Wind Erosion in the Qaidam Basin, Central Asia: Implications for Tectonics, Paleoclimate, and the Source of the Loess Plateau

Total Page:16

File Type:pdf, Size:1020Kb

Wind Erosion in the Qaidam Basin, Central Asia: Implications for Tectonics, Paleoclimate, and the Source of the Loess Plateau 2011 GSA Annual Meeting & Exposition Call for Papers, p. 15 VOL. 21, NO. 4/5 A PUBLICATION OF THE GEOLOGICAL SOCIETY OF AMERICA APRIL/MAY 2011 Wind erosion in the Qaidam basin, central Asia: Implications for tectonics, paleoclimate, and the source of the Loess Plateau Inside: L Call for Committee Service, p. 50 L Special GSA Foundation Update, p. 54 L Position Statement Draft: Geoheritage, p. 56 VOLUME 21, NUMBER 4/5 ▲ APRIL/MAY 2011 SCIENCE ARTICLE GSA TODAY (ISSN 1052-5173 USPS 0456-530) prints news 4 Wind erosion in the Qaidam basin, and information for more than 23,000 GSA member read- ers and subscribing libraries, with 11 monthly issues (April/ central Asia: Implications for tectonics, May is a combined issue). GSA TODAY is published by The paleoclimate, and the source of the Geological Society of America® Inc. (GSA) with offices at 3300 Penrose Place, Boulder, Colorado, USA, and a mail- Loess Plateau ing address of P.O. Box 9140, Boulder, CO 80301-9140, USA. Paul Kapp, Jon D. Pelletier, Alexander GSA provides this and other forums for the presentation Rohrmann, Richard Heermance, of diverse opinions and positions by scientists worldwide, regardless of race, citizenship, gender, sexual orientation, Joellen Russell, and Lin Ding religion, or political viewpoint. Opinions presented in this publication do not reflect official positions of the Society. Cover: Field of wind-sculpted yardangs in the north- © 2011 The Geological Society of America Inc. All rights western Qaidam basin. Photo by Paul Kapp. See “Wind reserved. Copyright not claimed on content prepared wholly erosion in the Qaidam basin, central Asia: Implications by U.S. government employees within the scope of their for tectonics, paleoclimate, and the source of the Loess employment. Individual scientists are hereby granted per- mission, without fees or request to GSA, to use a single fig- Plateau,” p. 4–10. ure, table, and/or brief paragraph of text in subsequent work and to make/print unlimited copies of items in GSA TODAY for noncommercial use in classrooms to further education and science. In addition, an author has the right to use his or her article or a portion of the article in a thesis or disserta- tion without requesting permission from GSA, provided the bibliographic citation and the GSA copyright credit line are 2011 GSA Annual Meeting & Exposition given on the appropriate pages. For any other use, contact [email protected]. 12 Letter from the Technical Program Chair Subscriptions: GSA members: Contact GSA Sales & Service, +1-888-443-4472; +1-303-357-1000 option 3; gsaservice@ 13 Events & Deadlines Calendar geosociety.org for information and/or to place a claim for non- receipt or damaged copies. Nonmembers and institutions: 13 Annual Meeting Schedule Changes GSA TODAY is free with a paid subscription to GSA Bulletin, 13 GSA Connection Geology, Lithosphere, and Geosphere (all four journals); otherwise US$70/yr; to subscribe, or for claims for non-receipt 14 Organizing Committee and damaged copies, contact AIP Customer Service, subs@ aip.org. Claims are honored for one year; please allow suffi- 15 Call for Papers cient delivery time for overseas copies. Periodicals postage paid at Boulder, Colorado, USA, and at additional mailing 16 Discipline Categories offices. Postmaster: Send address changes to GSA Sales & Service, P.O. Box 9140, Boulder, CO 80301-9140. 