CINNABAR (Mercury Sulfide) Minerals | by Name | by Class | by Groupings | Search | Sulfides
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Geology and Hydrothermal Alteration of the Duobuza Goldrich Porphyry
doi: 10.1111/j.1751-3928.2011.00182.x Resource Geology Vol. 62, No. 1: 99–118 Thematic Articlerge_182 99..118 Geology and Hydrothermal Alteration of the Duobuza Gold-Rich Porphyry Copper District in the Bangongco Metallogenetic Belt, Northwestern Tibet Guangming Li,1 Jinxiang Li,1 Kezhang Qin,1 Ji Duo,2 Tianping Zhang,3 Bo Xiao1 and Junxing Zhao1 1Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, CAS, Beijing, 2Tibet Bureau of Geology and Exploration, Lhasa, Tibet and 3No. 5 Geological Party, Tibet Bureau of Geology and Exploration, Golmu, China Abstract The Duobuza gold-rich porphyry copper district is located in the Bangongco metallogenetic belt in the Bangongco-Nujiang suture zone south of the Qiangtang terrane. Two main gold-rich porphyry copper deposits (Duobuza and Bolong) and an occurrence (135 Line) were discovered in the district. The porphyry-type mineralization is associated with three Early Cretaceous ore-bearing granodiorite porphyries at Duobuza, 135 Line and Bolong, and is hosted by volcanic and sedimentary rocks of the Middle Jurassic Yanshiping Formation and intermediate-acidic volcanic rocks of the Early Cretaceous Meiriqie Group. Simultaneous emplacement and isometric distribution of three ore-forming porphyries is explained as multi-centered mineralization generated from the same magma chamber. Intense hydrothermal alteration occurs in the porphyries and at the contact zone with wall rocks. Four main hypogene alteration zones are distinguished at Duobuza. Early-stage alteration is dominated by potassic alteration with extensive secondary biotite, K-feldspar and magnetite. The alteration zone includes dense magnetite and quartz-magnetite veinlets, in which Cu-Fe-bearing sulfides are present. -
Observation of Quadrupole Helix Chirality and Its Domain Structure in Dyfe3(BO3)4
ARTICLES PUBLISHED ONLINE: 6 APRIL 2014 | DOI: 10.1038/NMAT3942 Observation of quadrupole helix chirality and its domain structure in DyFe3(BO3)4 T. Usui1, Y. Tanaka2, H. Nakajima1, M. Taguchi2, A. Chainani2, M. Oura2, S. Shin2, N. Katayama3, H. Sawa3, Y. Wakabayashi1 and T. Kimura1* Resonant X-ray diraction (RXD) uses X-rays in the vicinity of a specific atomic absorption edge and is a powerful technique for studying symmetry breaking by motifs of various multipole moments, such as electric monopoles (charge), magnetic dipoles (spin) and electric quadrupoles (orbital). Using circularly polarized X-rays, this technique has been developed to verify symmetry breaking eects arising from chirality, the asymmetry of an object upon its mirroring. Chirality plays a crucial role in the emergence of functionalities such as optical rotatory power and multiferroicity. Here we apply spatially resolved RXD to reveal the helix chirality of Dy 4f electric quadrupole orientations and its domain structure in DyFe3(BO3)4, which shows a reversible phase transition into an enantiomorphic space-group pair. The present study provides evidence for a helix chiral motif of quadrupole moments developed in crystallographic helix chirality. t is well known that chirality often plays a critical role in various detect not only crystallographic helix handedness but also the disciplines, such as biology, organic chemistry and particle chirality ascribed to the periodic motif of multipole moments, such Iphysics1,2. In contrast, chirality in solid-state physics, which as magnetic dipoles and electric quadrupoles12–14. In the case of is largely concerned with crystals possessing periodic arrays of magnetic dipoles, the handedness of a `helical magnetic structure' atoms, has attracted less attention. -
Washington State Minerals Checklist
Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite -
Modern Mineralogy of Gold: Overview and New Data Minéralogie Moderne De L’Or : Bilan Et Nouvelles Données
