Properties of Surfactants That Govern Their Functions and Applications on Lipid Membranes

Total Page:16

File Type:pdf, Size:1020Kb

Properties of Surfactants That Govern Their Functions and Applications on Lipid Membranes Properties of surfactants that govern their functions and applications on lipid membranes by Mozhgan Nazari A thesis submitted in conformity with the requirements for the degree of Doctorate of Philosophy Pharmaceutical Sciences University of Toronto © Copyright by Mozhgan Nazari 2012 Properties of surfactants that govern their functions and applications on lipid membranes Mozhgan Nazari Doctorate of Philosophy Department of Pharmaceutical Sciences University of Toronto 2012 Abstract This work aims at a better understanding of the parameters and properties of surfactants that govern their specific biological functions and their suitability for applications related to biological membranes. First, the hypothesis is tested that membrane lysis starts when a surfactant has built up a critical level of curvature strain, that is detected as a chain disordering. This could be confirmed for many surfactants but some, mostly biosurfactants act by a locally focused, heterogeneous perturbation, which explains their enhanced antibiotic activity and selectivity. A model and protocol were established to obtain a volumetric characterization of micelles by pressure perturbation calorimetry. For some classic detergents studied so far, their chain packing was found to agree with that of bulk hydrocarbon. Finally, the effective charge and consequent membrane permeability were assessed by zeta potential measurements. ii Acknowledgements I would like to gratefully and sincerely thank Dr. Heiko Heerklotz for his guidance, understanding, patience, and most importantly, his friendship during my graduate studies at University of Toronto. His mentorship was paramount in providing a well-rounded experience and utmost devotion to my professional growth and academic training. He encouraged me to not only grow as an experimentalist and a scientist but also as an independent thinker. For everything you’ve done for me, Dr. Heerklotz, I thank you. I would also like to thank all of the members of the Heerklotz research group. They have always been willing and generous in sharing both their time and expertise. Through their kindness and friendship, my colleagues have made spending time in the lab an enjoyable process. I am also thankful to the members of my supervisory committee, Dr. Rob Macgregor, Dr. Tigran Chalikian, and Dr. Christine Allen, for their input, valuable discussions and accessibility. I thank you for providing me guidance throughout my development as a researcher. I would like to express deep gratitude to my parents, Houshang and Esmat, for their faith in me and allowing me to be as ambitious as I wanted. It was under their watchful eye that I gained so much drive and an ability to tackle challenges head on. Finally, I would like to thank my husband, Mehdi, my daughters, Donna and Deena, for their support, encouragement, quiet patience and unconditional love, which were undeniably the bedrock upon which the past five years of my life have been built. iii Table of Contents Acknowledgements .................................................................................................................................................. iii Table of Contents ..................................................................................................................................................... iv List of Abbreviations ............................................................................................................................................... viii List of Figures ............................................................................................................................................................ xi List of Tables ........................................................................................................................................................... xiv CHAPTER (1) - Introduction .......................................................................................................................................... 1 1.1 Lipid Membranes ........................................................................................................................................ 1 1.1.1 Structures, properties and functions ................................................................................................. 1 1.1.2 Hydrophobic effect and hydration force: Two phenomena being responsible for the formation and stabilization of lipid bilayer vesicles and cellular membranes ..................................................................... 2 1.1.3 The mobility of lipid molecules within a lipid bilayer: gel phase versus fluid phase......................... 3 1.1.4 Impacts of phospholipid acyl chain length and saturation on gel and fluid phases .......................... 3 1.1.5 The role of cholesterol in cell membranes ......................................................................................... 4 1.1.6 Lipid compositions in eukaryotic cell membranes ............................................................................. 5 1.1.7 Lipids in prokaryotic cell membranes ................................................................................................ 6 1.2 Surfactants .................................................................................................................................................. 7 1.2.1 Definition ........................................................................................................................................... 7 1.2.2 The Critical Micelle Concentration ..................................................................................................... 7 1.2.3 Micelle Size and Structure ................................................................................................................. 