A Campaign-Based Characterization of Spamming Strategies

Total Page:16

File Type:pdf, Size:1020Kb

A Campaign-Based Characterization of Spamming Strategies A Campaign-based Characterization of Spamming Strategies Pedro H. Calais, Douglas E. V. Pires Cristine Hoepers, Dorgival Olavo Guedes, Wagner Meira Jr. Klaus Steding-Jessen Computer Science Department Computer Emergency Response Team Brazil Federal University of Minas Gerais Network Information Center Brazil Belo Horizonte, MG - Brazil S~aoPaulo, SP - Brazil Abstract technique employed by spammers to maximize the ef- fectiveness of their attacks, reducing the probability This paper presents a methodology for that the message is blocked by spam filters and pre- the characterization of spamming strategies venting their activities of being identified and tracked. based on the identification of spam cam- Our approach is to characterize spam campaigns in ad- paigns. To deeply understand how spammers dition to individual messages. We define a campaign abuse network resources and obfuscate their as a set of messages that have the same goal (e.g., messages, an aggregated analysis of spam advertising a specific product) and employ the same messages is not enough. Grouping spam obfuscation strategy, which comprises either content messages into campaigns is important to un- obfuscation and network exploitation strategies. In veil behaviors that cannot be noticed when general, spammers obfuscate and change the content looking at the whole set of spams collected. of their messages on a systematic and automated way. We propose a spam identification technique They try to avoid sending identical messages, which based on a frequent pattern tree, which natu- would make the task of detecting his or her messages rally captures the invariants on message con- easier. Thus, in order to characterize the strategies tent and detect campaigns that differ only and traffic generated by different spammers, it is neces- due to obfuscated fragments. After that, we sary to identify groups of messages that are generated characterize these campaigns both in terms following the same procedure and are part of the same of content obfuscation and exploitation of spam campaign. In this paper, we propose a novel network resources. Our methodology in- and scalable methodology for identifying spam cam- cludes the use of attribute association anal- paigns. After the campaigns have been identified and ysis: by applying an association rule min- messages are associated with those campaigns, we can ing algorithm, we were able to determine co- then characterize how each campaign have exploited occurrence of campaign attributes that un- the network resources and how their contents have veil different spamming strategies. In partic- been obfuscated. ular, we found strong relations between the origin of the spam and how it abused the We consider the identification of spam campaigns a network, and also between operating systems crucial step for identifying spamming strategies and and types of abuse. improving our understanding of how spammers abuse network resources for a number of reasons. First, the identification of campaigns creates new dimensions 1 Introduction that can be analyzed and correlated. Aggregate anal- ysis on spam data is limited in determining spamming strategies. By grouping spam messages in their associ- Despite current strategies to minimize the impact of ated campaigns, we can characterize how the spammer spams, it is necessary a continuous effort to understand disseminated his or her messages. Second, the volume in detail how spammers generate, distribute and dis- of spam messages is huge, and processing such amount seminate their messages in the network, to maintain of data is costly and sometimes unfeasible. Group- and even improve the effectiveness of anti-spam mech- ing messages into campaigns provides a summariza- anisms (Pu & Webb, 2006). The goal of this paper tion criteria, drastically reducing the amount of data is to characterize different spamming strategies em- to be treated, while maintaining their key characteris- ployed by spam senders. We define as an strategy any tics. Finally, the identification of spam campaigns neu- that graph were analyzed, for example, the identifica- tralize the effect of the variable volume of messages as- tion of large groups of IPs that send spam messages sociated to each spam campaign, which might hide fre- with the same URL. The notion of campaign was im- quent behaviors happening only on smaller campaigns. plicitly used, by grouping messages by their URLs, but, as URL obfuscation is a common practice, the After identifying the messages that were generated groups of IPs referencing the same URLs could be even from the same spam campaign, we propose a method- bigger. Our work considers not only URLs, but also ology for characterizing spam dissemination strategies. other features while identifying campaigns. The methodology is based on the detection of invari- ants and co-occurrence of mechanisms for sending mes- SpamScatter (Anderson et al., 2007) is a technique sages adopted by a single campaign. These invariants that determines spam campaigns by performing