17 Topical Sessions GSA TODAY STAFF 43 Space Requests Executive Director and Publisher: John W. Hess 44 Pardee Keynote Symposia Science Editors: Bernie Housen, Western Washington Univ. Geology Dept. (ES 425) and Advanced Materials Science and 45 GSA Employment Service Center Engineering Center (AMSEC), 516 High Street, Bellingham, WA 98225-9080, USA, [email protected]; R. Damian Nance, 46 Graduate School Information Forum Ohio University Dept. of Geological Sciences, 316 Clippinger Laboratories, Athens, OH 45701, USA, [email protected] 46 Field Trips Managing Editor: K.E.A. “Kea” Giles, [email protected], 47 Short Courses [email protected] Graphics Production: Margo Sajban 48 Registration Advertising (classifieds & display): Ann Crawford, +1-800- 48 Student Travel Grants 472-1988 ext. 1053; +1-303-357-1053; Fax: +1-303-357-1070; [email protected]; [email protected] 48 International Section Travel Grants GSA Online: www.geosociety.org; 49 Information for International Attendees GSA TODAY: www.geosociety.org/gsatoday/ 49 Printed in the USA using pure soy inks. Housing 49 GeoCorpsTM America Fall/Winter 2011–2012 50 Call for GSA Committee Service 52 Call for Nominations: 2011 GSA Division Awards 54 GSA Foundation Update 56 Position Statement Draft: Geoheritage 59 About People 60 Classified Advertising Wind erosion in the Qaidam basin, central Asia: Implications for tectonics, paleoclimate, and the source of the Loess Plateau Paul Kapp*, Jon D. Pelletier, Alexander Rohrmann**, Dept. of pans) carved in cohesive material by strong, unidirectional Geosciences, University of Arizona, 1040 E 4th St., Tucson, winds and saltating particles carried by the wind, with spacing Arizona, 85721, USA; Richard Heermance, Dept. of Geological and relief on the order of hundreds of meters and tens of me- Sciences, California State University, Northridge, California 91330- ters (locally up to ~50 m), respectively. In most places, wind- 8266; Joellen Russell, Dept. of Geosciences, University of carved substrata consist of relatively friable, Plio-Quaternary Arizona, 1040 E 4th St., Tucson, Arizona, 85721, USA; and Lin lacustrine deposits. Ding, Institute of Tibetan Plateau Research, Chinese Academy of Yardang ridges form parallel to and taper in the direction of Sciences, Beijing 100085, People’s Republic of China prevailing winds. The geometries of yardangs, and dune forms in ergs where present, reveal the prevailing wind pattern dur- ing their development (Fig. 2A). Northwesterly winds entered ABSTRACT the Qaidam basin through topographic lows in the Altyn Tagh Liquid water and ice are the dominant agents of erosion and Range along its northwestern margin (Fig. 2A; Halimov and sediment transport in most actively growing mountain belts. An Fezer, 1989). Moving from west to east in the basin, the wind exception is in the western Qaidam basin along the northeast- directions become more westerly, paralleling the trends of the ern margin of the Tibetan Plateau, where wind and wind- >5000-m-high basin-bounding mountain ranges (Fig. 2A). Locat- blown sand have sculpted enormous yardang fields in actively ed downwind of the Qaidam basin is one of the most volumi- folding sedimentary strata. Here, we present observations sug- nous and best-exposed accumulations of Neogene-Quaternary gesting that since the late Pliocene, wind episodically (during loess on Earth—the Loess Plateau (e.g., Kukla, 1987; Porter, glacial and stadial periods) removed strata from the western 2007) (Fig. 1). The alternating loess/paleosol stratigraphy of the Qaidam basin at high rates (>0.12–1.1 mm/yr) and may have Loess Plateau provides one of the richest terrestrial records of accelerated rates of tectonic folding. Severe wind erosion likely climate change since the Pliocene. Loess accumulation oc- occurred during glacial and stadial periods when central Asia curred primarily during glacial and stadial periods, when cli- was drier and the main axis of the polar jet stream was located matic conditions were drier in central Asia because of a ~10° closer to the equator (over the Qaidam basin), as pre- weakened East Asian summer monsoon (e.g., An, 2000; Porter, dicted by global climate models. Reconstructed wind patterns, 2007). Knowledge of the source regions for the loess, and how the estimated volume of Qaidam basin material removed by they have varied through time, is critical for assessing