8 1.2.4 Dynamic structure of micelles ........................................................................................................... 9 1.2.5 Volumetric properties of micelles .................................................................................................... 11 1.2.6 Synthetic detergents and their applications .................................................................................... 11 1.2.7 Biosurfactants .................................................................................................................................. 12 1.3 Interaction of surfactants with lipid membranes ..................................................................................... 18 1.3.1 The three-stage model ..................................................................................................................... 18 1.3.2 Surfactant partitioning into the lipid bilayer .................................................................................... 19 1.3.3 Membrane asymmetry and permeation .......................................................................................... 20 1.3.4 Curvature strain ............................................................................................................................... 21 1.3.5 Membrane solubilization ................................................................................................................. 24 1.4 Objectives ................................................................................................................................................. 27 1.4.1 Critical curvature strain in membranes and the mode of membrane solubilization ....................... 27 1.4.2 Developing a new method to measure volume and expansivity changes of detergent micelle formation 27 1.4.3 Improving our interpretation of volumetric parameters to characterize the internal packing and hydration properties of micelles, macromolecules, and solutes ...................................................................... 27 iv 1.4.4 Establishing zeta potential measurements for the study of the effective charge of membrane- bound molecules and their trans-bilayer distribution ....................................................................................... 28 CHAPTER (2) - Basic Concepts of the Applied Methods ............................................................................................. 29 2.1 Fluorescent Probes ................................................................................................................................... 29 2.2 Time-resolved Fluorescence ..................................................................................................................... 30 2.3 Anisotropy ................................................................................................................................................ 30 2.4 Isothermal Titration Calorimetry (ITC) ...................................................................................................... 31 2.5 Pressure Perturbation Calorimetry (PPC) ................................................................................................. 33 2.6 Dynamic Light Scattering (DLS) ................................................................................................................. 34 2.7 Zeta Potential............................................................................................................................................ 34 CHAPTER (3) - Classifying Surfactants with Respect to Their Effect on Lipid Membrane Order ................................ 37 3.1 Abstract ...................................................................................................................................................
Recommended publications
  • Identification of Novel Surfactin Derivatives from NRPS Modification
    Jiang et al. BMC Microbiology (2016) 16:31 DOI 10.1186/s12866-016-0645-3 RESEARCH ARTICLE Open Access Identification of novel surfactin derivatives from NRPS modification of Bacillus subtilis and its antifungal activity against Fusarium moniliforme Jian Jiang, Ling Gao, Xiaomei Bie*, Zhaoxin Lu, Hongxia Liu, Chong Zhang, Fengxia Lu and Haizhen Zhao Abstract Background: Bacillus subtilis strain PB2-L1 produces the lipopeptide surfactin, a highly potent biosurfactant synthesized by a large multimodular nonribosomal peptide synthetase (NRPS). In the present study, the modules SrfA-A-Leu, SrfA-B-Asp, and SrfA-B-Leu from surfactin NRPS in B. subtilis BP2-L1 were successfully knocked-out using a temperature-sensitive plasmid, pKS2-mediated-based, homologous, recombination method. Results: Three novel surfactin products were produced, individually lacking amino acid Leu-3, Asp-5, or Leu-6. These surfactins were detected, isolated, and characterized by HPLC and LC-FTICR-MS/MS. In comparison with native surfactin, [ΔLeu3]surfactin and [ΔLeu6]surfactin showed evidence of reduced toxicity, while [ΔAsp5]surfactin showed stronger inhibition than native surfactin against B. pumilus and Micrococcus luteus. These results showed that the minimum inhibitory concentration of [ΔLeu6]surfactin for Fusarium moniliforme was 50 μg/mL, such that [ΔLeu6]surfactin could lead to mycelium projection, cell damage, and leakage of nucleic acids and protein. These factors all contributed to stimulating apoptosis in F. moniliforme. Conclusions: The present results revealed that [ΔLeu6]surfactin showed a significant antifungal activity against F. moniliforme and might successfully be employed to control fungal food contamination and improve food safety. Keywords: Surfactin, NRPS, Module deletion, Fusarium moniliforme Background structure peptide chain and possesses a β-hydroxy fatty Fusarium moniliforme mainly contaminates maize, sor- acid chain (typically C13–C16) containing seven amino acids ghum, wheat, cotton, beans, tomatoes, peanuts, bananas, formed by crosslinking [7].