im- and patterns represent spamming behaviors and may age shingling, which looks for similarities between im- be used for definition of criteria for detection, identi- ages from different spam web pages. The methodology fication and minimization of the impact of spam. adopted by the authors is similar to ours: campaigns are first identified and then characterized. However, We applied our characterization methodology to 97 while their work analyzes the scam hosting infrastruc- million spam messages captured during 12 months ture, our focus is on the characterization of the net- by low-interaction honeypots (Provos & Holz, 2007), work infrastructure abuse. which were configured to emulate computers with open relays and open proxies. We were able to find strong In fact, the idea of identifying spam campaigns is not relations between the origin of the spam and how it new. In the literature, most research on grouping near- abused the network and also between operating sys- duplicate spam messages aims to detect campaigns as tems and these abuse types. a strategy for blocking them, based on the fact that an inherent characteristic of unsolicited e-mails is that they are sent in high volumes during short periods 2 Related Work of time. Different strategies for grouping messages into campaigns can be mentioned, such as techniques Many recent works have studied spammers' abuse that consider URL information (Yeh & Lin, 2006), strategies, both considering network behavior and con- signature-based approaches such as I-Match (Kolcz & tent obfuscation. Chowdhury, 2007) and techniques that compute simi- In (Ramachandran & Feamster, 2006) the authors ana- larities between spam images (Wang et al., 2007). Our lyze how spammers exploit the Internet infrastructure goal is different from those works in the sense that to send their messages, including the most popular IP we intend to identify spam campaigns to characterize ranges exploited for sending spam and the more com- them in terms of content and network obfuscation. Al- mon abuse types, such as bots and BGP hijacking. In though our findings may support the development and particular, the authors show that spam messages tend improvement of anti-spam techniques, this is not our to be sent from very restricted IP ranges. Some statis- main objective. tics about the origin of the messages show the most Regarding content characterization, (Pu & Webb, common operating systems originating spams and the 2006) presented some analysis of temporal evolution of autonomous systems (AS) that account for the high- spammer strategies regarding the techniques they use est volume of spams. Our paper also characterizes to construct their messages. These techniques were spamming network strategies, but instead of looking extracted from the rules identified by the anti-spam at the group of messages as a whole, we group mes- filter SpamAssassin. The authors showed that some sages into campaigns and then analyze how the groups obfuscation techniques are abandoned over time, pos- of IPs that disseminated each campaign have abused sibly due to changes in the environment, such as a bug network resources. This approach provides insights on fix on an e-mail client program. On the other hand, how spammers act, which would not be possible on some strategies are able to persist for long periods of an aggregated analysis. Moreover, we also found rela- time. Our work is complementary to theirs and also tions among operating systems, spam origin and abuse provides an interesting framework for trend detection, types, which extends the analysis presented on (Ra- which would be a future work direction. machandran & Feamster, 2006). Another characteristic of our work is the use of data A recent work on characterization of strategies of spam mining techniques to unveil spamming strategies. Al- dissemination is presented in (Li & Hsieh, 2006). The though data mining has been extensively applied on authors grouped spams according to the messages' a wide range of contexts such as e-commerce, bio- URLs and analyzed the graph representing the rela- informatics and industrial applications (Tan et al., tionships between IPs and URLs. Some properties of 2005), we are not aware of any work that applied logs the Operating System of the source IP for each data mining techniques for spam characterization pur- TCP connection, using passive fingerprinting tech- poses. niques (Provos & Holz, 2007). All logs and data cap- tured were then collected by a central server. 3 Methodology Any spammer trying to abuse one of these honeypots to send spam would tend to believe that the emails In this section, we present our methodology for char- were delivered successfully. The message, however, acterizing spammers' strategies for dissemination of was stored locally and never delivered to its recipients. spam messages. The methodology is divided into three The only exceptions were emails sent by spammers to distinct phases: data collection, campaign identifica- test if the proxy/relay was delivering messages. Each tion, and characterization. These three phases will be test message was specially crafted, and contained in- detailed in the next subsections.
