidation to give an aldehyde or but significant academic work has been performed in recent ketone, which then undergoes a condensation reaction with years. In this respect, a number of additional nitrogen nucleo- the amine nucleophile. Subsequent hydrogenation of the re- philes, such as sulfonamides,[15] amides,[16] or carbamides,[16b] sulting imine with the initially generated hydrogen yields the have been also studied in their reactions with alcohols. After a desired amine product. The terms borrowing hydrogen and short mechanistic and historical introduction, the recent devel- hydrogen auto transfer relate to the fact, that the catalyst “bor- opments in the field of N-alkylation reactions with alcohols by rows” hydrogen and “auto” transfers it to the modified (ami- the borrowing hydrogen methodology will be given. The two nated) aldehyde or ketone. The mechanism of this process is most important catalyst metals for such transformations, iridi- related to a transfer hydrogenation reaction, but has an impor- um and ruthenium, shall be discussed in more detail, while an tant advantage. In contrast to the hydrogenation of an imine overview is given concerning other catalyst metals. Applica- using an alcohol as a hydrogen donor, the oxidized alcohol is tions of ammonia or its equivalents will also be discussed. no longer waste, but acts as a substrate. Thus, a much higher atom economy[24] is achieved. The overall transformation essentially involves a reductive Mechanistic considerations amination as one part. When comparing reductive amination By 1901, the alkylation of aniline with sodium alkoxides had and alcohol amination, it should be noted that in reductive been described.[17] This represents the first coupling of amines aminations side reactions, such as aldol condensation, can with alcohols and proves that alcohol amination does not nec- easily occur, owing to the high concentration of the reactive essarily require a transition metal catalyst. In fact, the necessary aldehyde. By employing alcohols via borrowing hydrogen in- hydrogen transfer can be catalyzed by base in a Meerwein– stead, the corresponding aldehyde is only present in small Pondorf–Verley-type reaction.[18] Unfortunately, these transfor- amounts, since it is generated and consumed in situ, conse- mations usually require high temperatures (>2008C) or very quently, such side reactions can be diminished. long reaction times.[19] In addition, N-alkylation reactions with Depending on substrates and conditions, identification of alcohols can be catalyzed by acid. Such SN type alcohol amina- the exact operating reaction mechanism of an alcohol amina- tions usually require benzylic, propargylic, or allylic alcohols,[20] tion can be very challenging. Here, deuteration experiments but a very recent example demonstrates that even non-activat- may help to distinguish between acid- or base-catalyzed alco- ed alcohols, such as 1-octanol 1 or 2-undecanol, can be con- hol aminations and those proceeding by a borrowing hydro- verted with aniline 2 to give the N-alkyl anilines (e.g. 3)in gen mechanism. Furthermore, the presence of intermediates good yields;[21] an interesting example is shown in Scheme 2. such as ketones or imines indicates oxidation and suggests a borrowing hydrogen mechanism. Additional informa- tion may result from the substrate scope of a given protocol, as tertiary alcohols cannot be oxidized and another amination mechanism must take place. Brief historical introduction Scheme 2. S alcohol amination using an iron catalyst by Saito. N Heterogeneous catalysts for alcohol amination have been known since the first half of the twentieth cen- Although the reaction temperature is high (2008C), some allylic tury,[25] but no homogeneously catalyzed version was alcohols have been successfully converted at 1008C. reported before 1981, when Grigg and co-workers applied Another possible activation pathway for alcohol amination is [RhH(PPh3)4] for the N-alkylation of pyrrolidine and primary the so-called borrowing hydrogen methodology[22] (Scheme 3) amines, such as butylamine 6, with primary alcohols (e.g. 5) (Scheme 4).[26] In addition, they demonstrated that ruthenium- Scheme 4. Rhodium-catalyzed N-alkylation of amines by Grigg. and iridium-based catalysts were active for such transforma- tions. At the same time, Watanabe et al. reported the N-alkyla- tion of aniline 2 with simple alcohols, such as 1-propanol 8 [27]
Recommended publications
  • 6 Synthesis of N-Alkyl Amino Acids Luigi Aurelio and Andrew B