ArcheoSciences Revue d'archéométrie 33 | 2009 Authentication and analysis of goldwork Modern mineralogy of gold: overview and new data Minéralogie moderne de l’or : bilan et nouvelles données Ernst Spiridonov and Denka Yanakieva Electronic version URL: http://journals.openedition.org/archeosciences/2034 DOI: 10.4000/archeosciences.2034 ISBN: 978-2-7535-1598-7 ISSN: 2104-3728 Publisher Presses universitaires de Rennes Printed version Date of publication: 31 December 2009 Number of pages: 67-73 ISBN: 978-2-7535-1181-1 ISSN: 1960-1360 Electronic reference Ernst Spiridonov and Denka Yanakieva, « Modern mineralogy of gold: overview and new data », ArcheoSciences [Online], 33 | 2009, Online since 09 December 2012, connection on 19 April 2019. URL : http://journals.openedition.org/archeosciences/2034 ; DOI : 10.4000/archeosciences.2034 Article L.111-1 du Code de la propriété intellectuelle. Modern mineralogy of gold: overview and new data Minéralogie moderne de l’or : bilan et nouvelles données Ernst Spiridonov* and Denka Yanakieva** Abstract: We suppose that it should be useful for archaeologists to have an overview on gold mineralogy, because 1) in ancient times, part of the golden objects were made directly from natural golden nuggets; 2) most of the Au in ores exists as its own minerals. he major part of the Au in the planets and meteorites of our Solar system is found in high temperature solid solutions: metallic Fe-Ni and monosulides Fe-Ni and Fe-Cu. Au leaves them under luid or some other reworking. As a result, Au minerals are formed. hey are mainly developed in hydrothermal deposits of the upper part of Earth’s continental crust. -
Phenomenal Gemstones Possess Striking Optical Effects, Making Them Truly a Sight for Sore Eyes
THE PHENOMENAL PROPERTIES OF GEMS Phenomenal gemstones possess striking optical effects, making them truly a sight for sore eyes. Here is GIA’s guide to understanding what makes each phenomenon so uniquely brilliant. ASTERISM CROSSING BANDS OF REFLECTED LIGHT CREATE A SIX-RAYED STAR-LIKE APPEARANCE. ASTERISM OCCURS IN THE DOME OF A CABOCHON, AND CAN BE SEEN IN GEMS LIKE RUBIES AND SAPPHIRES. ADULARESCENCE THE SAME SCATTERING OF LIGHT THAT MAKES THE SKY BLUE CREATES A MILKY, BLUISH-WHITE GLOW, LIKE MOONLIGHT SHINING THROUGH A VEIL OF CLOUDS. MOONSTONE IS THE ONLY GEM THAT DISPLAYS IT. AVENTURESCENCE FOUND IN NATURAL GEMS LIKE SUNSTONE FELDSPAR AND AVENTURINE QUARTZ, IT DISPLAYS A GLITTERY EFFECT CAUSED BY LIGHT REFLECTING FROM SMALL, FLAT INCLUSIONS. CHATOYANCY OTHERWISE KNOWN AS THE “CAT’S EYE” EFFECT, BANDS OF LIGHT ARE CAUSED BY THE REFLECTION OF LIGHT FROM MANY PARALLEL, NEEDLE-LIKE INCLUSIONS INSIDE A CABOCHON. NOTABLE GEMS THAT DISPLAY CHATOYANCY INCLUDE CAT’S EYE TOURMALINE AND CAT’S EYE CHRYSOBERYL. IRIDESCENCE ALSO SEEN IN SOAP BUBBLES AND OIL SLICKS, IT’S A RAINBOW EFFECT THAT IS CREATED WHEN LIGHT IS BROKEN UP INTO DIFFERENT COLORS. LOOK FOR IT IN FIRE AGATE AND OPAL AMMONITE (KNOWN BY THE TRADE AS AMMOLITE). LABR ADORESCENCE A BROAD FLASH OF COLOR THAT APPEARS IN LABRADORITE FELDSPAR, IT’S CAUSED BY LIGHT INTERACTING WITH THIN LAYERS IN THE STONE, AND DISAPPEARS WHEN THE GEM IS MOVED. INSIDER’S TIP: THE MOST COMMON PHENOMENAL COLOR IN LABRADORITE IS BLUE. PLAY OF COLOR THE FLASHING RAINBOW-LIKE COLORS IN OPAL THAT FLASH AT YOU AS YOU TURN THE STONE OR MOVE AROUND IT. -
An Investigation of Lithium Solid Electrolyte Materials
AN INVESTIGATION OF LITHIUM SOLID ELECTROLYTE MATERIALS WITH FIRST PRINCIPLES CALCULATIONS BY NICHOLAS LEPLEY A Thesis Submitted to the Graduate Faculty of WAKE FOREST UNIVERSITY GRADUATE SCHOOL OF ARTS AND SCIENCES in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Physics December 2013 Winston-Salem, North Carolina Approved By: N. A. W. Holzwarth, Ph.D., Advisor Freddie Salsbury Jr., Ph.D., Chair William Kerr, Ph.D. Timo Thonhauser, Ph.D. Table of Contents List of Figures iv Chapter List of Abbreviations v Chapter Abstract vi I Background 1 Chapter 1 Battery Chemistry and Challenges 2 1.1 Fundamental Operation . .2 1.2 State of the Art . .3 1.3 Solid Electrolyte Materials . .6 Chapter 2 Computational Methods 9 2.1 Density Functional Theory . .9 2.2 Implementation . 12 2.3 Additional sources of error . 13 II Summary of Published Work 14 Chapter 3 Computer modeling of lithium phosphate and thiophosphate electrolyte materials 15 3.1 Overview . 15 3.2 Publication results and conclusions . 15 3.3 My contributions . 16 3.4 Further results and conclusions . 16 Chapter 4 Computer Modeling of Crystalline Electrolytes: Lithium Thio- phosphates and Phosphates 17 4.1 Overview . 17 4.2 Publication results and conclusions . 17 4.3 My contributions . 21 4.4 Further results and conclusions . 21 ii Chapter 5 Structures, Li+ mobilities, and interfacial properties of solid electrolytes Li3PS4 and Li3PO4 from first principles 22 5.1 Overview . 22 5.2 Publication results and conclusions . 22 5.3 My contributions . 24 5.4 Further results and conclusions . 25 Chapter 6 Conclusions and future directions 27 III Appendix 32 Chapter 7 Computer modeling of lithium phosphate and thiophosphate electrolyte materials 33 Chapter 8 Computer modeling of crystalline electrolytes: lithium thio- phosphates and phosphates 41 Chapter 9 Structures, Li+ mobilities, and interfacial properties of solid electrolytes Li3PS4 and Li3PO4 from first principles 52 IV Curriculum Vitae 64 iii List of Figures 1.1 Schematic of Li-ion battery . -