numeri- wind, and numerical models of dust transport all support the cal models of atmospheric circulation during the Pliocene and hypothesis that the Qaidam basin was a major source of dust Quaternary and the provenance of the nutrient-rich dust trans- to the Loess Plateau. ported by high-level westerly winds into the Pacific Ocean, which may have increased marine productivity and contributed INTRODUCTION to the drawdown of atmospheric carbon dioxide during glacial The 700-km-long, up to 300-km-wide Qaidam basin (Figs. 1 periods (Rea, 1994; Bopp et al., 2003; Mahowald et al., 2006). and 2A) encompasses one of the highest (~2800 m elevation) In addition, Chinese loess input into the ocean has strongly and driest (<50 mm/yr precipitation in its western part) deserts altered seawater chemistry (e.g., Jacobson, 2004). Although it is on Earth, and it is actively shortening NE-SW in response to the widely argued that the bulk of Loess Plateau deposits was ongoing collision between India and Asia (Tapponnier et al., sourced from the Gobi and adjacent sand deserts (e.g., Sun, 2001). A common inference, likely because of its low relief 2002; Sun et al., 2008), observations of spatially extensive fields (<300 m), intermontane and internally drained setting, and of yardangs and the prevailing northwesterly to westerly wind thick accumulations of late Cenozoic sediment, is that the Qai- pattern in the Qaidam basin suggest that its importance as a dam basin is actively filling with sediment. However, roughly Loess Plateau source may presently be underappreciated. one-third of the modern Qaidam basin floor (~3.88 × 104 km2) actually exposes folded sedimentary strata (Fig. 2A) exhumed HISTORY OF QAIDAM WIND EROSION since the Pliocene due to uplift and wind erosion. Severe wind The wind erosion that produced the modern Qaidam yar- erosion is demonstrated in the western Qaidam basin by the dangs must be younger than late Pleistocene because lacustrine presence of extensive fields of mega-yardangs (Figs. 2A–2C strata of this age are widely exposed in the wind-eroded part and 3A) (Goudie, 2007), which are ridges (and parallel troughs/ of the basin (Pan et al., 2004). However, it does not appear that GSA Today, v.
Recommended publications
  • 1350-5 Geologist
    POSITION DESCRIPTION 1. Position Number 2. Explanation (show any positions replaced) 3. Reason for Submission New Redescription Reestablishment Standardized PD Other 4. Service 5. Subject to Identical Addition (IA) Action HQ Field Yes (multiple use) No (single incumbent) 6. Position Specifications 7. Financial Statement Required 10. Position Sensitivity and Risk Designation Subject to Random Drug Testing Yes No Executive Personnel-OGE-278 Non-Sensitive Employment and Financial Interest-OGE-450 Non-Sensitive: Low-Risk Subject to Medical Standards/Surveillance Yes No None required Public Trust Telework Suitable Yes No 8. Miscellaneous 9. Full Performance Level Non-Sensitive: Moderate-Risk Fire Position Yes No Functional Code: -- Pay Plan: Non-Sensitive: High-Risk Law Enforcement Position Yes No BUS: - - Grade: National Security 11. Position is 12. Position Status Noncritical-Sensitive: Moderate-Risk Competitive SES Noncritical-Sensitive: High-Risk 2-Supervisory Excepted (specify in remarks) SL/ST Critical-Sensitive: High-Risk 4-Supervisor (CSRA) 13. Duty Station Special Sensitive: High-Risk 5-Management Official 6-Leader: Type I 14. Employing Office Location 15. Fair Labor Standards Act Exempt Nonexempt 7-Leader: Type II 16. Cybersecurity Code 17. Competitive Area Code: 8-Non-Supervisory #1: #2: - - #3: - - Competitive Level Code: 18. Classified/Graded by Official Title of Position Pay Plan Occupational Code Grade Initial Date a. Department, Bureau, or Office b. Second Level Review -- -- 19. Organizational Title of Position (if different from, or in addition to, official title) 20. Name of Employee (if vacant, specify) 21. Department, Agency, or Establishment c. Third Subdivision U.S. Department of the Interior a. Bureau/First Subdivision d.