    j245 6 Synthesis of N-Alkyl Amino Acids Luigi Aurelio and Andrew B. Hughes 6.1 Introduction Among the numerous reactions of nonribosomal peptide synthesis, N-methylation of amino acids is one of the common motifs. Consequently, the chemical research community interested in peptide synthesis and peptide modification has generated a sizeable body of literature focused on the synthesis of N-methyl amino acids (NMA). That literature is summarized herein. Alkyl groups substituted on to nitrogen larger than methyl are exceedingly rare among natural products. However, medicinal chemistry programs and peptide drug development projects are not limited to N-methylation. While being a much smaller body of research, there is a range of methods for the N-alkylation of amino acids and those reports are also covered in this chapter. The literature on N-alkyl, primarily N-methyl amino acids comes about due to the useful properties that the N-methyl group confers on peptides. N-Methylation increases lipophilicity, which has the effect of increasing solubility in nonaqueous solvents and improving membrane permeability. On balance this makes peptides more bioavailable and makes them better therapeutic candidates. One potential disadvantage is the methyl group removes the possibility of hydro- gen bonding and so binding events may be discouraged. It is notable though that the N-methyl group does not fundamentally alter the identity of the amino acid. Some medicinal chemists have taken advantage of this fact to deliberately discourage binding of certain peptides that can still participate in the general or partial chemistry of a peptide. A series of recent papers relating to Alzheimers disease by Doig et al.
    [Show full text]
  • A General N-Alkylation Platform Via Copper Metallaphotoredox and Silyl Radical Activation of Alkyl Halides
    ll Article A general N-alkylation platform via copper metallaphotoredox and silyl radical activation of alkyl halides Nathan W. Dow, Albert Cabre´, David W.C. MacMillan [email protected] Highlights General, room temperature N- alkylation via copper metallaphotoredox catalysis Broad reactivity across diverse alkyl bromides, N-heterocycles, and pharmaceuticals Convenient approach to N- cyclopropylation using easily handled bromocyclopropane Readily extended to functionalization of unactivated secondary alkyl chlorides Traditional substitution reactions between nitrogen nucleophiles and alkyl halides feature well-established, substrate-dependent limitations and competing reaction pathways under thermally induced conditions. Herein, we report that a metallaphotoredox approach, utilizing a halogen abstraction-radical capture (HARC) mechanism, provides a valuable alternative to conventional N-alkylation. This visible-light-induced, copper-catalyzed protocol is successful for coupling >10 classes of N-nucleophiles with diverse primary, secondary, or tertiary alkyl bromides. Moreover, this open-shell platform alleviates outstanding N-alkylation challenges regarding regioselectivity, direct cyclopropylation, and secondary alkyl chloride functionalization. Dow et al., Chem 7,1–16 July 8, 2021 ª 2021 Elsevier Inc. https://doi.org/10.1016/j.chempr.2021.05.005 Please cite this article in press as: Dow et al., A general N-alkylation platform via copper metallaphotoredox and silyl radical activation of alkyl halides, Chem (2021), https://doi.org/10.1016/j.chempr.2021.05.005
    [Show full text]
  • Rational Design of Selective Metal Catalysts for Alcohol Amination with Ammonia
    Rational design of selective metal catalysts for alcohol amination with ammonia Tao Wang,a Javier Ibañez,b,d Kang Wang,b Lin Fang,b Maarten Sabbe,c Carine Michel,a Sébastien Paul,d Marc Pera-Titus,b,* Philippe Sautet e,f,* a) Univ Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342, Lyon, France. b) Eco-Efficient Products and Processes Laboratory (E2P2L), UMI 3464 CNRS – Solvay, 3966 Jin Du Road, Xin Zhuang Ind. Zone, 201108 Shanghai, China. c) Department of Chemical Engineering, Ghent University, Technologiepark 914, 9052, Zwijnaarde, Belgium. d) Univ. Lille, Univ. Artois, CNRS, Centrale Lille, ENSCL, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, Lille, F-59000, France e) Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, United States f) Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, United States Abstract: The lack of selectivity for the direct amination of alcohols with ammonia, a modern and clean route for the synthesis of primary amines, is an unsolved challenge. Here, we combine first-principles calculations, scaling relations, kinetic simulations and catalysis experiments to unveil the key factors governing the activity and selectivity of metal catalysts for this reaction. We show that the loss of selectivity towards primary amines is linked to a surface-mediated C-N bond coupling between two N-containing intermediates: CH3NH and CH2NH. The barrier for this step is low enough to compete with the main surface hydrogenation reactions and can be used as a descriptor for selectivity.