    [Show full text]
  • Increased Biological Activity of Aneurinibacillus Migulanus Strains Correlates with the Production of New Gramicidin Secondary Metabolites
    fmicb-08-00517 April 5, 2017 Time: 15:34 # 1 ORIGINAL RESEARCH published: 07 April 2017 doi: 10.3389/fmicb.2017.00517 Increased Biological Activity of Aneurinibacillus migulanus Strains Correlates with the Production of New Gramicidin Secondary Metabolites Faizah N. Alenezi1,2, Imen Rekik2, Ali Chenari Bouket2,3, Lenka Luptakova2,4, Hedda J. Weitz1, Mostafa E. Rateb5, Marcel Jaspars6, Stephen Woodward1 and Lassaad Belbahri2,7* 1 Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK, 2 NextBiotech, Rue Ali Edited by: Belhouane, Agareb, Tunisia, 3 Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Peter Neubauer, Japan, 4 Department of Biology and Genetics, Institute of Biology, Zoology and Radiobiology, University of Veterinary Technische Universität Berlin, Medicine and Pharmacy, Košice, Slovakia, 5 School of Science and Sport, University of the West of Scotland, Paisley, UK, Germany 6 Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen, UK, 7 Laboratory of Soil Biology, Reviewed by: University of Neuchatel, Neuchatel, Switzerland Sanna Sillankorva, University of Minho, Portugal The soil-borne gram-positive bacteria Aneurinibacillus migulanus strain Nagano shows Jian Li, University of Northwestern – St. Paul, considerable potential as a biocontrol agent against plant diseases. In contrast, USA A. migulanus NCTC 7096 proved less effective for inhibition of plant pathogens. Nagano Maria Lurdes Inacio, Instituto Nacional de Investigação strain exerts biocontrol activity against some gram-positive and gram-negative bacteria, Agrária e Veterinária, Portugal fungi and oomycetes through the production of gramicidin S (GS). Apart from the *Correspondence: antibiotic effects, GS increases the rate of evaporation from the plant surface, reducing Lassaad Belbahri periods of surface wetness and thereby indirectly inhibiting spore germination.
    [Show full text]
  • Surfactin – Novel Solutions for Global Issues
    13 Surfactin – Novel Solutions for Global Issues Gabriela Seydlová, Radomír Čabala and Jaroslava Svobodová Charles University in Prague Czech Republic 1. Introduction The constant demand for new, effective therapeutic agents has triggered intensive research in the field of diverse antimicrobials of natural origin. These compounds are synthesized by all forms of life and have important biomedical and biotechnological properties, and are thus widely considered a potential solution to the growing problem of resistance to conventional antibiotics, fungal infection and life-threatening diseases. Among these molecules, lipopeptides represent a unique class of bioactive secondary metabolites with increasing scientific, therapeutic and biotechnological interest. The principal representative of the anionic lipopeptide family is surfactin, which is produced by bacterium Bacillus subtilis. This most potent known biosurfactant (i.e. surface-active compound of microbial origin), was named surfactin due to its exceptional surface activity. Since its discovery (Arima et al., 1968) and the identification of its molecular structure as a macrolide lipopeptide (Kakinuma et al., 1969) it has been best recognized for its high amhiphilicity and strong tendency for self-aggregation (Ishigami et al., 1995). Due to these characteristics it shows remarkable surface-, interface- and membrane-active properties, resulting in a number of promising biological activities, which are of great relevance in health care and biotechnology. These properties make surfactin a candidate drug for the resolution of a number of global issues in medicine (Banat et al., 2010; Cao et al., 2010), industry (Nitschke & Costa, 2007; Abdel-Mawgoud et al., 2008) and environmental protection (Mulligan, 2009). 2. Structure and physicochemical properties Surfactin (M.W.