Recommended publications
  • Prospects, Leads, and Subscribers
    PAGE 2 YOU SHOULD READ THIS eBOOK IF: You are looking for ideas on finding leads. Spider Trainers can help You are looking for ideas on converting leads to Marketing automation has been shown to increase subscribers. qualified leads for businesses by as much as 451%. As You want to improve your deliverability. experts in drip and nurture marketing, Spider Trainers You want to better maintain your lists. is chosen by companies to amplify lead and demand generation while setting standards for design, You want to minimize your list attrition. development, and deployment. Our publications are designed to help you get started, and while we may be guilty of giving too much information, we know that the empowered and informed client is the successful client. We hope this white paper does that for you. We look forward to learning more about your needs. Please contact us at 651 702 3793 or [email protected] . ©2013 SPIDER TRAINERS PAGE 3 TAble Of cOnTenTS HOW TO cAPTure SubScriberS ...............................2 HOW TO uSe PAiD PrOGrAMS TO GAin Tipping point ..................................................................2 SubScriberS ...........................................................29 create e mail lists ...........................................................3 buy lists .........................................................................29 Pop-up forms .........................................................4 rent lists ........................................................................31 negative consent
    [Show full text]
  • Spamming Botnets: Signatures and Characteristics
    Spamming Botnets: Signatures and Characteristics Yinglian Xie, Fang Yu, Kannan Achan, Rina Panigrahy, Geoff Hulten+,IvanOsipkov+ Microsoft Research, Silicon Valley +Microsoft Corporation {yxie,fangyu,kachan,rina,ghulten,ivano}@microsoft.com ABSTRACT botnet infection and their associated control process [4, 17, 6], little In this paper, we focus on characterizing spamming botnets by effort has been devoted to understanding the aggregate behaviors of leveraging both spam payload and spam server traffic properties. botnets from the perspective of large email servers that are popular Towards this goal, we developed a spam signature generation frame- targets of botnet spam attacks. work called AutoRE to detect botnet-based spam emails and botnet An important goal of this paper is to perform a large scale analy- membership. AutoRE does not require pre-classified training data sis of spamming botnet characteristics and identify trends that can or white lists. Moreover, it outputs high quality regular expression benefit future botnet detection and defense mechanisms. In our signatures that can detect botnet spam with a low false positive rate. analysis, we make use of an email dataset collected from a large Using a three-month sample of emails from Hotmail, AutoRE suc- email service provider, namely, MSN Hotmail. Our study not only cessfully identified 7,721 botnet-based spam campaigns together detects botnet membership across the Internet, but also tracks the with 340,050 unique botnet host IP addresses. sending behavior and the associated email content patterns that are Our in-depth analysis of the identified botnets revealed several directly observable from an email service provider. Information interesting findings regarding the degree of email obfuscation, prop- pertaining to botnet membership can be used to prevent future ne- erties of botnet IP addresses, sending patterns, and their correlation farious activities such as phishing and DDoS attacks.
    [Show full text]
  • Zambia and Spam
    ZAMNET COMMUNICATION SYSTEMS LTD (ZAMBIA) Spam – The Zambian Experience Submission to ITU WSIS Thematic meeting on countering Spam By: Annabel S Kangombe – Maseko June 2004 Table of Contents 1.0 Introduction 1 1.1 What is spam? 1 1.2 The nature of Spam 1 1.3 Statistics 2 2.0 Technical view 4 2.1 Main Sources of Spam 4 2.1.1 Harvesting 4 2.1.2 Dictionary Attacks 4 2.1.3 Open Relays 4 2.1.4 Email databases 4 2.1.5 Inadequacies in the SMTP protocol 4 2.2 Effects of Spam 5 2.3 The fight against spam 5 2.3.1 Blacklists 6 2.3.2 White lists 6 2.3.3 Dial‐up Lists (DUL) 6 2.3.4 Spam filtering programs 6 2.4 Challenges of fighting spam 7 3.0 Legal Framework 9 3.1 Laws against spam in Zambia 9 3.2 International Regulations or Laws 9 3.2.1 US State Laws 9 3.2.2 The USA’s CAN‐SPAM Act 10 4.0 The Way forward 11 4.1 A global effort 11 4.2 Collaboration between ISPs 11 4.3 Strengthening Anti‐spam regulation 11 4.4 User education 11 4.5 Source authentication 12 4.6 Rewriting the Internet Mail Exchange protocol 12 1.0 Introduction I get to the office in the morning, walk to my desk and switch on the computer. One of the first things I do after checking the status of the network devices is to check my email.