Мінералогічний Журнал Mineralogical Journal (Ukraine)
МІНЕРАЛОГІЧНИЙ ЖУРНАЛ MINERALOGICAL JOURNAL (UKRAINE) UDC 549.328/.334 (437.6+477) v V. Melnikov, S. Jelen, S. Bondarenko, T. Balintova′ , D. Ozdl′n, A. Grinchenko COMPARATIVE STUDY OF Bi>Te>Se>S MINERALIZATIONS IN SLOVAK REPUBLIC AND TRANSCARPATHIAN REGION OF UKRAINE. PART 1. LOCALITIES, GEOLOGICAL SITUATION AND MINERAL ASSOCIATIONS Comparative analysis of telluride occurrences found in the territory of Slovakia and Transcarpathians (Ukraine) has shown that there is distinct difference between the mode of Au;Ag;Bi;Te;Se mineralization of these regions. But within the area of distribution of neovolcanites Bi;Te;Se;S mineralization is generally represented by similar mineralogical phases. In the Transcarpathian region bismuth tellurides (tsumoite, pilsenite, joseites, native bismuth and poorly studied sulpho;seleno; tellurides of bismuth) were found only in metasomatites as secondary quartzites of the Vyghorlat;Guta ridge area. (Il'kivtsy, Podulky, Smerekiv Kamin'). The similar mineralization have been also found in some neovolcanites of Slovakia (Poruba pod Vigorlatom, Remetska Hamra). E;mail: [email protected] Introduction. Associations of non;ferrous and pre; nium and sulfur can be traced into the structure cious metals occurred due to geochemical diffe; of tellurides (polar isomorphism), it is necessary to rentiation of elements in the upper mantle and describe their composition in the triple system earth crust. There is a certain relation between Te;Se;S. Crystallochemical restriction on replace; "composition" of association of chalcophile ele; ment of tellurium by sulfur does not prevent ments and conditions of their formations [18]. So, accommodation of sulfur in independent positions for example, association of Ag;Au;Hg metals and such as, for example, in the structure of tetra; satellite association of Bi;Te;Se occurs at low tem; dymite and joseite. -
NMR Investigations of Crystalline and Glassy Solid Electrolytes for Lithium Batteries: a Brief Review
International Journal of Molecular Sciences Review NMR Investigations of Crystalline and Glassy Solid Electrolytes for Lithium Batteries: A Brief Review Daniel J. Morales 1,2 and Steven Greenbaum 1,* 1 Department of Physics and Astronomy, Hunter College of the City University of New York, New York, NY 10065, USA; [email protected] 2 Ph.D. Program in Physics, CUNY Graduate Center, New York, NY 10036, USA * Correspondence: [email protected] Received: 9 April 2020; Accepted: 28 April 2020; Published: 11 May 2020 Abstract: The widespread use of energy storage for commercial products and services have led to great advancements in the field of lithium-based battery research. In particular, solid state lithium batteries show great promise for future commercial use, as solid electrolytes safely allow for the use of lithium-metal anodes, which can significantly increase the total energy density. Of the solid electrolytes, inorganic glass-ceramics and Li-based garnet electrolytes have received much attention in the past few years due to the high ionic conductivity achieved compared to polymer-based electrolytes. This review covers recent work on novel glassy and crystalline electrolyte materials, with a particular focus on the use of solid-state nuclear magnetic resonance spectroscopy for structural characterization and transport measurements. Keywords: NMR; inorganic electrolytes; glassy electrolytes; ceramic electrolytes 1. Introduction As lithium ion batteries continue to permeate the commercial market, the search continues to produce an all solid-state equivalent with the same or superior performance. While liquid organic electrolytes continue to exhibit high performance and long cyclability, the risk of thermal runaway and inability to utilize Li metal anodes without the risk of dendrite formation are ongoing issues. -
Spiridonovite, (Cu1-Xagx)2Te (X ≈ 0.4), a New Telluride from the Good Hope Mine, Vulcan, Colorado (U.S.A.)