    [Show full text]
  • Catalytic Reductive N-Alkylation of Amines Using Carboxylic Acids
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repository@Nottingham Catalytic Reductive N-Alkylation of Amines using Carboxylic Acids Keith G. Andrews, Declan M. Summers, Liam J. Donnelly and Ross M. Denton* We report a catalytic reductive alkylation reaction of primary or secondary amines with carboxylic acids. The two-phase process involves silane mediated direct amidation followed by catalytic reduction. Reductive amination between aldehydes and amines (Scheme 1A) constitutes one of the most versatile methods for carbon-nitrogen bond construction and underpins the synthesis of natural products, active pharmaceutical ingredients, agrochemicals and advanced materials.1,2 Despite its importance and prevalence there are several disadvantages associated with the conventional process, including the handling of unstable aldehydes (mostly accessed via stoichiometric oxidation) and selectivity for monoalkylated products. Replacing aldehydes with carboxylic acids, which are far easier to store and handle (Scheme 1B), would open up a powerful complementary approach to reductive N-alkylation with high synthetic utility. However, such reductive amination from the higher oxidation level remains underexplored.3,4 Scheme 1. a) Classical reductive amination reaction. b) This work: catalytic reductive alkylation using carboxylic acids. Indeed, until recently, the only reported reductive amination of higher carboxylic acids was the interesting but non-preparative system investigated by Cole-Hamilton and co-workers.3g
    [Show full text]
  • Nucleophilic Dearomatization of Activated Pyridines
    Review Nucleophilic Dearomatization of Activated Pyridines Giulio Bertuzzi *, Luca Bernardi * and Mariafrancesca Fochi * Department of Industrial Chemistry “Toso Montanari” and INSTM RU Bologna, Alma Mater Studiorum-University of Bologna, Via Risorgimento 4, 40136 Bologna, Italy * Correspondence: [email protected] (G.B.); [email protected] (L.B.); [email protected] (M.F.); Tel.: +39-051-209-3626 (M.F.) Received: 16 November 2018; Accepted: 1 December 2018; Published: 6 December 2018 Abstract: Amongst nitrogen heterocycles of different ring sizes and oxidation statuses, dihydropyridines (DHP) occupy a prominent role due to their synthetic versatility and occurrence in medicinally relevant compounds. One of the most straightforward synthetic approaches to polysubstituted DHP derivatives is provided by nucleophilic dearomatization of readily assembled pyridines. In this article, we collect and summarize nucleophilic dearomatization reactions of - pyridines reported in the literature between 2010 and mid-2018, complementing and updating previous reviews published in the early 2010s dedicated to various aspects of pyridine chemistry. Since functionalization of the pyridine nitrogen, rendering a (transient) pyridinium ion, is usually required to render the pyridine nucleus sufficiently electrophilic to suffer the attack of a nucleophile, the material is organized according to the type of N-functionalization. A variety of nucleophilic species (organometallic reagents, enolates, heteroaromatics, umpoled aldehydes) can be productively engaged in pyridine dearomatization reactions, including catalytic asymmetric implementations, providing useful and efficient synthetic platforms to (enantioenriched) DHPs. Conversely, pyridine nitrogen functionalization can also lead to pyridinium ylides. These dipolar species can undergo a variety of dipolar cycloaddition reactions with electron-poor dipolarophiles, affording polycyclic frameworks and embedding a DHP moiety in their structures.