    [Show full text]
  • Molecular Docking Studies of a Cyclic Octapeptide-Cyclosaplin from Sandalwood
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 June 2019 doi:10.20944/preprints201906.0091.v1 Peer-reviewed version available at Biomolecules 2019, 9; doi:10.3390/biom9040123 Molecular Docking Studies of a Cyclic Octapeptide-Cyclosaplin from Sandalwood Abheepsa Mishra1, 2,* and Satyahari Dey1 1Plant Biotechnology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India; [email protected] (A.M.); [email protected] (S.D.) 2Department of Internal Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA *Correspondence: [email protected]; Tel.:+1(518) 881-9196 Abstract Natural products from plants such as, chemopreventive agents attract huge attention because of their low toxicity and high specificity. The rational drug design in combination with structure based modeling and rapid screening methods offer significant potential for identifying and developing lead anticancer molecules. Thus, the molecular docking method plays an important role in screening a large set of molecules based on their free binding energies and proposes structural hypotheses of how the molecules can inhibit the target. Several peptide based therapeutics have been developed to combat several health disorders including cancers, metabolic disorders, heart-related, and infectious diseases. Despite the discovery of hundreds of such therapeutic peptides however, only few peptide-based drugs have made it to the market. Moreover, until date the activities of cyclic peptides towards molecular targets such as protein kinases, proteases, and apoptosis related proteins have never been explored. In this study we explore the in silico kinase and protease inhibitor potentials of cyclosaplin as well as study the interactions of cyclosaplin with other cancer-related proteins.
    [Show full text]
  • Review Cyclic Peptides on a Merry‐
    Review Cyclic Peptides on a Merry-Go-Round; Towards Drug Design Anthi Tapeinou,1 Minos-Timotheos Matsoukas,2 Carmen Simal,1 Theodore Tselios1 1Department of Chemistry, University of Patras, 26500, Patras, Greece 2Department of Biostatistics, Laboratory of Computational Medicine, Autonomous University of Barcelona, 08193, Bellaterra, Spain Received 30 January 2015; revised 14 April 2015; accepted 4 May 2015 Published online 13 May 2015 in Wiley Online Library (wileyonlinelibrary.com). DOI 10.1002/bip.22669 past two calendar years by emailing the Biopolymers editorial ABSTRACT: office at [email protected]. Peptides and proteins are attractive initial leads for the rational design of bioactive molecules. Several natural INTRODUCTION cyclic peptides have recently emerged as templates for eptides constitute one of the most promising plat- drug design due to their resistance to chemical or enzy- forms for drug development due to their biocom- matic hydrolysis and high selectivity to receptors. The patibility, chemical diversity, and resemblance to proteins.1 Inspired by the protein assembly in bio- development of practical protocols that mimic the power logical systems, a large number of peptides have of nature’s strategies remains paramount for the P been designed using different amino acids and sequences, advancement of novel peptide-based drugs. The de novo while forming unique folded structures (“fold-on-binding”) design of peptide mimetics (nonpeptide molecules or and providing a broad spectrum of physiological and biolog- ical activities.2 In this regard, peptides have triggered applica- cyclic peptides) for the synthesis of linear or cyclic pep- tions that currently range from drug discovery3 to tides has enhanced the progress of therapeutics and nanomaterials;4 such as nanofibers for biomedical purposes, diverse areas of science and technology.