minerals Article Spiridonovite, (Cu1-xAgx)2Te (x ≈ 0.4), a New Telluride from the Good Hope Mine, Vulcan, Colorado (U.S.A.) Marta Morana 1 and Luca Bindi 2,* 1 Dipartimento di Scienze della Terra e dell’Ambiente, Università di Pavia, Via A. Ferrata 7, I-27100 Pavia, Italy; [email protected] 2 Dipartimento di Scienze della Terra, Università degli Studi di Firenze, Via G. La Pira 4, I-50121 Firenze, Italy * Correspondence: luca.bindi@unifi.it; Tel.: +39-055-275-7532 Received: 7 March 2019; Accepted: 22 March 2019; Published: 24 March 2019 Abstract: Here we describe a new mineral in the Cu-Ag-Te system, spiridonovite. The specimen was discovered in a fragment from the cameronite [ideally, Cu5-x(Cu,Ag)3+xTe10] holotype material from the Good Hope mine, Vulcan, Colorado (U.S.A.). It occurs as black grains of subhedral to anhedral morphology, with a maximum size up to 65 µm, and shows black streaks. No cleavage is −2 observed and the Vickers hardness (VHN100) is 158 kg·mm . Reflectance percentages in air for Rmin and Rmax are 38.1, 38.9 (471.1 nm), 36.5, 37.3 (548.3 nm), 35.8, 36.5 (586.6 nm), 34.7, 35.4 (652.3 nm). Spiridonovite has formula (Cu1.24Ag0.75)S1.99Te1.01, ideally (Cu1-xAgx)2Te (x ≈ 0.4). The mineral is trigonal and belongs to the space group P-3c1, with the following unit-cell parameters: a = 4.630(2) Å, c = 22.551(9) Å, V = 418.7(4) Å 3, and Z = 6. -
Gomposition and Occurrence of Electrum Atthe
L37 The Canadian M inerala g i st Vol.33,pp. 137-151(1995) GOMPOSITIONAND OCCURRENCEOF ELECTRUM ATTHE MORNINGSTAR DEPOSIT, SAN BERNARDINOCOUNTY, GALIFORNIA: EVIDENCEFOR REMOBILIZATION OF GOLD AND SILVER RONALD WYNN SIIEETS*, JAMES R. CRAIG em ROBERT J. BODNAR Depanmen of Geolngical Sciences, Virginin Polytechnic h stitate and Stale (Jniversity, 4A44 Dening Hall, Blacl<sburg, Virginin 24060, U.S-A,. Arsrnacr Elecfum, acanthiteand uytenbogaardtite have been examined from six depthswithin the tabular quartzt calcite sockwork and breccia-filled veins in the fault-zone-hostedMorning Star depositof the northeasternMojave Desert, Califomia. Six distinct types of electrum have been identified on the basis of minerat association,grain moryhology and composition. Two types, (1) p1'rite-hostedand (2) quartz-hostedelectrum, occur with acanthite after argentite and base-metalsulfide minerals in unoxidized portions of the orebody; the remaining forr types, (3) goethite-hostedelectrum, (4) electnrm cores, (5) electrumrims and (6) wire electrum,are associatedwith assemblagesof supergeneminerals in its oxidizedportions. Pyrite- hosted quartz-hostedand goethite-hostedelectrum range in compositionfrom 6l ta 75 utt.7oAu and have uniform textures and no zoning. In lower portions ofthe oxidized ore zone, electrum seemsto replacegoethite and occursas small grains on surfacesof the goethite.Textural evidencefavors supergeneremobilization of Au and Ag, which were depositedas electrum on or replacinggoethite. This type of electrumis identical in appearanceand compositionto prinary electrum,In the upper portions of the oxidized zone,secondary electum occursas a gold-rich rim on a core of elechum and as wire-like grains,both with acanthiteand uytenbogaardtite.Such secondaryelectrum contains from 78 to 93 wt./o Au. Textural relations and asso- ciated minerals suggestthat the primary electrum was hydrothermally depositedand partially remobilized by supergene processes. -