    [Show full text]
  • Reduction of Ketoximes to Amines by Catalytic Transfer Hydrogenation Using Raney Nickel and 2-Propanol As Hydrogen Donor
    University of Tennessee at Chattanooga UTC Scholar Student Research, Creative Works, and Honors Theses Publications 5-2014 Reduction of ketoximes to amines by catalytic transfer hydrogenation using Raney Nickel and 2-propanol as hydrogen donor Katherynne E. Taylor University of Tennessee at Chattanooga Follow this and additional works at: https://scholar.utc.edu/honors-theses Part of the Catalysis and Reaction Engineering Commons, and the Chemistry Commons Recommended Citation Taylor, Katherynne E., "Reduction of ketoximes to amines by catalytic transfer hydrogenation using Raney Nickel and 2-propanol as hydrogen donor" (2014). Honors Theses. This Theses is brought to you for free and open access by the Student Research, Creative Works, and Publications at UTC Scholar. It has been accepted for inclusion in Honors Theses by an authorized administrator of UTC Scholar. For more information, please contact [email protected]. Reduction of Ketoximes to Amines by Catalytic Transfer Hydrogenation Using Raney Nickel® and 2-Propanol! as Hydrogen Donor ! ! By Katherynne E. Taylor ! Departmental Thesis The University of Tennessee at Chattanooga Department of! Chemistry Project Director: Dr. Robert Mebane Examination Date: March 20, 2014 Committee Members: Dr. Jisook Kim Dr. John Lee Dr. Robert Mebane Dr. Abdul! Ofoli ! _________________________________________________________ Project Director _________________________________________________________ Department Examiner _________________________________________________________ Department Examiner _________________________________________________________
    [Show full text]
  • Palladium-Catalyzed Aerobic Oxidative Hydroamination Of
    Letter pubs.acs.org/OrgLett Palladium-Catalyzed Aerobic Oxidative Hydroamination of Vinylarenes Using Anilines: A Wacker-Type Amination Pathway Eunsun Song, Hun Young Kim, and Kyungsoo Oh* Center for Metareceptome Research, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea *S Supporting Information ABSTRACT: A palladium-catalyzed intermolecular hydroamination of vinylarene derivatives using anilines has been developed for the first time under aerobic conditions, where the regioselective formation of N- arylketimines is accomplished. The current aerobic oxidative hydro- amination pathway of anilines is distinct from that of palladium- catalyzed hydroamination reactions that proceed to give sec-arylethyl- amine and arylethylamine derivatives, identifying a longstanding missing reaction pathway, Wacker-type amination, to N-arylketimines using anilines. The ready availability of both starting materials, vinylarenes and anilines, offers an attractive and facile synthetic route to N-arylketimines in good to excellent yields. mine derivatives continue to be a major source of presence of an acid cocatalyst (Scheme 1, path A).3 In contrast, A innovation in the chemical sciences as they serve as the base-catalyzed Markovnikov hydroaminations of anilines to basic scaffolds for the preparation of fine chemicals, vinylarenes were observed by the groups of Hultzsch4 and pharmaceuticals, and natural products. One of the most direct Doye,5 demonstrating the possibility of complementary synthetic methods to amine derivatives is the intermolecular regiodivergent hydroamination of anilines (Scheme 1, path addition of amines to unsaturated C−C multiple bonds, also B). Nevertheless, the catalytic hydroamination of styrenes with known as hydroamination.1 However, the development of anilines via oxidative addition remains an unsolved problem.