    [Show full text]
  • United States Patent (10) Patent No.: US 7,323,169 B2 Goldenberg Et Al
    USOO7323169B2 (12) United States Patent (10) Patent No.: US 7,323,169 B2 Goldenberg et al. (45) Date of Patent: Jan. 29, 2008 (54) SUSTAINED RELEASE FORMULATIONS 2005/0215470 A1* 9/2005 Ng et al. ...................... 514/12 (75) Inventors: Merrill S. Goldenberg, Thousand FOREIGN PATENT DOCUMENTS Oaks, CA (US); Jian Hua Gu, 3 SA 3. Thousand Oaks, CA (US) WO WO 94,08599 4f1994 WO WO 98,10649 3, 1998 (73) Assignee: Amgen Inc., Thousand Oaks, CA (US) WO WO 99,04764 A1 * 2, 1999 WO WOOO, 51643 9, 2000 (*) Notice: Subject to any disclaimer, the term of this WO WO O1/32.218 5, 2001 patent 1s listed Ojusted under 35 WO WO2004O12522 A 2, 2004 U.S.C. 154(b) by 40 days. OTHER PUBLICATIONS (21)21) AppAppl. No.: 11/114,4739 Hatano et al. Size exclusionn chromatographicgrap analysisy of polyphenol-serum albumin complexes. Phytochemistry. 2003, vol. (22) Filed: Apr. 25, 2005 63, pp. 817-823.* Naurato et al. Interaction of Tannin with Human Salivary Histatins. (65) Prior Publication Data Journal of Agricultural and Food Chemistry. May, 4, 1999, vol. 47. No. 6, pp. 2229-2234.* US 2005/0271722 A1 Dec. 8, 2005 M. Chasin, “Biodegradable Polymers for Controlled Drug Deliv ery J.O. Hollinger Editor, Biomedical Applications of Synthetic Related U.S. Application Data Biodegradable Polymers CRC, Boca Raton, Florida (1995) pp. 1-15. (60) Provisional application No. 60/565,247, filed on Apr. T. Hayashi. “Biodegradable Polympers for Biomedical Uses' Prog. 23, 2004. Polym. Sci. 19:4 (1994) pp. 663-700. Harjit Tamber et al., “Formulation Aspects of Biodegradable Poly (51) Int.
    [Show full text]
  • Role of Surfactin from Bacillus Subtilis in Protection Against Antimicrobial Peptides Produced by Bacillus Species
    Role of surfactin from Bacillus subtilis in protection against antimicrobial peptides produced by Bacillus species by Hans André Eyéghé-Bickong BSc. Honours (Biochemistry) February 2011 Dissertation approved for the degree Doctor of Philosophy (Biochemistry) in the Faculty of Science at the University of Stellenbosch Promoter: Prof. Marina Rautenbach Department of Biochemistry University of Stellenbosch ii Declaration By submitting this dissertation electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. ……………………………………………. ………28/02/2011..…………… Hans André Eyéghé-Bickong Date Copyright©2011 Stellenbosch University All rights reserved iii Summary Antagonism of antimicrobial action represents an alternative survival strategy for cohabiting soil organisms. Under competitive conditions, our group previously showed that surfactin (Srf) produced by Bacillus subtilis acts antagonistically toward gramicidin S (GS) from a cohabiting bacillus, Aneurinibacillus migulanus, causing the loss the antimicrobial activity of GS. This antagonism appeared to be caused by inactive complex formation. This study aimed to elucidate whether the previously observed antagonism of GS activity by Srf is a general resistance mechanism that also extends to related peptides such as the tyrocidines (Trcs) and linear gramicidins (Grcs) from Bacillus aneurinolyticus. Molecular interaction between the antagonistic peptide pairs was investigated using biophysical analytical methods such as electrospray mass spectrometry (ESMS), circular dichroism (CD), fluorescence spectroscopy (FS) and nuclear magnetic resonance (NMR).