    [Show full text]
  • Wind Can Keep Mountains from Growing 28 March 2011
    Wind can keep mountains from growing 28 March 2011 basin, central Asia: implications for tectonics, paleoclimate, and the source of the Loess Plateau," is in the April/May issue of GSA Today. Kapp's co-authors are Jon D. Pelletier and Joellen Russell of the UA; Alexander Rohrmann, formerly of the UA and now at the University of Potsdam in Germany; Richard Heermance of California State University, Northridge; and Lin Ding of the Chinese Academy of Sciences, Beijing. The American Chemical Society Petroleum Research Fund and a UA Faculty Small Grant funded the research. The geoscientists figured out wind's rock-sculpting Researchers sit atop a wind-formed ridge called a abilities by studying gigantic wind-formed ridges of yardang located in the Qaidam Basin of Central Asia. The yardangs in that area can be as much as 40 meters rock called yardangs. (about 130 feet) tall and about a football field (100 meters) apart. Credit: Paul Kapp, University of Arizona. Kapp first learned about yardangs when reviewing a scientific paper about Central Asia's Qaidam Basin. To see the geology for himself, he booted up Google Earth -- and was wowed by what he saw. Wind is a much more powerful force in the evolution of mountains than previously thought, "I'd never seen anything like that before," he said. "I according to a new report from a University of didn't even know what a yardang was." Arizona-led research team. Huge fields of yardangs that can be seen from Bedrock in Central Asia that would have formed space look like corduroy.
    [Show full text]
  • High-Resolution Magnetostratigraphy of the Neogene Huaitoutala Section
    Earth and Planetary Science Letters 258 (2007) 293–306 www.elsevier.com/locate/epsl High-resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and its implication on tectonic uplift of the NE Tibetan Plateau ⁎ Xiaomin Fang a,b, , Weilin Zhang a, Qingquan Meng b, Junping Gao b, Xiaoming Wang c, John King d, Chunhui Song b, Shuang Dai b, Yunfa Miao b a Center for Basin Resource and Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, P. O. Box 2871, Beilin North Str. 18, Beijing 100085, China b Key Laboratory of Western China's Environmental Systems, Ministry of Education of China & College of Resources and Environment, Lanzhou University, Gansu 730000, China c Department of Vertebrate Paleontology, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA d Graduate School of Oceanography, University of Rhode Island, URI Bay Campus Box 52, South Ferry Road, Narragansett, RI 02882-1197, USA Received 31 December 2006; received in revised form 23 March 2007; accepted 23 March 2007 Available online 31 March 2007 Editor: R.D. van der Hilst Abstract The closed inland Qaidam Basin in the NE Tibetan Plateau contains possibly the world's thickest (∼12,000 m) continuous sequence of Cenozoic fluviolacustrine sedimentary rocks. This sequence contains considerable information on the history of Tibetan uplift and associated climatic change. However, work within Qaidam Basin has been held back by a paucity of precise time constraints on this sequence. Here we report on a detailed paleomagnetic study of the well exposed 4570 m Huaitoutala section along the Keluke anticline in the northeastern Qaidam Basin, where three distinct faunas were recovered and identified from the middle Miocene through Pliocene.
    [Show full text]
  • GEOLOGY What Can I Do with This Major?