    [Show full text]
  • Reductive Amination of (Alpha) - Amino Acids: Solution - Phase Synthesis Rohini D'souza
    Rochester Institute of Technology RIT Scholar Works Theses Thesis/Dissertation Collections 7-1-2001 Reductive amination of (alpha) - amino acids: Solution - Phase synthesis Rohini D'Souza Follow this and additional works at: http://scholarworks.rit.edu/theses Recommended Citation D'Souza, Rohini, "Reductive amination of (alpha) - amino acids: Solution - Phase synthesis" (2001). Thesis. Rochester Institute of Technology. Accessed from This Thesis is brought to you for free and open access by the Thesis/Dissertation Collections at RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. REDUCTIVE AMINATION OF ex - AMINO ACIDS: SOLUfION - PHASE SYNTHESIS Rohini D'Souza July 2001 A thesis submitted in partial fulfillment of the requirements for the degree of Masters of Science in Chemistry Approved: Kay Tumer Thesis Advisor Terence Morrill Department Head Department of Chemistry Rochester Institute of Technology Rochester, NY 14623-5603 COPYRIGHT RELEASE FORM Reductive Amination of a. - Amino Acids: Solution-Phase Synthesis I, Rohini D'Souza, hereby grant permission to Wallace Memorial Library of the Rochester Institute of Technology, to reproduce my thesis in whole or in part. Any reproduction will not be for commercial use or profit. Date: 07 ·;(5, 2-001 Signature: _ vii TABLE OF CONTENTS LIST OF TABLES Hi LIST OF FIGURES iv LIST OF SCHEMES v LIST OF APPENDICES vi COPYRIGHT RELEASE FORM vii DEDICATION viii ACKNOWLEDGEMENTS
    [Show full text]
  • Nickel-Catalyzed Regio- and Diastereoselective Arylamination of Unactivated Alkenes
    Nickel-Catalyzed Regio- and Diastereoselective Arylamination of Unactivated Alkenes Chao Wang ( [email protected] ) Tianjin Normal University https://orcid.org/0000-0001-6979-8506 Shenghao Wang Tianjin Normal University Lanlan Zhang Tianjin Normal University https://orcid.org/0000-0002-6218-7865 Leipeng Xie Tianjin Normal University Lei Zhao Tianjin Normal University Chun Luo Tianjin Normal University Linping Mu Tianjin Normal University Xiuguang Wang Tianjin Normal University Article Keywords: arylamination, unactivated alkenes Posted Date: March 25th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-346280/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/16 Abstract An intermolecular syn-1,2-arylamination of unactivated alkenes with arylboronic acids and O- benzoylhydroxylamine electrophiles has been developed with Ni(II) catalyst. The cleavable bidentate picolinamide directing group facilitated formation of stabilized 4-, 5- or 6-membered nickelacycles and enabled the difunctionalization of diverse alkenyl amines with high levels of regio-, chemo- and diastereocontrol. This general and practical protocol was compatible with broad substrate scope and high functional group tolerance. The utility of this method was further demonstrated by the site-selective late-stage modication of pharmaceutical agents. Introduction C–C and C–N bonds are two of the most omnipresent bonds in nature, and arylamination of olens represents a powerful and attractive synthetic tool for
    [Show full text]
  • Catalytic Amino Acid Production from Biomass-Derived Intermediates
    Catalytic amino acid production from biomass-derived intermediates Weiping Denga,b,1, Yunzhu Wanga,1, Sui Zhanga, Krishna M. Guptaa, Max J. Hülseya, Hiroyuki Asakurac,d, Lingmei Liue, Yu Hane, Eric M. Karpf, Gregg T. Beckhamf, Paul J. Dysong, Jianwen Jianga, Tsunehiro Tanakac,d, Ye Wangb, and Ning Yana,2 aDepartment of Chemical and Biomolecular Engineering, National University of Singapore, 117585 Singapore; bState Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 361005 Xiamen, China; cDepartment of Molecular Engineering, Graduate School of Engineering, Kyoto University, 615-8510 Kyoto, Japan; dElements Strategy Initiative for Catalysts & Batteries, Kyoto University, 615-8245 Kyoto, Japan; eAdvanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia; fNational Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401; and gInstitut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH 1015 Lausanne, Switzerland Edited by Alexis T. Bell, University of California, Berkeley, CA, and approved April 10, 2018 (received for review January 6, 2018) Amino acids are the building blocks for protein biosynthesis and find cellulose under hydrothermal conditions (24), whereas barium hy- use in myriad industrial applications including in food for humans, in droxide catalyzes the quantitative conversion of glucose into lactic animal feed, and as precursors for bio-based plastics, among others. acid at room temperature (26). Several other α-hydroxyl acids are However, the development of efficient chemical methods to convert also readily available from lignocellulosic biomass. Cellulose may be abundant and renewable feedstocks into amino acids has been largely converted into glycolic acid via selective oxidation over heteropoly unsuccessful to date.