    [Show full text]
  • A Global Review on Short Peptides: Frontiers and Perspectives †
    molecules Review A Global Review on Short Peptides: Frontiers and Perspectives † Vasso Apostolopoulos 1 , Joanna Bojarska 2,* , Tsun-Thai Chai 3 , Sherif Elnagdy 4 , Krzysztof Kaczmarek 5 , John Matsoukas 1,6,7, Roger New 8,9, Keykavous Parang 10 , Octavio Paredes Lopez 11 , Hamideh Parhiz 12, Conrad O. Perera 13, Monica Pickholz 14,15, Milan Remko 16, Michele Saviano 17, Mariusz Skwarczynski 18, Yefeng Tang 19, Wojciech M. Wolf 2,*, Taku Yoshiya 20 , Janusz Zabrocki 5, Piotr Zielenkiewicz 21,22 , Maha AlKhazindar 4 , Vanessa Barriga 1, Konstantinos Kelaidonis 6, Elham Mousavinezhad Sarasia 9 and Istvan Toth 18,23,24 1 Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; [email protected] (V.A.); [email protected] (J.M.); [email protected] (V.B.) 2 Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego˙ 116, 90-924 Lodz, Poland 3 Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia; [email protected] 4 Botany and Microbiology Department, Faculty of Science, Cairo University, Gamaa St., Giza 12613, Egypt; [email protected] (S.E.); [email protected] (M.A.) 5 Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego˙ 116, 90-924 Lodz, Poland; [email protected] (K.K.); [email protected] (J.Z.) 6 NewDrug, Patras Science Park, 26500 Patras, Greece; [email protected] 7 Department of Physiology and Pharmacology,
    [Show full text]
  • Biological Function of Gramicidin: Studies on Gramicidin-Negative Mutants (Peptide Antibiotics/Sporulation/Dipicolinic Acid/Bacillus Brevis) PRANAB K
    Proc. NatS. Acad. Sci. USA Vol. 74, No. 2, pp. 780-784, February 1977 Microbiology Biological function of gramicidin: Studies on gramicidin-negative mutants (peptide antibiotics/sporulation/dipicolinic acid/Bacillus brevis) PRANAB K. MUKHERJEE AND HENRY PAULUS Department of Metabolic Regulation, Boston Biomedical Research Institute, Boston, Massachusetts 02114; and Department of Biological Chemistry, Harvard Medical School, Boston, Massachusetts 02115 Communicated by Bernard D. Davis, October 28,1976 ABSTRACT By the use of a rapid radioautographic EXPERIMENTAL PROCEDURE screening rocedure, two mutants of Bacillus brevis ATCC 8185 that have lost the ability to produce gramicidin have been iso- lated. These mutants produced normal levels of tyrocidine and Bacterial Strains. Bacillus brevis ATCC 8185, the Dubos sporulated at the same frequency as the parent strain. Their strain, was obtained from the American Type Culture Collec- spores, however, were more heat-sensitive and had a reduced tion. Strain S14 is a streptomycin-resistant derivative of B. brevis 4ipicolinic acid content. Gramicidin-producing revertants oc- ATCC 8185, isolated on a streptomycin-gradient plate without curred at a relatively high frequency among tie survivors of mutagenesis. It grows well at 0.5 mg/ml of streptomycin, but prolonged heat treatment and had also regained the ability to produce heat-resistant spores. A normal spore phenotype could growth is retarded by streptomycin at 1.0 mg/ml. Strain B81 also be restored by the addition of gramicidin to cultures of the is a rifampicin-resistant derivative of strain S14, isolated on mutant strain at the end of exponential growth. On the other rifampicin-gradient plates after mutagenesis of spores with hand, the addition of dipicolinic acid could not cure the spore ethyl methanesulfonate (11).
    [Show full text]
  • Recent Advances in Chiral Analysis of Proteins and Peptides
    separations Review Recent Advances in Chiral Analysis of Proteins and Peptides Marine Morvan 1,2,* and Ivan Mikšík 1,2,* 1 Institute of Physiology of the Czech Academy of Sciences, Vídeˇnská 1083, 142 20 Prague, Czech Republic 2 Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic * Correspondence: [email protected] (M.M.); [email protected] (I.M.) Abstract: Like many biological compounds, proteins are found primarily in their homochiral form. However, homochirality is not guaranteed throughout life. Determining their chiral proteinogenic sequence is a complex analytical challenge. This is because certain D-amino acids contained in proteins play a role in human health and disease. This is the case, for example, with D-Asp in elastin, b-amyloid and a-crystallin which, respectively, have an action on arteriosclerosis, Alzheimer’s disease and cataracts. Sequence-dependent and sequence-independent