    GEOLOGY What can I do with this major? AREAS EMPLOYERS STRATEGIES Some employment areas follow. Many geolo- gists specialize at the graduate level. ENERGY (Oil, Coal, Gas, Other Energy Sources) Stratigraphy Petroleum industry including oil and gas explora- Geologists working in the area of energy use vari- Sedimentology tion, production, storage and waste disposal ous methods to determine where energy sources are Structural Geology facilities accumulated. They may pursue work tasks including Geophysics Coal industry including mining exploration, grade exploration, well site operations and mudlogging. Geochemistry assessment and waste disposal Seek knowledge in engineering to aid communication, Economic Geology Federal government agencies: as geologists often work closely with engineers. Geomorphology National Labs Coursework in geophysics is also advantageous Paleontology Department of Energy for this field. Fossil Energy Bureau of Land Management Gain experience with computer modeling and Global Hydrogeology Geologic Survey Positioning System (GPS). Both are used to State government locate deposits. Consulting firms Many geologists in this area of expertise work with oil Well services and drilling companies and gas and may work in the geographic areas Oil field machinery and supply companies where deposits are found including offshore sites and in overseas oil-producing countries. This industry is subject to fluctuations, so be prepared to work on a contract basis. Develop excellent writing skills to publish reports and to solicit grants from government, industry and private foundations. Obtain leadership experience through campus organi- zations and work experiences for project man- agement positions. (Geology, Page 2) AREAS EMPLOYERS STRATEGIES ENVIRONMENTAL GEOLOGY Sedimentology Federal government agencies: Geologists in this category may focus on studying, Hydrogeology National Labs protecting and reclaiming the environment.
    [Show full text]
  • Zoogeomorphology & Ecosystem Engineering
    Zoogeomorphology & Ecosystem Engineering The 42nd Annual Binghamton Geomorphology Symposium October 21 – 23, 2011 University of South Alabama, Mobile, Alabama National Science University of Texas State University- Foundation South Alabama San Marcos Zoogeomorphology and Ecosystem Engineering The 42nd Annual Binghamton Geomorphology Symposium University of South Alabama, Mobile, Alabama October 21 – 23, 2011 Conference Organizers: David R. Butler Department of Geography, Texas State University-San Marcos Carol F. Sawyer Department of Earth Sciences, University of South Alabama Conference Sponsors National Science Foundation, GEO/EAR, Geomorphology & Land-Use Dynamics Department of Earth Sciences, University of South Alabama College of Arts and Sciences, University of South Alabama Department of Geography, Texas State University-San Marcos Field Trip Assistance Dr. Mimi Fearn, Ms. Sherall Cornwell, Ms. Karen Jordan, Ms. Tela O’Rourke, and Mr. Donald Brinkman, Department of Earth Sciences, University of South Alabama We wish to thank the following people for their assistance in organizing this symposium: Catherine Drake and the Center for Continuing Education & Conference Services staff, Univ. South Alabama Department of Earth Sciences faculty, staff, and students, including Dr. Mimi Fearn, Dr. Jim Connors, Sherall Cornwell, Chris Reese, Donald Brinkman, Tela O’Rourke, and Reva Stienstraw-Hitchcock Dr. Phil Suckling, Chair, Department of Geography, Texas State University-San Marcos Dr. Jack Vitek, Texas A&M University Dr. Richard Marston,
    [Show full text]
  • Biomechanical and Biochemical Effects Recorded in the Tree Root Zone – Soil Memory, Historical Contingency and Soil Evolution Under Trees
    Plant Soil (2018) 426:109–134 https://doi.org/10.1007/s11104-018-3622-9 REGULAR ARTICLE Biomechanical and biochemical effects recorded in the tree root zone – soil memory, historical contingency and soil evolution under trees Łukasz Pawlik & Pavel Šamonil Received: 17 September 2017 /Accepted: 1 March 2018 /Published online: 15 March 2018 # The Author(s) 2018 Abstract increase in soil spatial complexity. We hypothesized that Background and aims The changing soils is a never- trees can be a strong local factor intensifying, blocking ending process moderated by numerous biotic and abi- or modifying pedogenetic processes, leading to local otic factors. Among these factors, trees may play a changes in soil complexity (convergence, divergence, critical role in forested landscapes by having a large or polygenesis). These changes are hypothetically con- imprint on soil texture and chemical properties. During trolled by regionally predominating soil formation their evolution, soils can follow convergent or divergent processes. development pathways, leading to a decrease or an Methods To test the main hypothesis, we described the pedomorphological features of soils under tree stumps of fir, beech and hemlock in three soil regions: Haplic Highlights Cambisols (Turbacz Reserve, Poland), Entic Podzols 1) The architecture of tree root systems controls soil physical and (Žofínský Prales Reserve, Czech Republic) and Albic chemical properties. Podzols (Upper Peninsula, Michigan, USA). Soil pro- 2) The predominating pedogenetic process significantly modifies files under the stumps, as well as control profiles on sites the effect of trees on soil. 3) Trees are a factor in polygenesis in Haplic Cambisols at the currently not occupied by trees, were analyzed in the pedon scale.