    [Show full text]
  • Enisa Etl2020
    EN From January 2019 to April 2020 Spam ENISA Threat Landscape Overview The first spam message was sent in 1978 by a marketing manager to 393 people via ARPANET. It was an advertising campaign for a new product from the company he worked for, the Digital Equipment Corporation. For those first 393 spammed people it was as annoying as it would be today, regardless of the novelty of the idea.1 Receiving spam is an inconvenience, but it may also create an opportunity for a malicious actor to steal personal information or install malware.2 Spam consists of sending unsolicited messages in bulk. It is considered a cybersecurity threat when used as an attack vector to distribute or enable other threats. Another noteworthy aspect is how spam may sometimes be confused or misclassified as a phishing campaign. The main difference between the two is the fact that phishing is a targeted action using social engineering tactics, actively aiming to steal users’ data. In contrast spam is a tactic for sending unsolicited e-mails to a bulk list. Phishing campaigns can use spam tactics to distribute messages while spam can link the user to a compromised website to install malware and steal personal data. Spam campaigns, during these last 41 years have taken advantage of many popular global social and sports events such as UEFA Europa League Final, US Open, among others. Even so, nothing compared with the spam activity seen this year with the COVID-19 pandemic.8 2 __Findings 85%_of all e-mails exchanged in April 2019 were spam, a 15-month high1 14_million
    [Show full text]
  • Locating Spambots on the Internet
    BOTMAGNIFIER: Locating Spambots on the Internet Gianluca Stringhinix, Thorsten Holzz, Brett Stone-Grossx, Christopher Kruegelx, and Giovanni Vignax xUniversity of California, Santa Barbara z Ruhr-University Bochum fgianluca,bstone,chris,[email protected] [email protected] Abstract the world-wide email traffic [20], and a lucrative busi- Unsolicited bulk email (spam) is used by cyber- ness has emerged around them [12]. The content of spam criminals to lure users into scams and to spread mal- emails lures users into scams, promises to sell cheap ware infections. Most of these unwanted messages are goods and pharmaceutical products, and spreads mali- sent by spam botnets, which are networks of compro- cious software by distributing links to websites that per- mised machines under the control of a single (malicious) form drive-by download attacks [24]. entity. Often, these botnets are rented out to particular Recent studies indicate that, nowadays, about 85% of groups to carry out spam campaigns, in which similar the overall spam traffic on the Internet is sent with the mail messages are sent to a large group of Internet users help of spamming botnets [20,36]. Botnets are networks in a short amount of time. Tracking the bot-infected hosts of compromised machines under the direction of a sin- that participate in spam campaigns, and attributing these gle entity, the so-called botmaster. While different bot- hosts to spam botnets that are active on the Internet, are nets serve different, nefarious goals, one important pur- challenging but important tasks. In particular, this infor- pose of botnets is the distribution of spam emails.
    [Show full text]
  • The History of Spam Timeline of Events and Notable Occurrences in the Advance of Spam
    The History of Spam Timeline of events and notable occurrences in the advance of spam July 2014 The History of Spam The growth of unsolicited e-mail imposes increasing costs on networks and causes considerable aggravation on the part of e-mail recipients. The history of spam is one that is closely tied to the history and evolution of the Internet itself. 1971 RFC 733: Mail Specifications 1978 First email spam was sent out to users of ARPANET – it was an ad for a presentation by Digital Equipment Corporation (DEC) 1984 Domain Name System (DNS) introduced 1986 Eric Thomas develops first commercial mailing list program called LISTSERV 1988 First know email Chain letter sent 1988 “Spamming” starts as prank by participants in multi-user dungeon games by MUDers (Multi User Dungeon) to fill rivals accounts with unwanted electronic junk mail. 1990 ARPANET terminates 1993 First use of the term spam was for a post from USENET by Richard Depew to news.admin.policy, which was the result of a bug in a software program that caused 200 messages to go out to the news group. The term “spam” itself was thought to have come from the spam skit by Monty Python's Flying Circus. In the sketch, a restaurant serves all its food with lots of spam, and the waitress repeats the word several times in describing how much spam is in the items. When she does this, a group of Vikings in the corner start a song: "Spam, spam, spam, spam, spam, spam, spam, spam, lovely spam! Wonderful spam!" Until told to shut up.
    [Show full text]
  • A Survey of Learning-Based Techniques of Email Spam Filtering
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Unitn-eprints Research A SURVEY OF LEARNING-BASED TECHNIQUES OF EMAIL SPAM FILTERING Enrico Blanzieri and Anton Bryl January 2008 (Updated version) Technical Report # DIT-06-056 A Survey of Learning-Based Techniques of Email Spam Filtering Enrico Blanzieri, University of Trento, Italy, and Anton Bryl University of Trento, Italy, Create-Net, Italy [email protected] January 11, 2008 Abstract vertising pornography, pyramid schemes, etc. [68]. The total worldwide financial losses caused by spam Email spam is one of the major problems of the to- in 2005 were estimated by Ferris Research Analyzer day’s Internet, bringing financial damage to compa- Information Service at $50 billion [31]. nies and annoying individual users. Among the ap- Lately, Goodman et al. [39] presented an overview proaches developed to stop spam, filtering is an im- of the field of anti-spam protection, giving a brief portant and popular one. In this paper we give an history of spam and anti-spam and describing major overview of the state of the art of machine learn- directions of development. They are quite optimistic ing applications for spam filtering, and of the ways in their conclusions, indicating learning-based spam of evaluation and comparison of different filtering recognition, together with anti-spoofing technologies methods. We also provide a brief description of and economic approaches, as one of the measures other branches of anti-spam protection and discuss which together will probably lead to the final victory the use of various approaches in commercial and non- over email spammers in the near future.