    [Show full text]
  • Three-Component Radical Homo Mannich Reaction ✉ Shuai Shi1, Wenting Qiu1, Pannan Miao1, Ruining Li1, Xianfeng Lin1 & Zhankui Sun 1
    ARTICLE https://doi.org/10.1038/s41467-021-21303-3 OPEN Three-component radical homo Mannich reaction ✉ Shuai Shi1, Wenting Qiu1, Pannan Miao1, Ruining Li1, Xianfeng Lin1 & Zhankui Sun 1 Aliphatic amine, especially tertiary aliphatic amine, is one of the most popular functionalities found in pharmaceutical agents. The Mannich reaction is a classical and widely used transformation for the synthesis of β-amino-carbonyl products. Due to an ionic nature of the mechanism, the Mannich reaction can only use non-enolizable aldehydes as substrates, which significantly limits the further applications of this powerful approach. Here we show, by 1234567890():,; employing a radical process, we are able to utilize enolizable aldehydes as substrates and develop the three-component radical homo Mannich reaction for the streamlined synthesis of γ-amino-carbonyl compounds. The electrophilic radicals are generated from thiols via the desulfurization process facilitated by visible-light, and then add to the electron-rich double bonds of the in-situ formed enamines to provide the products in a single step. The broad scope, mild conditions, high functional group tolerance, and modularity of this metal-free approach for the synthesis of complex tertiary amine scaffolds will likely be of great utility to chemists in both academia and industry. 1 Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., 200240 ✉ Shanghai, China. email: [email protected] NATURE COMMUNICATIONS | (2021) 12:1006 | https://doi.org/10.1038/s41467-021-21303-3 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21303-3 mines are very important functional groups in medicinal react with the enolizable carbonyl compound (Fig.
    [Show full text]
  • Practical and Regioselective Synthesis of C4-Alkylated Pyridines Jin Choi†, Gabriele Laudadio†, Edouard Godineau††, Phil S
    Practical and Regioselective Synthesis of C4-Alkylated Pyridines Jin Choi†, Gabriele Laudadio†, Edouard Godineau††, Phil S. Baran*† † Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States ††Process Research, Syngenta Crop Protection, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland ABSTRACT: The direct position-selective C–4 alkylation of pyr- group reported a radical-type addition using N-sulfon- idines has been a longstanding challenge in heterocyclic chemistry, amidopyridinium species10 using alkyl bromide donors requiring particularly from pyridine itself. Historically this has been ad- photochemical initiation and super stoichiometric amounts of an 11 dressed using pre-functionalized materials to avoid overalkylation expensive silane [(TMS)3SiH]. While this is an important prece- and mixtures of regioisomers. This study reports the invention of a dent it could not be employed easily on process scale as three steps simple maleate-derived blocking group for pyridines that enables are needed to install the blocking group (1. N-amination using hy- exquisite control for Minisci-type decarboxylative alkylation at C– droxylamine-O-sulfonic acid, 2. tosylation, and 3. methylation with 4 that allows for inexpensive access to these valuable building Meerwein’s salt along with 1 column purification, 1 recrystalliza- blocks. The method is employed on a variety of different pyridines tion). Herein we disclose a highly practical method featuring on a and carboxylic acid alkyl donors, is operationally simple, scalable, new blocking group based on a simple fumarate backbone (6a) en- and is applied to access known structures in a rapid and inexpensive abling classic Minisci decarboxylative alkylations to take place fashion.
    [Show full text]