    [Show full text]
  • DEPARTMENT of the INTERIOR U.S. GEOLOGICAL SURVEY Notes
    DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Notes on Sedimentary Basins in China Report of the American Sedimentary Basins Delegation to the People's Republic of China A. W. Bally 1 , I-Ming Chou2, R. Clayton3, H. P. Eugster4, S. Kidwell5, L. D. Meckel6, R. T. Ryder7, A. B. Watts8, A. A. Wilson9 1. Rice University, Houston 2. U. S. Geological Survey, Reston 3. California Institute of Technology, Pasadena 4. Johns Hopkins University, Baltimore 5. University of Chicago 6. L. D. Meckel Company, Houston 7. U. S. Geological Survey, Reston 8. Lament Doherty Geological Observatory, Columbia University, New York 9. National Academy of Sciences, Washington Open-File Report 86-327 This report is preliminary and has not been reviewed for conformity with U. S. Geological Survey editiorial standards. 1986 NOTICE The views expressed in this report are those of the members of the Sedimentary Basins Delegation and are in no way the official views of the Committee on Scholarly Communication with the People's Republic of China or its sponsoring organizations the American Council of Learned Societies, the National Academy of Sciences, and the Social Science Research Council. The visit consisting of a bilateral workshop and field trip was part of the exchange program between the two countries and was supported by the National Academy of Sciences in the United States and the China Association for Science and Technology in China, with the Chinese Petroleum Society bearing special responsibilities as host. U.S. funding was provided by the National Science Foundation. The Committee on Scholarly Communication with the People's Republic of China was founded in 1966 by the American Council of Learned Societies, the National Academy of Sciences, and the Social Science Research Council.
    [Show full text]
  • East-African Rift System Geological Settings of Geothermal Resources and Their Prospects
    Presented at Short Course III on Exploration for Geothermal Resources, organized by UNU-GTP and KenGen, at Lake Naivasha, Kenya, October 24 - November 17, 2008. GEOTHERMAL TRAINING PROGRAMME Kenya Electricity Generating Co., Ltd. EAST-AFRICAN RIFT SYSTEM GEOLOGICAL SETTINGS OF GEOTHERMAL RESOURCES AND THEIR PROSPECTS Kristján Saemundsson ISOR – Iceland GeoSurvey Grensásvegur 9 108 Reykjavík ICELAND [email protected] 1. INTRODUCTION The geothermal areas of the East-African Rift System are not all of the same type. Even though related to the Rift the geological settings are different. Some are volcanic, others are not. Parts of the rift zones are highly volcanic but large segments of them are sediment or lake filled grabens. Extreme cases are also found where rift-related fractures produce permeability in basement rocks. In retrospect it may be useful to point out the differences and likely resource characteristics. Below seven types are described, and in which countries they occur as the dominant type. Three of those types are genuine high-temperature geothermal resources. Two may be accessible only in the off flow zone of high-temperature geothermal fields. One is of the sedimentary basin type resource of low to medium temperature, and one other of the low-temperature type is related to fractured basement rock. 2. OFF RIFT VOLCANOES Eritrea (Alid), Yemen (Al Lisi): Volcanic HT-systems suitable for back pressure turbines Main resource at rather high ground (Eritrea) Off flow probably present, perhaps suitable for binary In case of off flow temperature inversion likely Research methods: Geology/volcanology, hydrology, geochemistry, TEM/MT, airborne magnetics, seismicity, gravity 3.