    [Show full text]
  • Presentations Made by Senders
    SES ���� ��� � �� � � � � � � � ������������� DomainKeys ��������� SPF ��������������������� ���������� ����������������� ������������������������������������������������ Contents Introduction 3 Deployment: For Email Receivers 6 Audience 3 Two Sides of the Coin 6 How to Read this White Paper 3 Recording Trusted Senders Who Passed Authentication 6 A Vision for Spam-Free Email 4 Whitelisting Incoming Forwarders 6 The Problem of Abuse 4 What To Do About Forgeries 6 The Underlying Concept 4 Deployment: For ISPs and Enterprises 7 Drivers; or, Who’s Buying It 4 Complementary considerations for ISPs 7 Vision Walkthrough 5 Deployment: For MTA vendors 8 About Sender Authentication 8 Which specification? 8 An Example 8 Conformance testing 8 History 8 Perform SRS and prepend headers when forwarding 8 How IP-based Authentication Works 9 Add ESMTP support for Submitter 8 The SPF record 9 Record authentication and policy results in the headers 8 How SPF Classic Works 9 Join the developers mailing list 8 How Sender ID works 9 Deployment: For MUA vendors 9 How Cryptographic Techniques Work 0 Displaying Authentication-Results 9 Using Multiple Approaches Automatic switching to port 587 9 Reputation Systems Deployment: For ESPs 20 Deployment: For Email Senders 2 Don’t look like a phisher! 20 First, prepare. 2 Delegation 20 Audit Your Outbound Mailstreams 2 Publish Appropriately 20 Construct the record 2 Deployment: For Spammers 2 Think briefly about PRA and Mail-From contexts. 3 Two Types of Spammers 2 Test the record, part 3 Publish SPF and sign with DomainKeys. 2 Put the record in DNS 3 Stop forging random domains. 2 Test the record, part 2 4 Buy your own domains. 2 Keep Track of Violations 4 Reuse an expired domain.
    [Show full text]
  • Characterizing Robocalls Through Audio and Metadata Analysis
    Who’s Calling? Characterizing Robocalls through Audio and Metadata Analysis Sathvik Prasad, Elijah Bouma-Sims, Athishay Kiran Mylappan, and Bradley Reaves, North Carolina State University https://www.usenix.org/conference/usenixsecurity20/presentation/prasad This paper is included in the Proceedings of the 29th USENIX Security Symposium. August 12–14, 2020 978-1-939133-17-5 Open access to the Proceedings of the 29th USENIX Security Symposium is sponsored by USENIX. Who’s Calling? Characterizing Robocalls through Audio and Metadata Analysis Sathvik Prasad Elijah Bouma-Sims North Carolina State University North Carolina State University [email protected] [email protected] Athishay Kiran Mylappan Bradley Reaves North Carolina State University North Carolina State University [email protected] [email protected] Abstract Despite the clear importance of the problem, much of what Unsolicited calls are one of the most prominent security is known about the unsolicited calling epidemic is anecdotal issues facing individuals today. Despite wide-spread anec- in nature. Despite early work on the problem [6–10], the re- dotal discussion of the problem, many important questions search community still lacks techniques that enable rigorous remain unanswered. In this paper, we present the first large- analysis of the scope of the problem and the factors that drive scale, longitudinal analysis of unsolicited calls to a honeypot it. There are several challenges that we seek to overcome. of up to 66,606 lines over 11 months. From call metadata we First, we note that most measurements to date of unsolicited characterize the long-term trends of unsolicited calls, develop volumes, trends, and motivations (e.g., sales, scams, etc.) have the first techniques to measure voicemail spam, wangiri at- been based on reports from end users.