are the two strategies for detecting the presence and position of D-amino acids in proteins. These methods rely on enzymatic digestion by a site-specific enzyme and acid hydrolysis in a deuterium or tritium environment to limit the natural racemization of amino acids. In this review, chromatographic and electrophoretic techniques, such as LC, SFC, GC and CE, will be recently developed (2018–2020) for the enantioseparation of amino acids and peptides. For future work, the discovery and development of new chiral stationary phases and derivatization reagents could increase the resolution of chiral separations. Keywords: chiral separation; proteins; peptides; D-amino acids Citation: Morvan, M.; Mikšík, I. Recent Advances in Chiral Analysis of Proteins and Peptides.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7,732,399 B2 Goldenberg Et Al
    US007732399B2 (12) United States Patent (10) Patent No.: US 7,732,399 B2 Goldenberg et al. (45) Date of Patent: *Jun. 8, 2010 (54) SUSTAINED RELEASE FORMULATIONS 2002fO151582 A1 10, 2002 Dou et al. 2003/O190307 A1* 10, 2003 DiBiase et al. ............. 424,856 (75) Inventors: Merrill S. Goldenberg, Thousand Oaks, 2004/0142048 A1 7/2004 Moore et al. CA (US); Jian Hua Gu, Thousand Oaks 2005/0180925 A1* 8/2005 Chaudry ...................... 424/46 CA (US s s 2005/0215470 A1 9/2005 Ng et al. FOREIGN PATENT DOCUMENTS (73) Assignee: Amgen Inc., Thousand Oaks, CA (US) GB 92.9405 A 6, 1963 (*) Notice: Subject to any disclaimer, the term of this GB 1234.805. A 6, 1971 patent is extended or adjusted under 35 W W 3. t E. U.S.C. 154(b) by 193 days. WO WO99,04764 2, 1999 This patent is Subject to a terminal dis- W W 995, 239, claimer. WO WO 2004/O12522 2, 2004 (21) Appl. No.: 11/847,984 OTHER PUBLICATIONS 1-1. Yan et al. Identification of histatins as tannin-binding proteins in (22) Filed: Aug. 30, 2007 human saliva. Biochemical Journal. 1995, vol. 311, pp. 341-347.* O O Charlton, A. J. et al., “Polyphenol/Peptide Binding and Precipita (65) Prior Publication Data tion.” J. Agric. Food Chem. 50, pp. 1593-1601 (2002); published by US 2007/0292506 A1 Dec. 20, 2007 Chasin,American M.. Chemical “Biodegradable Society. Polymers for Controlled Drug Deliv O O ery,” J.O. Hollinger Editor, Biomedical Applications of Synthetic Related U.S. Application Data Biodegradable Polymers CRC, Boca Raton, FL (1995), pp.
    [Show full text]
  • Selection of Sponge-Associated Bacteria with High Potential for The
    www.nature.com/scientificreports OPEN Selection of sponge‑associated bacteria with high potential for the production of antibacterial compounds Riyanti1,2, Walter Balansa3, Yang Liu1, Abha Sharma1, Sanja Mihajlovic4, Christoph Hartwig4, Benedikt Leis4, Frets Jonas Rieuwpassa3, Frans Gruber Ijong3, Heike Wägele5, Gabriele M. König6 & Till F. Schäberle1,4,7* The potential of sponge‑associated bacteria for the biosynthesis of natural products with antibacterial activity was evaluated. In a preliminary screening 108 of 835 axenic isolates showed antibacterial activity. Active isolates were identifed by 16S rRNA gene sequencing and selection of the most promising strains was done in a championship like approach, which can be done in every lab and feld station without expensive equipment. In a competition assay, strains that inhibited most of the other strains were selected. In a second round, the strongest competitors from each host sponge competed against each other. To rule out that the best competitors selected in that way represent similar strains with the same metabolic profle, BOX PCR experiments were performed, and extracts of these strains were analysed using metabolic fngerprinting. This proved that the strains are diferent and have various metabolic profles, even though belonging to the same genus, i.e. Bacillus. Furthermore, it was shown that co‑culture experiments triggered the production of compounds with antibiotic activity, i.e. surfactins and macrolactin A. Since many members of the genus Bacillus possess the genetic equipment for the biosynthesis of these compounds, a potential synergism was analysed, showing synergistic efects between C14‑surfactin and macrolactin A against methicillin‑resistant Staphylococcus aureus (MRSA). Te oceans house highly dynamic and diverse microbiological habitats with an inherent high potential to discover species that are completely new, unique and highly adapted 1.
    [Show full text]