    [Show full text]
  • Journal of Volcanology and Geothermal Research
    JOURNAL OF VOLCANOLOGY AND GEOTHERMAL RESEARCH An International Journal on the Geophysical, Geochemical, Petrological, Economic and Environmental Aspects of Volcanology and Geothermal Research AUTHOR INFORMATION PACK TABLE OF CONTENTS XXX . • Description p.1 • Audience p.1 • Impact Factor p.1 • Abstracting and Indexing p.2 • Editorial Board p.2 • Guide for Authors p.4 ISSN: 0377-0273 DESCRIPTION . An international research journal with focus on volcanic and geothermal processes and their impact on the environment and society. Submission of papers covering the following aspects of volcanology and geothermal research are encouraged: (1) Geological aspects of volcanic systems: volcano stratigraphy, structure and tectonic influence; eruptive history; evolution of volcanic landforms; eruption style and progress; dispersal patterns of lava and ash; analysis of real-time eruption observations. (2) Geochemical and petrological aspects of volcanic rocks: magma genesis and evolution; crystallization; volatile compositions, solubility, and degassing; volcanic petrography and textural analysis. (3) Hydrology, geochemistry and measurement of volcanic and hydrothermal fluids: volcanic gas emissions; fumaroles and springs; crater lakes; hydrothermal mineralization. (4) Geophysical aspects of volcanic systems: physical properties of volcanic rocks and magmas; heat flow studies; volcano seismology, geodesy and remote sensing. (5) Computational modeling and experimental simulation of magmatic and hydrothermal processes: eruption dynamics; magma transport and storage; plume dynamics and ash dispersal; lava flow dynamics; hydrothermal fluid flow; thermodynamics of aqueous fluids and melts. (6) Volcano hazard and risk research: hazard zonation methodology, development of forecasting tools; assessment techniques for vulnerability and impact. The journal does not accept geothermal research papers not related to volcanism. AUDIENCE . Volcanologists, petrologists, geochemists, geothermics.
    [Show full text]
  • Characteristic Analysis of Sandstorms in Taklamakan Desert
    ITM Web of Conferences 12, 04022 (2017) DOI: 10.1051/ itmconf/20171204022 ITA 2017 Characteristic Analysis of Sandstorms in Taklamakan Desert Teng-Ling LUO1,2,a, Wei-Ming ZHANG1,b, Qun-Bo HUANG1,2,c, Yi YU1,2, De XING1,2,d, and Xiang XING1,2,d 1Academy of Ocean Science and Engineering, National University of Defense Technology, Changsha, China 2College of Computer, National University of Defense Technology, Changsha, China [email protected] Abstract: Firstly, the annual variation of sandstorm and strong sandstorm weather process in China from 2000 to 2012 is analyzed according to the"Sand-Dust Weather Yearbook" (2012). Secondly, based on the ERA-Interim Reanalysis from ECMWF and MISR data from the Terra satellite, we investigate the correlation between different dust weather process and land meteorological elements. Finally, the temporal and spatial distribution features of the aerosol optical depth (AOD) in the Taklamakan Desert is studied. And we compare the Taklamakan Desert AOD with nationwide AOD. The results show that: (1) the frequency of sandstorm and strong sandstorm has shown a downward trend and the occurrence of sandstorm decreases more in recent years. (2) In the Taklamakan Desert, the number of sandstorm is positively correlated with the surface temperature, meanwhile, negatively related to the surface relative humidity. (3) In all seasons, the average of AOD in Taklamakan Desert is higher than that of the whole country, and there are obvious differences among the four seasons. 1 Introduction climate model to predict the abnormal climate and sandstorm 8. Sandstorm is a weather phenomenon that strong wind Since the occurrence of sandstorm is directly affected blows dust on the ground, making the air turbid and by the surface meteorological elements, it is essential to causing the level of visibility less than 1km 1.