    [Show full text]
  • "Best Way to Stop Robocalls", and Pulls on Both My Own Experience in A
    Dear FTC: The following is my submission on the "best way to stop robocalls", and pulls on both my own experience in anti-telemarketing-abuse and anti-spam activity and—more particularly—my personal experience in investigation of the "worst actors" and coordinating with the Kentucky Attorney-General's office to get some of the worse offenders shut down. A little bit of prelude/backstory is necessary to discuss my particular solution. Kentucky has had a particularly stringent do-not-call since the early 2000s even in comparison with the FTC's do-not-call regulations. Specifically, rather than being a mere civil offense, violation of telemarketing laws is a Class D felony in Kentucky (resulting from 1 to 5 years imprisonment). The majority of the issues that the Kentucky A/G (and myself, as a private actor) have had in stopping the worst offenders has been the following: • Much of the problem is both technical and regulatory--the major technical issue is that the majority of "bad actors" are now using SIP-based VoIP calling from "phish farms" overseas which may not even be located in a specific call center but may be "farmed out" to people's homes worldwide from a central location. (A good example of the latter is the "Telemarketing 1-2- 3/Total Home Systems" phish-farm located out of Guadalajara, Mexico which uses SIP-based "softphone" VoIP to conduct illegal telemarketing to Americans (and other countries) and which typically uses a client PC located in a worker's home to call from.) • Most illegal robocalling is conducted by "phish farms" which may or may not have a US actor at all, but whose primary operations do seem to be located overseas; sometimes US companies hire out, some are overseas, but usually there is some US presence if via the PBX used on the American end of a VoIP call center setup.
    [Show full text]
  • Stopping Outgoing Spam
    Stopping Outgoing Spam ∗ Joshua Goodman Robert Rounthwaite Microsoft Research Microsoft Anti-Spam Technology and Strategy One Microsoft Way Group Redmond, WA 98052 One Microsoft Way [email protected] Redmond, WA 98052 [email protected] ABSTRACT year. The vast majority of research on spam has focused on We analyze the problem of preventing outgoing spam. We helping the recipients of spam avoid receiving it [6, 13, 16] show that some conventional techniques for limiting outgo- (to cite a few). We instead focus on helping Email Service ing spam are likely to be ineffective. We show that while Providers (ESPs) prevent their users from sending spam. imposing per message costs would work, less annoying tech- ESPs include most consumer ISPs (e.g. AOL and MSN), niques also work. In particular, it is only necessary that free email systems (e.g. Hotmail and Yahoo), universities, the average cost to the spammer over the lifetime of an ac- etc. Stopping outbound spam at ESPs will not prevent all count exceed his profits, meaning that not every message outgoing spam, as many spammers own direct internet con- need be challenged. We develop three techniques, one based nectivity and cannot be forced to adopt these techniques, on additional HIP challenges, one based on computational but it will stop a substantial source of spam. ESPs want to challenges, and one based on paid subscriptions. Each sys- stop outgoing spam to lessen the load on their own servers, tem is designed to impose minimal costs on legitimate users, to prevent their systems from being blocked from sending while being too costly for spammers.
    [Show full text]
  • The History of Digital Spam
    The History of Digital Spam Emilio Ferrara University of Southern California Information Sciences Institute Marina Del Rey, CA [email protected] ACM Reference Format: This broad definition will allow me to track, in an inclusive Emilio Ferrara. 2019. The History of Digital Spam. In Communications of manner, the evolution of digital spam across its most popular appli- the ACM, August 2019, Vol. 62 No. 8, Pages 82-91. ACM, New York, NY, USA, cations, starting from spam emails to modern-days spam. For each 9 pages. https://doi.org/10.1145/3299768 highlighted application domain, I will dive deep to understand the nuances of different digital spam strategies, including their intents Spam!: that’s what Lorrie Faith Cranor and Brian LaMacchia ex- and catalysts and, from a technical standpoint, how they are carried claimed in the title of a popular call-to-action article that appeared out and how they can be detected. twenty years ago on Communications of the ACM [10]. And yet, Wikipedia provides an extensive list of domains of application: despite the tremendous efforts of the research community over the last two decades to mitigate this problem, the sense of urgency ``While the most widely recognized form of spam is email spam, the term is applied to similar abuses in other media: instant remains unchanged, as emerging technologies have brought new messaging spam, Usenet newsgroup spam, Web search engine spam, dangerous forms of digital spam under the spotlight. Furthermore, spam in blogs, wiki spam, online classified ads spam, mobile when spam is carried out with the intent to deceive or influence phone messaging spam, Internet forum spam, junk fax at scale, it can alter the very fabric of society and our behavior.
    [Show full text]