Pyrostilpnite Ag3sbs3 C 2001-2005 Mineral Data Publishing, Version 1
Pyrostilpnite Ag3SbS3 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Monoclinic. Point Group: 2/m. Crystals tabular {010} giving flat rhombic forms; also laths by elongation k [001], to 1 mm; as subparallel sheaflike aggregates. Twinning: On {100} with (100) as composition plane. Physical Properties: Fracture: Conchoidal. Tenacity: Somewhat flexible in thin plates. Hardness = 2 VHN = 95–115, 107 average (100 g load). D(meas.) = 5.94 D(calc.) = 5.97 Optical Properties: Transparent. Color: Hyacinth-red; lemon-yellow by transmitted light. Streak: Yellow-orange. Luster: Adamantine. Optical Class: Biaxial (+). Orientation: Y = b; X ∧ c = 8–11◦. α = Very high. β = Very high. γ = Very high. R1–R2: (400) 36.3–36.9, (420) 36.3–36.5, (440) 36.1–35.8, (460) 35.7–35.1, (480) 34.9–34.2, (500) 33.9–33.2, (520) 32.3–31.8, (540) 30.8–30.3, (560) 29.6–29.2, (580) 28.6–28.2, (600) 27.8–27.5, (620) 27.1–26.7, (640) 26.6–26.2, (660) 26.2–25.8, (680) 25.9–25.4, (700) 25.6–25.2 ◦ 0 Cell Data: Space Group: P 21/c. a = 6.84 b = 15.84 c = 6.24 β = 117 09 Z=4 X-ray Powder Pattern: Pˇr´ıbram, Czech Republic. 2.85 (100), 2.65 (50), 2.42 (50), 1.895 (50b), 1.887 (50b), 1.824 (20b), 1.813 (20b) Chemistry: (1) (2) (3) Ag 59.44 59.7 59.76 Sb 22.30 23.7 22.48 S 18.11 16.8 17.76 Total 99.85 100.2 100.00 (1) St. -
Acanthite Ag2s C 2001-2005 Mineral Data Publishing, Version 1 Crystal Data: Monoclinic, Pseudo-Orthorhombic
Acanthite Ag2S c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Monoclinic, pseudo-orthorhombic. Point Group: 2/m. Primary crystals are rare, prismatic to long prismatic, elongated along [001], to 2.5 cm, may be tubular; massive. Commonly paramorphic after the cubic high-temperature phase (“argentite”), of original cubic or octahedral habit, to 8 cm. Twinning: Polysynthetic on {111}, may be very complex due to inversion; contact on {101}. Physical Properties: Cleavage: Indistinct. Fracture: Uneven. Tenacity: Sectile. Hardness = 2.0–2.5 VHN = 21–25 (50 g load). D(meas.) = 7.20–7.22 D(calc.) = 7.24 Photosensitive. Optical Properties: Opaque. Color: Iron-black. Streak: Black. Luster: Metallic. Anisotropism: Weak. R: (400) 32.8, (420) 32.9, (440) 33.0, (460) 33.1, (480) 33.0, (500) 32.7, (520) 32.0, (540) 31.2, (560) 30.5, (580) 29.9, (600) 29.2, (620) 28.7, (640) 28.2, (660) 27.6, (680) 27.0, (700) 26.4 ◦ Cell Data: Space Group: P 21/n. a = 4.229 b = 6.931 c = 7.862 β =99.61 Z=4 X-ray Powder Pattern: Synthetic. 2.606 (100), 2.440 (80), 2.383 (75), 2.836 (70), 2.583 (70), 2.456 (70), 3.080 (60) Chemistry: (1) (2) (3) Ag 86.4 87.2 87.06 Cu 0.1 Se 1.6 S 12.0 12.6 12.94 Total 100.0 99.9 100.00 (1) Guanajuato, Mexico; by electron microprobe. (2) Santa Lucia mine, La Luz, Guanajuato, Mexico; by electron microprobe. (3) Ag2S. Polymorphism & Series: The high-temperature cubic form (“argentite”) inverts to acanthite at about 173 ◦C; below this temperature acanthite is the stable phase and forms directly.