    [Show full text]
  • Yardangs in the Qaidam Basin, Northwestern China: Distribution
    Aeolian Research 20 (2016) 89–99 Contents lists available at ScienceDirect Aeolian Research journal homepage: www.elsevier.com/locate/aeolia Yardangs in the Qaidam Basin, northwestern China: Distribution and morphology ⇑ Jiyan Li a, , Zhibao Dong b, Guangqiang Qian b, Zhengcai Zhang b, Wanyin Luo b, Junfeng Lu b, Meng Wang b a Taiyuan Normal University, Jinzhong, Shanxi 030619, China b Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, No. 320, West Donggang Road, Lanzhou, Gansu 730000, China article info abstract Article history: The northwestern Qaidam Basin exposes one of the largest and highest elevation yardang fields on Earth. Received 17 April 2015 The aim of the present study was to describe the distribution and morphology of these yardangs, and ana- Revised 31 October 2015 lyze the factors responsible for the distribution pattern of these aeolian landforms. The yardang fields are Accepted 2 November 2015 bounded by piedmont alluvial–diluvial fans from the mountain ranges surrounding the basin, except in Available online 6 January 2016 the south, where they are bounded by dune fields, dry salt flats, lakes, and rivers. This distribution pattern can be attributed to regional tectogenesis and its corresponding environmental impacts. The morphology Keywords: of the yardangs varies considerably in response to the diverse factors that control their formation and Yardangs evolution. Long-ridge yardangs are mainly located in the northernmost part of the yardang field, and Aeolian erosion landforms Dune fields the long ridges are gradually dissected into smaller ridges in the downwind direction. Further downwind, Aeolian geomorphology the convergence of northerly and northwesterly winds and the effects of temporary runoff cause the Qaidam Basin ridges to gradually transition into mesa yardangs.
    [Show full text]
  • Timing of Late Cenozoic Volcanic and Tectonic Events Along the Western Margin of the North American Plate
    Timing of late Cenozoic volcanic and tectonic events along the western margin of the North American plate WARREN BARRASH Geoscience Research Consultants; and Department of Geology, University of Idaho, Moscow, Idaho 83843 RAMESH VENKATAK.RISHNAN* Geophotography and Remote Sensing Center, University of Idaho, Moscow, Idaho 83843 ABSTRACT TECTONIC SETTING PRIOR TO 16 + 1 M.Y. B.P. A number of well- to relatively well-dated significant volcanic Subduction of the Farallon plate dominated the volcanic and and tectonic events along the western margin of the North Ameri- tectonic setting of western North America during early to middle can plate began, ended, or increased intensity at 16 ± I m.y. B.P., Tertiary time. Subduction-related volcanism migrated over much of 10 ± 2 m.y. B.P., and 5 ± 1 m.y. B.P. Continental events at 16 ± 1 the western United States, including areas as far inland as western m.y. B.P. were related to the upwelling of an elongated mantle Montana, Wyoming, and Colorado. A shallow dip to the subduct- diapir, which created a widespread thermal disturbance east of the ing plate appears to be required by the far inland position of arc subducting Farallon plate. Oceanic events at 16 ± 1 m.y. B.P. were volcanism (Lipman and others, 1972; Coney and Reynolds, 1977). largely related to the approach of the East Pacific Rise toward the Contact of the East Pacific Rise with the North American plate North American plate. Continental and oceanic events at 10 ±2 margin at about 30 m.y. B.P. initiated a northward and southward m.y.
    [Show full text]